organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro­quinolin-8-yl furan-2-carboxyl­ate

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 22 February 2013; accepted 26 February 2013; online 6 March 2013)

In the title compound, C14H8ClNO3, the central ester CO2 group is twisted away from the quinoline and furoyl rings by 57.46 (5) and 2.0 (1)°, respectively. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, forming chains in [001].

Related literature

For medicinal, anti­fungal, anti­bacterial, anti­cancer and luminiscent properties of the quinoline ring, see: Somvanshi et al. (2008[Somvanshi, R. K., Subashini, R., Dhanasekaran, V., Arulprakash, G., Das, S. N. & Dey, S. (2008). J. Chem. Crystallogr. 38, 381-386.]), Biavatti et al. (2002[Biavatti, M. W., Vieira, P. C., da Silva, M. F. G. F., Fernandes, J. B., Victor, S. R., Pagnocca, F. C., Albuquerque, S., Caracelli, I. & Zukerman-Schpector, J. (2002). J. Braz. Chem. Soc. 13, 66-70.]), Towers et al. (1981[Towers, G. H. N., Graham, E. A., Spenser, I. D. & Abramowski, Z. (1981). Planta Med. 41, 136-142.]), Shen et al. (1999[Shen, A. Y., Wu, S. N. & Chiu, C. T. (1999). J. Pharm. Pharmacol. 51, 543-548.]) and Montes et al. (2006[Montes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. Jr (2006). Chem. Eur. J. 12, 4523-4535.]), respectively. For similar structures, see: Lei (2006[Lei, G. (2006). Acta Cryst. E62, o4666-o4667.]; 2007[Lei, G. (2007). Acta Cryst. E63, o4304.]). For hydrogen-bonding notation, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8ClNO3

  • Mr = 273.66

  • Monoclinic, P 21 /c

  • a = 4.0714 (1) Å

  • b = 23.7463 (7) Å

  • c = 12.7698 (4) Å

  • β = 102.113 (1)°

  • V = 1207.11 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.35 × 0.09 × 0.09 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 4385 measured reflections

  • 2440 independent reflections

  • 1906 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.03

  • 2440 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.93 2.47 3.371 (2) 162
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound, C14H8ClNO3 [5-chloroquinolin-8-yl-furan-2-carboxylate] (I), is part of a series of studies on the structural properties of the quinoline fragment developed by our research group. The quinoline ring exhibits a key factor responsible for a wide range of medicinal (Somvanshi et al., 2008), antifungal (Biavatti et al., 2002) and antibacterial (Towers et al., 1981) properties. The quinoline ring has been also used in anticancer studies (Shen et al., 1999), as well as its derivatives have been exploited for their luminescent properties as organic light-emitting diodes (OLED) materials (Montes et al., 2006). The molecular structure of (I) is shown in Fig. 1. Bond lengths and bond angles of (I) show marked similarity with other 8-Hydroxyquinoline benzoates reported in the literature such as 8-Quinolyl benzoate and 2-Methylquinolin-8-yl 2-nitrobenzoate (Lei, 2006 and 2007). The central ester moiety, C8/O1/C10/O2/C11, is essentially planar with a r.m.s deviation of fitted atoms of 0.007 Å. The ester group is twisted away from the quinoline and furoyl rings by 57.45 (5)° and 2.0 (1)°, respectively. The crystal packing shows no classical hydrogen bonds. The crystal packing is stabilized by weak C-H···O intermolecular interactions, forming C(6) chains along [001] (see Fig. 2; Etter, 1990). The C14 atom of the furoyl ring at (x,y,z) acts as a hydrogen-bond donor to carbonyl atom O2 at (x-1,-y+1/2,+z-1/2) (see Table 1; Nardelli, 1995).

Related literature top

For medicinal, antifungal, antibacterial, anticancer and luminiscent properties of the quinoline ring, see: Somvanshi et al. (2008), Biavatti et al. (2002), Towers et al. (1981), Shen et al. (1999) and Montes et al. (2006), respectively. For similar structures, see: Lei (2006; 2007). For hydrogen-bonding notation, see: Etter (1990); Nardelli (1995).

