organic compounds
5-Iodo-3-phenyl-2,1-benzoxazole
aDepartment of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla and Mefodiya 6, Lviv 79005, Ukraine, bInstitute of Low Temperature and Structure Research, Okolna 2, 50-422 Wrocław, Poland, and cFaculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland
*Correspondence e-mail: dangercorp@gmail.com
The title compound, C13H8INO, was prepared by a condensation reaction of 4-nitrobenzene with phenylacetonitrile in NaOH–ethanol solution. There are two independent molecules in the in which the dihedral angles between the benzene ring and the benzoisoxazole unit are 4.2 (3) and 4.1 (3)°. The crystal packing is governed by C—H⋯N, C—I⋯π and C—I⋯O interactions.
Related literature
For the biologial activity and applications of benzo[c]isoxazoles, see: McEvoy et al. (1968); Hester et al. (1989); Walsh et al. (1990); Angibaud et al. (2003). For a related structure, see: Teslenko et al. (2008). For a general synthetic procedure, see: Davis & Pizzini (1960).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813005862/gk2554sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813005862/gk2554Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813005862/gk2554Isup3.cdx
Supporting information file. DOI: 10.1107/S1600536813005862/gk2554Isup4.cml
Phenylacetonitrile (1.4 g, 12 mmol) and 5 ml of benzene solution of 4-iodonitrobenene (2.49 g, 10 mmol) were added with stirring to 40 ml of ethanol solution of potassium hydroxide (4 g, 0.1 mole). The mixture was stirred for 4 h at 323 K, then poured into 150 ml of water and acidified with hydrochloric acid. The precipitate was isolated by filtration, washed with water and dried. Recrystallization of crude product from ethanol gave 2.57 g (80% yield) of 5-iodo-3-phenyl-2,1-benzoxazole as pale yellow needles suitable for X-ray analysis, m.p. 390–391 K.
All H atoms were found in difference Fourier maps. All H atoms were positioned geometrically and treated as riding on their carriers, with C–H = 0.95 Å and Uiso(H) = values of 1.2Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C13H8INO | F(000) = 616 |
Mr = 321.10 | Dx = 1.901 Mg m−3 |
Monoclinic, P21 | Melting point = 390–391 K |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 5.381 (3) Å | Cell parameters from 15060 reflections |
b = 15.225 (7) Å | θ = 3.0–34.7° |
c = 13.749 (7) Å | µ = 2.83 mm−1 |
β = 94.92 (3)° | T = 100 K |
V = 1122.2 (10) Å3 | Needle, pale yellow |
Z = 4 | 0.25 × 0.08 × 0.03 mm |
Kuma KM-4-CCD four-circle diffractometer | 6015 independent reflections |
Radiation source: fine-focus sealed tube | 4621 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
ω scans | θmax = 34.7°, θmin = 3.0° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) | h = −8→7 |