Experimental top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co. and were used without additional purification. In a 100 ml round bottom flask 2-furoyl chloride (1.564 mmol, 0.204 g) and 5-chloro-8hidroxyquinoline (1.564 mmol, 0.260 g) in equimolar amounts were mixed. The mixture was left to reflux in 20 ml of acetonitrile in constant stirring for about two hours, adding small amounts of pyridine as catalyst. A colourless solid was obtained after leaving the solvent to evaporate. IR spectra were recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. Colourless crystals; m.p 389 (1) K. IR (KBr) 3127 cm-1, 3097 cm-1 (aromatic C—H); 1743 cm-1 (ester C=O), 1299 cm-1 (ester C-O); 1588 cm-1, 1495 cm-1, 1392 cm-1 (amine C—N); 1467 cm-1 (furan C-O); 1181 cm-1 (C=C); 936 cm-1 (Cl-C).

Refinement top

All the H-atoms attached to C atoms were positioned at geometrically idealized positions and treated as riding with C—H= 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of helical chains which align along [001]. Symmetry code: (i) x-1,-y+1/2,+z-1/2.
5-Chloroquinolin-8-yl furan-2-carboxylate top
Crystal data top
C14H8ClNO3F(000) = 560
Mr = 273.66Dx = 1.506 Mg m3
Monoclinic, P21/cMelting point: 389(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.0714 (1) ÅCell parameters from 2589 reflections
b = 23.7463 (7) Åθ = 3.1–26.3°
c = 12.7698 (4) ŵ = 0.32 mm1
β = 102.113 (1)°T = 295 K
V = 1207.11 (6) Å3Needle, colourless
Z = 40.35 × 0.09 × 0.09 mm
Data collection top
Nonius KappaCCD
diffractometer
1906 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 26.3°, θmin = 3.1°
CCD rotation images, thick slices scansh = 55
4385 measured reflectionsk = 2927
2440 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.2631P]
where P = (Fo2 + 2Fc2)/3
2440 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H8ClNO3V = 1207.11 (6) Å3
Mr = 273.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.0714 (1) ŵ = 0.32 mm1
b = 23.7463 (7) ÅT = 295 K
c = 12.7698 (4) Å0.35 × 0.09 × 0.09 mm
β = 102.113 (1)°
Data collection top
Nonius KappaCCD
diffractometer
1906 reflections with I > 2σ(I)
4385 measured reflectionsRint = 0.017
2440 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
2440 reflectionsΔρmin = 0.29 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86765 (17)0.10906 (3)1.01429 (4)0.0852 (3)
O30.0985 (4)0.21415 (5)0.32844 (10)0.0617 (4)
O20.3216 (4)0.22368 (6)0.53277 (11)0.0735 (4)
O10.1366 (3)0.13797 (5)0.56894 (10)0.0590 (4)
N10.5632 (4)0.05097 (6)0.61584 (11)0.0518 (4)
C90.5359 (4)0.08729 (7)0.69653 (13)0.0442 (4)
C30.9075 (5)0.02976 (8)0.82623 (15)0.0578 (5)
H31.02310.02210.89560.069*
C40.7073 (4)0.07857 (7)0.80464 (13)0.0470 (4)
C100.1468 (4)0.18356 (7)0.50701 (13)0.0471 (4)
C80.3285 (5)0.13513 (7)0.67304 (14)0.0491 (4)
C60.4679 (5)0.16529 (8)0.85564 (15)0.0592 (5)
H60.44850.19170.90780.071*
C20.9304 (5)0.00590 (9)0.74516 (17)0.0630 (5)
H21.06110.03830.75850.076*
C120.2882 (5)0.13064 (8)0.36831 (15)0.0540 (4)
H120.32170.09820.40540.065*
C110.0828 (4)0.17374 (7)0.40520 (13)0.0456 (4)
C70.2944 (5)0.17315 (8)0.74910 (16)0.0568 (5)
H70.15660.20440.73100.068*
C140.3227 (6)0.19455 (10)0.24173 (16)0.0668 (6)
H140.38370.21360.17690.080*
C50.6638 (5)0.11902 (8)0.88183 (14)0.0540 (5)
C10.7556 (5)0.00645 (8)0.64139 (16)0.0592 (5)
H10.77670.01840.58690.071*
C130.4431 (5)0.14454 (10)0.26179 (16)0.0654 (5)
H130.59890.12290.21490.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1006 (5)0.1148 (5)0.0337 (3)0.0015 (4)0.0007 (3)0.0047 (3)
O30.0868 (9)0.0501 (7)0.0449 (7)0.0020 (6)0.0064 (7)0.0084 (5)
O20.1084 (11)0.0582 (8)0.0486 (8)0.0317 (8)0.0048 (7)0.0004 (6)
O10.0734 (8)0.0500 (7)0.0447 (7)0.0140 (6)0.0080 (6)0.0094 (6)
N10.0647 (9)0.0509 (8)0.0395 (8)0.0130 (7)0.0102 (7)0.0050 (6)
C90.0526 (10)0.0451 (9)0.0344 (8)0.0115 (7)0.0079 (7)0.0001 (7)
C30.0614 (11)0.0620 (11)0.0475 (10)0.0011 (9)0.0056 (8)0.0094 (9)
C40.0513 (10)0.0520 (10)0.0369 (8)0.0089 (8)0.0077 (7)0.0027 (7)
C100.0581 (10)0.0434 (9)0.0403 (9)0.0011 (8)0.0115 (7)0.0006 (7)
C80.0585 (10)0.0470 (9)0.0383 (9)0.0095 (8)0.0023 (7)0.0038 (7)
C60.0748 (13)0.0603 (11)0.0448 (10)0.0083 (10)0.0175 (9)0.0107 (8)
C20.0687 (12)0.0553 (11)0.0659 (13)0.0038 (9)0.0160 (10)0.0043 (9)
C120.0557 (10)0.0539 (10)0.0499 (10)0.0021 (8)0.0051 (8)0.0021 (8)
C110.0543 (10)0.0435 (9)0.0395 (9)0.0061 (7)0.0109 (7)0.0039 (7)
C70.0650 (11)0.0503 (10)0.0543 (11)0.0005 (9)0.0108 (9)0.0003 (8)
C140.0805 (14)0.0729 (14)0.0418 (10)0.0171 (11)0.0008 (9)0.0058 (9)
C50.0609 (11)0.0663 (12)0.0339 (9)0.0085 (9)0.0080 (8)0.0027 (8)
C10.0717 (12)0.0515 (10)0.0564 (12)0.0082 (9)0.0181 (9)0.0094 (9)
C130.0626 (12)0.0755 (14)0.0508 (11)0.0014 (10)0.0047 (9)0.0035 (10)
Geometric parameters (Å, º) top
Cl1—C51.7370 (18)C4—C91.425 (2)
O1—C81.395 (2)C5—C61.358 (3)
O1—C101.347 (2)C6—C71.408 (3)
O2—C101.193 (2)C6—H60.9300
O3—C111.364 (2)C7—C81.355 (3)
O3—C141.361 (2)C7—H70.9300
N1—C11.316 (2)C8—C91.410 (2)
N1—C91.366 (2)C10—C111.452 (2)
C1—C21.397 (3)C11—C121.343 (2)
C1—H10.9300C12—C131.413 (3)
C2—C31.356 (3)C12—H120.9300
C2—H20.9300C13—C141.330 (3)
C3—C41.410 (3)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.414 (3)
C14—O3—C11105.45 (15)C1—C2—H2120.3
C10—O1—C8121.21 (13)C11—C12—C13106.20 (17)
C1—N1—C9117.31 (15)C11—C12—H12126.9
N1—C9—C8119.22 (14)C13—C12—H12126.9
N1—C9—C4122.55 (16)C12—C11—O3110.63 (15)
C8—C9—C4118.23 (15)C12—C11—C10132.30 (16)
C2—C3—C4119.58 (17)O3—C11—C10117.05 (15)
C2—C3—H3120.2C8—C7—C6119.90 (18)
C4—C3—H3120.2C8—C7—H7120.0
C3—C4—C5125.02 (16)C6—C7—H7120.0
C3—C4—C9117.01 (16)C13—C14—O3111.11 (17)
C5—C4—C9117.96 (16)C13—C14—H14124.4
O2—C10—O1124.77 (16)O3—C14—H14124.4
O2—C10—C11127.56 (16)C6—C5—C4122.09 (17)
O1—C10—C11107.65 (14)C6—C5—Cl1119.07 (15)
C7—C8—O1122.00 (17)C4—C5—Cl1118.83 (15)