Tmin = 0.44, Tmax = 0.80 | k = −17→23 |
15060 measured reflections | l = −20→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.046P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
6015 reflections | Δρmax = 1.98 e Å−3 |
289 parameters | Δρmin = −1.01 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1659 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (3) |
C13H8INO | V = 1122.2 (10) Å3 |
Mr = 321.10 | Z = 4 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.381 (3) Å | µ = 2.83 mm−1 |
b = 15.225 (7) Å | T = 100 K |
c = 13.749 (7) Å | 0.25 × 0.08 × 0.03 mm |
β = 94.92 (3)° |
Kuma KM-4-CCD four-circle diffractometer | 6015 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) | 4621 reflections with I > 2σ(I) |
Tmin = 0.44, Tmax = 0.80 | Rint = 0.053 |
15060 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.090 | Δρmax = 1.98 e Å−3 |
S = 1.00 | Δρmin = −1.01 e Å−3 |
6015 reflections | Absolute structure: Flack (1983), 1659 Friedel pairs |
289 parameters | Absolute structure parameter: 0.00 (3) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1A | 0.51472 (6) | 0.01154 (2) | 0.19512 (2) | 0.02514 (9) | |
O1A | −0.2353 (8) | 0.2574 (3) | 0.4305 (3) | 0.0262 (9) | |
N1A | −0.0803 (9) | 0.3076 (4) | 0.3739 (4) | 0.0316 (10) | |
C1A | 0.0530 (10) | 0.2453 (4) | 0.3322 (4) | 0.0256 (12) | |
C2A | 0.2425 (11) | 0.2686 (4) | 0.2666 (5) | 0.0303 (13) | |
H2A | 0.2765 | 0.3276 | 0.2499 | 0.036* | |
C3A | 0.3651 (11) | 0.2002 (4) | 0.2316 (4) | 0.0261 (11) | |
H3A | 0.4926 | 0.2110 | 0.1894 | 0.031* | |
C4A | 0.3088 (10) | 0.1115 (4) | 0.2561 (4) | 0.0219 (10) | |
C5A | 0.1314 (10) | 0.0903 (4) | 0.3171 (4) | 0.0204 (10) | |
H5A | 0.0981 | 0.0309 | 0.3328 | 0.024* | |
C6A | −0.0029 (10) | 0.1613 (3) | 0.3564 (4) | 0.0201 (10) | |
C7A | −0.1871 (10) | 0.1707 (4) | 0.4203 (4) | 0.0213 (10) | |
C8A | −0.3335 (10) | 0.1101 (4) | 0.4753 (4) | 0.0204 (10) | |
C9A | −0.2895 (11) | 0.0191 (4) | 0.4735 (4) | 0.0260 (11) | |
H9A | −0.1608 | −0.0034 | 0.4373 | 0.031* | |
C10A | −0.4324 (12) | −0.0380 (4) | 0.5240 (4) | 0.0267 (12) | |
H10A | −0.3982 | −0.0992 | 0.5230 | 0.032* | |
C11A | −0.6211 (10) | −0.0080 (4) | 0.5750 (4) | 0.0296 (14) | |
H11A | −0.7201 | −0.0478 | 0.6084 | 0.036* | |
C12A | −0.6676 (11) | 0.0838 (4) | 0.5776 (4) | 0.0229 (11) | |
H12A | −0.7973 | 0.1054 | 0.6138 | 0.027* | |
C13A | −0.5264 (10) | 0.1421 (4) | 0.5282 (4) | 0.0220 (11) | |
H13A | −0.5597 | 0.2033 | 0.5300 | 0.026* | |
I1B | −0.05111 (7) | 0.30782 (2) | 0.66158 (3) | 0.02711 (9) | |
O1B | 0.7816 (8) | 0.2167 (3) | 1.0229 (3) | 0.0258 (8) | |
N1B | 0.6242 (9) | 0.2844 (3) | 1.0482 (4) | 0.0270 (10) | |
C1B | 0.4622 (10) | 0.2937 (3) | 0.9704 (4) | 0.0232 (11) | |
C2B | 0.2531 (11) | 0.3519 (4) | 0.9611 (5) | 0.0272 (12) | |
H2B | 0.2166 | 0.3890 | 1.0136 | 0.033* | |
C3B | 0.1074 (11) | 0.3530 (4) | 0.8749 (4) | 0.0249 (11) | |
H3B | −0.0335 | 0.3907 | 0.8673 | 0.030* | |
C4B | 0.1657 (9) | 0.2974 (3) | 0.7956 (4) | 0.0206 (10) | |
C5B | 0.3589 (10) | 0.2384 (4) | 0.8030 (4) | 0.0220 (11) | |
H5B | 0.3902 | 0.2010 | 0.7501 | 0.026* | |
C6B | 0.5112 (10) | 0.2353 (3) | 0.8931 (4) | 0.0199 (10) | |
C7B | 0.7150 (10) | 0.1873 (3) | 0.9304 (4) | 0.0196 (10) | |
C8B | 0.8618 (10) | 0.1135 (4) | 0.8959 (4) | 0.0216 (10) | |
C9B | 0.8005 (11) | 0.0769 (4) | 0.8031 (4) | 0.0258 (12) | |
H9B | 0.6644 | 0.0996 | 0.7621 | 0.031* | |
C10B | 0.9389 (10) | 0.0082 (4) | 0.7720 (4) | 0.0255 (10) | |
H10B | 0.8969 | −0.0158 | 0.7089 | 0.031* | |
C11B | 1.1383 (12) | −0.0274 (4) | 0.8297 (4) | 0.0285 (12) | |
H11B | 1.2315 | −0.0753 | 0.8076 | 0.034* | |
C12B | 1.1968 (11) | 0.0099 (5) | 0.9218 (4) | 0.0301 (11) | |
H12B | 1.3328 | −0.0131 | 0.9626 | 0.036* | |
C13B | 1.0630 (11) | 0.0790 (4) | 0.9549 (4) | 0.0253 (11) | |
H13B | 1.1071 | 0.1032 | 1.0177 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1A | 0.02109 (16) | 0.03002 (19) | 0.02445 (17) | 0.00079 (15) | 0.00275 (13) | −0.00571 (15) |
O1A | 0.028 (2) | 0.021 (2) | 0.031 (2) | 0.0056 (16) | 0.0085 (17) | 0.0011 (16) |
N1A | 0.036 (3) | 0.024 (2) | 0.037 (3) | −0.001 (3) | 0.014 (2) | 0.007 (2) |
C1A | 0.010 (2) | 0.055 (4) | 0.011 (2) | 0.000 (2) | −0.0008 (18) | 0.000 (2) |
C2A | 0.029 (3) | 0.033 (3) | 0.030 (3) | −0.001 (3) | 0.006 (2) | 0.011 (2) |
C3A | 0.029 (3) | 0.028 (3) | 0.022 (3) | 0.001 (2) | 0.006 (2) | 0.004 (2) |
C4A | 0.021 (3) | 0.025 (3) | 0.020 (2) | 0.006 (2) | −0.0003 (19) | −0.002 (2) |
C5A | 0.021 (3) | 0.015 (2) | 0.025 (3) | 0.000 (2) | 0.001 (2) | −0.0027 (19) |
C6A | 0.021 (3) | 0.018 (3) | 0.021 (3) | 0.000 (2) | 0.001 (2) | 0.0002 (19) |
C7A | 0.020 (3) | 0.021 (3) | 0.022 (3) | 0.001 (2) | −0.003 (2) | 0.0008 (19) |
C8A | 0.021 (2) | 0.023 (3) | 0.017 (2) | 0.001 (2) | 0.0032 (19) | −0.0026 (19) |
C9A | 0.042 (3) | 0.018 (3) | 0.019 (2) | 0.005 (3) | 0.005 (2) | −0.001 (2) |
C10A | 0.039 (3) | 0.017 (3) | 0.024 (3) | −0.001 (2) | 0.000 (2) | 0.002 (2) |
C11A | 0.021 (3) | 0.048 (4) | 0.020 (3) | −0.012 (2) | 0.001 (2) | 0.008 (2) |
C12A | 0.020 (3) | 0.026 (3) | 0.023 (3) | 0.000 (2) | 0.000 (2) | −0.003 (2) |
C13A | 0.020 (3) | 0.025 (3) | 0.021 (3) | 0.003 (2) | 0.001 (2) | −0.002 (2) |
I1B | 0.02550 (18) | 0.02499 (18) | 0.03013 (19) | 0.00099 (17) | −0.00173 (14) | 0.00057 (16) |
O1B | 0.032 (2) | 0.028 (2) | 0.0171 (19) | −0.0014 (18) | 0.0017 (15) | −0.0014 (16) |
N1B | 0.035 (3) | 0.021 (2) | 0.025 (2) | −0.0026 (19) | 0.004 (2) | 0.0006 (17) |
C1B | 0.030 (3) | 0.022 (3) | 0.019 (2) | −0.005 (2) | 0.007 (2) | 0.0006 (18) |
C2B | 0.027 (3) | 0.026 (3) | 0.030 (3) | −0.003 (2) | 0.012 (2) | 0.001 (2) |
C3B | 0.021 (3) | 0.024 (3) | 0.032 (3) | 0.000 (2) | 0.009 (2) | −0.001 (2) |
C4B | 0.022 (2) | 0.018 (3) | 0.022 (2) | −0.004 (2) | 0.0011 (19) | 0.0015 (18) |
C5B | 0.023 (3) | 0.021 (3) | 0.022 (3) | −0.004 (2) | 0.003 (2) | −0.0012 (19) |
C6B | 0.021 (3) | 0.018 (2) | 0.021 (3) | −0.003 (2) | 0.005 (2) | −0.0020 (18) |
C7B | 0.023 (3) | 0.017 (2) | 0.019 (2) | −0.005 (2) | 0.002 (2) | 0.0018 (18) |
C8B | 0.020 (3) | 0.019 (2) | 0.026 (3) | −0.003 (2) | 0.003 (2) | 0.003 (2) |
C9B | 0.024 (3) | 0.028 (3) | 0.025 (3) | 0.000 (2) | 0.000 (2) | 0.001 (2) |
C10B | 0.026 (3) | 0.025 (3) | 0.026 (2) | 0.002 (3) | 0.0045 (19) | −0.004 (2) |
C11B | 0.029 (3) | 0.026 (3) | 0.031 (3) | 0.003 (2) | 0.009 (2) | 0.004 (2) |
C12B | 0.029 (3) | 0.031 (3) | 0.029 (3) | 0.005 (3) | −0.003 (2) | 0.006 (3) |
C13B | 0.027 (3) | 0.028 (3) | 0.020 (3) | 0.001 (2) | −0.002 (2) | 0.002 (2) |
I1A—C4A | 2.100 (5) | I1B—C4B | 2.100 (5) |
O1A—C7A | 1.354 (6) | O1B—C7B | 1.366 (6) |
O1A—N1A | 1.413 (6) | O1B—N1B | 1.397 (6) |
N1A—C1A | 1.346 (8) | N1B—C1B | 1.329 (8) |
C1A—C6A | 1.361 (8) | C1B—C6B | 1.427 (7) |
C1A—C2A | 1.462 (8) | C1B—C2B | 1.430 (8) |
C2A—C3A | 1.344 (9) | C2B—C3B | 1.363 (9) |
C2A—H2A | 0.9500 | C2B—H2B | 0.9500 |
C3A—C4A | 1.430 (8) | C3B—C4B | 1.437 (8) |
C3A—H3A | 0.9500 | C3B—H3B | 0.9500 |
C4A—C5A | 1.362 (7) | C4B—C5B | 1.371 (8) |
C5A—C6A | 1.432 (7) | C5B—C6B | 1.426 (8) |
C5A—H5A | 0.9500 | C5B—H5B | 0.9500 |
C6A—C7A | 1.387 (7) | C6B—C7B | 1.379 (7) |
C7A—C8A | 1.466 (7) | C7B—C8B | 1.475 (8) |
C8A—C9A | 1.405 (8) | C8B—C13B | 1.398 (8) |
C8A—C13A | 1.405 (7) | C8B—C9B | 1.406 (8) |
C9A—C10A | 1.387 (8) | C9B—C10B | 1.374 (8) |
C9A—H9A | 0.9500 | C9B—H9B | 0.9500 |
C10A—C11A | 1.362 (8) | C10B—C11B | 1.389 (8) |
C10A—H10A | 0.9500 | C10B—H10B | 0.9500 |
C11A—C12A | 1.420 (9) | C11B—C12B | 1.399 (9) |
C11A—H11A | 0.9500 | C11B—H11B | 0.9500 |
C12A—C13A | 1.384 (8) | C12B—C13B | 1.374 (9) |
C12A—H12A | 0.9500 | C12B—H12B | 0.9500 |
C13A—H13A | 0.9500 | C13B—H13B | 0.9500 |
C7A—O1A—N1A | 110.0 (4) | C7B—O1B—N1B | 110.9 (4) |
C1A—N1A—O1A | 102.4 (5) | C1B—N1B—O1B | 104.3 (4) |
N1A—C1A—C6A | 114.9 (5) | N1B—C1B—C6B | 112.5 (5) |
N1A—C1A—C2A | 121.2 (6) | N1B—C1B—C2B | 126.5 (5) |
C6A—C1A—C2A | 123.9 (6) | C6B—C1B—C2B | 121.0 (5) |
C3A—C2A—C1A | 115.1 (6) | C3B—C2B—C1B | 118.3 (5) |
C3A—C2A—H2A | 122.5 | C3B—C2B—H2B | 120.8 |
C1A—C2A—H2A | 122.5 | C1B—C2B—H2B | 120.8 |
C2A—C3A—C4A | 121.7 (5) | C2B—C3B—C4B | 120.4 (5) |
C2A—C3A—H3A | 119.1 | C2B—C3B—H3B | 119.8 |
C4A—C3A—H3A | 119.1 | C4B—C3B—H3B | 119.8 |
C5A—C4A—C3A | 122.9 (5) | C5B—C4B—C3B | 122.9 (5) |
C5A—C4A—I1A | 119.7 (4) | C5B—C4B—I1B | 118.4 (4) |
C3A—C4A—I1A | 117.4 (4) | C3B—C4B—I1B | 118.7 (4) |
C4A—C5A—C6A | 117.1 (5) | C4B—C5B—C6B | 117.5 (5) |
C4A—C5A—H5A | 121.4 | C4B—C5B—H5B | 121.2 |
C6A—C5A—H5A | 121.4 | C6B—C5B—H5B | 121.2 |
C1A—C6A—C7A | 104.0 (5) | C7B—C6B—C5B | 136.0 (5) |
C1A—C6A—C5A | 119.2 (5) | C7B—C6B—C1B | 104.2 (5) |
C7A—C6A—C5A | 136.8 (5) | C5B—C6B—C1B | 119.8 (5) |
O1A—C7A—C6A | 108.7 (5) | O1B—C7B—C6B | 108.0 (4) |
O1A—C7A—C8A | 116.4 (5) | O1B—C7B—C8B | 116.3 (5) |
C6A—C7A—C8A | 134.9 (5) | C6B—C7B—C8B | 135.6 (5) |
C9A—C8A—C13A | 119.0 (5) | C13B—C8B—C9B | 119.2 (5) |
C9A—C8A—C7A | 120.9 (5) | C13B—C8B—C7B | 120.6 (5) |
C13A—C8A—C7A | 120.1 (5) | C9B—C8B—C7B | 120.2 (5) |
C10A—C9A—C8A | 120.5 (5) | C10B—C9B—C8B | 119.6 (6) |
C10A—C9A—H9A | 119.8 | C10B—C9B—H9B | 120.2 |
C8A—C9A—H9A | 119.8 | C8B—C9B—H9B | 120.2 |
C11A—C10A—C9A | 121.2 (5) | C9B—C10B—C11B | 122.1 (6) |
C11A—C10A—H10A | 119.4 | C9B—C10B—H10B | 118.9 |
C9A—C10A—H10A | 119.4 | C11B—C10B—H10B | 118.9 |
C10A—C11A—C12A | 118.9 (5) | C10B—C11B—C12B | 117.5 (6) |
C10A—C11A—H11A | 120.5 | C10B—C11B—H11B | 121.3 |
C12A—C11A—H11A | 120.5 | C12B—C11B—H11B | 121.3 |
C13A—C12A—C11A | 120.9 (5) | C13B—C12B—C11B | 121.8 (5) |
C13A—C12A—H12A | 119.6 | C13B—C12B—H12B | 119.1 |
C11A—C12A—H12A | 119.6 | C11B—C12B—H12B | 119.1 |
C12A—C13A—C8A | 119.5 (5) | C12B—C13B—C8B | 119.8 (5) |
C12A—C13A—H13A | 120.3 | C12B—C13B—H13B | 120.1 |
C8A—C13A—H13A | 120.3 | C8B—C13B—H13B | 120.1 |
Cg is the centroid of the C1B–C6B ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3A—H3A···N1Bi | 0.95 | 2.40 | 3.247 (7) | 149 |
C11A—H11A···N1Aii | 0.95 | 2.47 | 3.339 (8) | 152 |
C4A—I1A···Cgiii | 2.10 (1) | 3.62 (1) | 5.637 (6) | 160 (1) |
C4B—I1B···O1A | 2.10 (1) | 3.34 (1) | 5.325 (7) | 156 (1) |
Symmetry codes: (i) x, y, z−1; (ii) −x−1, y−1/2, −z+1; (iii) −x+1, y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C13H8INO |
Mr | 321.10 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 100 |
a, b, c (Å) | 5.381 (3), 15.225 (7), 13.749 (7) |
β (°) | 94.92 (3) |
V (Å3) | 1122.2 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.83 |
Crystal size (mm) | 0.25 × 0.08 × 0.03 |
Data collection | |
Diffractometer | Kuma KM-4-CCD four-circle diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.44, 0.80 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15060, 6015, 4621 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.800 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.090, 1.00 |
No. of reflections | 6015 |
No. of parameters | 289 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.98, −1.01 |
Absolute structure | Flack (1983), 1659 Friedel pairs |
Absolute structure parameter | 0.00 (3) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Cg is the centroid of the C1B–C6B ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3A—H3A···N1Bi | 0.95 | 2.40 | 3.247 (7) | 149 |
C11A—H11A···N1Aii | 0.95 | 2.47 | 3.339 (8) | 152 |
C4A—I1A···Cgiii | 2.100 (5) | 3.618 (2) | 5.637 (6) | 160.0 (2) |
C4B—I1B···O1A | 2.100 (5) | 3.335 (5) | 5.325 (7) | 156.3 (2) |
Symmetry codes: (i) x, y, z−1; (ii) −x−1, y−1/2, −z+1; (iii) −x+1, y−1/2, −z+1. |
Acknowledgements
The authors are grateful to the State fund for fundamental research of Ukraine for the financial support (Project F54.3/004).
References
Angibaud, P., Bourdrez, X., Devine, A., End, D. W., Freyne, E., Ligny, Y., Muller, P., Mannens, G., Pilatte, I., Poncelet, V., Skrzat, S., Smets, G., Van Dun, J., Van Remoortere, P., Venet, M. & Wouters, W. (2003). Bioorg. Med. Chem. Lett. 13, 1543–1548. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Davis, R. B. & Pizzini, L. C. (1960). J. Org. Chem. 25, 1884–1888. CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hester, J. B., Ludens, J. H., Emmert, D. E. & West, B. E. (1989). J. Med. Chem. 32, 1157–1163. CrossRef CAS PubMed Web of Science Google Scholar
McEvoy, F. J., Greenblatt, E. N., Osterrerg, A. C. & Allen, G. R. Jr (1968). J. Med. Chem. 11, 1248–1250. CrossRef CAS PubMed Web of Science Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teslenko, Y., Matiychuk, V., Obushak, M., Kinzhybalo, V. & Ślepokura, K. (2008). Acta Cryst. E64, o2420. Web of Science CSD CrossRef IUCr Journals Google Scholar
Walsh, D. A., Moran, H. W., Shamblee, D. A. & Welstead, W. J. (1990). J. Med. Chem. 33, 2296–2304. CrossRef CAS PubMed Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Our interest in benzo[c]isoxazoles is concerned with their application as precursors of a variety of bioactive compounds (Angibaud et al., 2003; Walsh et al., 1990; Hester et al., 1989; McEvoy et al., 1968). The title compound will be used in our further investigations as arylation agent in palladium-catalyzed reactions with alkenes and alkynes.
The title compound crystalizes in the noncentrosymmetric monoclinic P21 space group with two independent molecules in the asymmetric part (A and B), see Fig. 1. The molecules are almost planar, the dihedral angles between the mean planes of benzoisoxazole and benzene rings being 4.2 (3)° and 4.1 (3)° for A and B, respectively. The geometrical parameters of the molecules are similar and consistent with the previously studied 2,1-benzoxazole derivatives (Teslenko et al., 2008).
Crystal packing is governed by hydrogen bonds of C–H···N type and other intermolecular interactions including C–I···π and C–I···O. Intermolecular interactions C4A–I1A···Cgiii (Cg is a centroid of C1B/C6B aromatic ring) and C4B–I1B···O1A connect the molecules into chains propagating in b-axis direction along 21 screw axis (see Fig. 2). Hydrogen bond C3A–H3A···N1Bi connects the chains into corrugated layer parallel to the bc-plane. Hydrogen bond C11A–H11A···N1Aii binds successive layers.