C7—C8—C9122.11 (16)N1—C1—C2124.20 (18)
O1—C8—C9115.62 (15)N1—C1—H1117.9
C5—C6—C7119.68 (17)C2—C1—H1117.9
C5—C6—H6120.2C14—C13—C12106.60 (18)
C7—C6—H6120.2C14—C13—H13126.7
C3—C2—C1119.34 (19)C12—C13—H13126.7
C3—C2—H2120.3
C1—N1—C9—C8179.10 (16)C14—O3—C11—C10178.79 (16)
C1—N1—C9—C40.3 (2)O2—C10—C11—C12179.9 (2)
C2—C3—C4—C5179.79 (18)O1—C10—C11—C121.4 (3)
C2—C3—C4—C90.4 (3)O2—C10—C11—O31.4 (3)
N1—C9—C4—C30.7 (2)O1—C10—C11—O3177.05 (15)
C8—C9—C4—C3178.71 (15)O1—C8—C7—C6173.41 (16)
N1—C9—C4—C5179.51 (16)C9—C8—C7—C60.4 (3)
C8—C9—C4—C51.1 (2)C5—C6—C7—C81.2 (3)
C8—O1—C10—O22.3 (3)C11—O3—C14—C130.1 (2)
C8—O1—C10—C11179.13 (15)C7—C6—C5—C41.6 (3)
C10—O1—C8—C759.4 (2)C7—C6—C5—Cl1178.39 (14)
C10—O1—C8—C9126.42 (17)C3—C4—C5—C6179.78 (18)
N1—C9—C8—C7179.07 (17)C9—C4—C5—C60.4 (3)
C4—C9—C8—C71.5 (3)C3—C4—C5—Cl10.2 (3)
N1—C9—C8—O16.8 (2)C9—C4—C5—Cl1179.55 (12)
C4—C9—C8—O1172.65 (14)C9—N1—C1—C20.4 (3)
C4—C3—C2—C10.2 (3)C3—C2—C1—N10.6 (3)
C13—C12—C11—O30.0 (2)O3—C14—C13—C120.1 (2)
C13—C12—C11—C10178.50 (18)C11—C12—C13—C140.1 (2)
C14—O3—C11—C120.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.932.473.371 (2)162
Symmetry code: (i) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H8ClNO3
Mr273.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)4.0714 (1), 23.7463 (7), 12.7698 (4)
β (°) 102.113 (1)
V3)1207.11 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.35 × 0.09 × 0.09
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4385, 2440, 1906
Rint0.017
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.03
No. of reflections2440
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.29

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.932.473.371 (2)162.3
Symmetry code: (i) x1, y+1/2, z1/2.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationBiavatti, M. W., Vieira, P. C., da Silva, M. F. G. F., Fernandes, J. B., Victor, S. R., Pagnocca, F. C., Albuquerque, S., Caracelli, I. & Zukerman-Schpector, J. (2002). J. Braz. Chem. Soc. 13, 66–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLei, G. (2006). Acta Cryst. E62, o4666–o4667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLei, G. (2007). Acta Cryst. E63, o4304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMontes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. Jr (2006). Chem. Eur. J. 12, 4523–4535.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, A. Y., Wu, S. N. & Chiu, C. T. (1999). J. Pharm. Pharmacol. 51, 543–548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSomvanshi, R. K., Subashini, R., Dhanasekaran, V., Arulprakash, G., Das, S. N. & Dey, S. (2008). J. Chem. Crystallogr. 38, 381–386.  Web of Science CSD CrossRef CAS Google Scholar
First citationTowers, G. H. N., Graham, E. A., Spenser, I. D. & Abramowski, Z. (1981). Planta Med. 41, 136–142.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds