organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Iodo-3-phenyl-2,1-benzoxazole

aDepartment of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla and Mefodiya 6, Lviv 79005, Ukraine, bInstitute of Low Temperature and Structure Research, Okolna 2, 50-422 Wrocław, Poland, and cFaculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland
*Correspondence e-mail: dangercorp@gmail.com

(Received 2 February 2013; accepted 28 February 2013; online 9 March 2013)

The title compound, C13H8INO, was prepared by a condensation reaction of 4-nitro­benzene with phenyl­acetonitrile in NaOH–ethanol solution. There are two independent mol­ecules in the asymmetric unit, in which the dihedral angles between the benzene ring and the benzoisoxazole unit are 4.2 (3) and 4.1 (3)°. The crystal packing is governed by C—H⋯N, C—I⋯π and C—I⋯O inter­actions.

Related literature

For the biologial activity and applications of benzo[c]isoxazoles, see: McEvoy et al. (1968[McEvoy, F. J., Greenblatt, E. N., Osterrerg, A. C. & Allen, G. R. Jr (1968). J. Med. Chem. 11, 1248-1250.]); Hester et al. (1989[Hester, J. B., Ludens, J. H., Emmert, D. E. & West, B. E. (1989). J. Med. Chem. 32, 1157-1163.]); Walsh et al. (1990[Walsh, D. A., Moran, H. W., Shamblee, D. A. & Welstead, W. J. (1990). J. Med. Chem. 33, 2296-2304.]); Angibaud et al. (2003[Angibaud, P., Bourdrez, X., Devine, A., End, D. W., Freyne, E., Ligny, Y., Muller, P., Mannens, G., Pilatte, I., Poncelet, V., Skrzat, S., Smets, G., Van Dun, J., Van Remoortere, P., Venet, M. & Wouters, W. (2003). Bioorg. Med. Chem. Lett. 13, 1543-1548.]). For a related structure, see: Teslenko et al. (2008[Teslenko, Y., Matiychuk, V., Obushak, M., Kinzhybalo, V. & Ślepokura, K. (2008). Acta Cryst. E64, o2420.]). For a general synthetic procedure, see: Davis & Pizzini (1960[Davis, R. B. & Pizzini, L. C. (1960). J. Org. Chem. 25, 1884-1888.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8INO

  • Mr = 321.10

  • Monoclinic, P 21

  • a = 5.381 (3) Å

  • b = 15.225 (7) Å

  • c = 13.749 (7) Å

  • β = 94.92 (3)°

  • V = 1122.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 100 K

  • 0.25 × 0.08 × 0.03 mm

Data collection
  • Kuma KM-4-CCD four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]) Tmin = 0.44, Tmax = 0.80

  • 15060 measured reflections

  • 6015 independent reflections

  • 4621 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.090

  • S = 1.00

  • 6015 reflections

  • 289 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.98 e Å−3

  • Δρmin = −1.01 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1659 Friedel pairs

  • Flack parameter: 0.00 (3)

Table 1
Intermolecular interactions (Å, °)

Cg is the centroid of the C1B–C6B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3A—H3A⋯N1Bi 0.95 2.40 3.247 (7) 149
C11A—H11A⋯N1Aii 0.95 2.47 3.339 (8) 152
C4A—I1ACgiii 2.100 (5) 3.618 (2) 5.637 (6) 160.0 (2)
C4B—I1B⋯O1A 2.100 (5) 3.335 (5) 5.325 (7) 156.3 (2)
Symmetry codes: (i) x, y, z-1; (ii) [-x-1, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our interest in benzo[c]isoxazoles is concerned with their application as precursors of a variety of bioactive compounds (Angibaud et al., 2003; Walsh et al., 1990; Hester et al., 1989; McEvoy et al., 1968). The title compound will be used in our further investigations as arylation agent in palladium-catalyzed reactions with alkenes and alkynes.

The title compound crystalizes in the noncentrosymmetric monoclinic P21 space group with two independent molecules in the asymmetric part (A and B), see Fig. 1. The molecules are almost planar, the dihedral angles between the mean planes of benzoisoxazole and benzene rings being 4.2 (3)° and 4.1 (3)° for A and B, respectively. The geometrical parameters of the molecules are similar and consistent with the previously studied 2,1-benzoxazole derivatives (Teslenko et al., 2008).

Crystal packing is governed by hydrogen bonds of C–H···N type and other intermolecular interactions including C–I···π and C–I···O. Intermolecular interactions C4A–I1A···Cgiii (Cg is a centroid of C1B/C6B aromatic ring) and C4B–I1B···O1A connect the molecules into chains propagating in b-axis direction along 21 screw axis (see Fig. 2). Hydrogen bond C3A–H3A···N1Bi connects the chains into corrugated layer parallel to the bc-plane. Hydrogen bond C11A–H11A···N1Aii binds successive layers.

Related literature top

For the biologial activity and applications of benzo[c]isoxazoles, see: McEvoy et al. (1968); Hester et al. (1989); Walsh et al. (1990); Angibaud et al. (2003). For a related structure, see: Teslenko et al. (2008). For a general synthetic procedure, see: Davis & Pizzini (1960).

Experimental top

Phenylacetonitrile (1.4 g, 12 mmol) and 5 ml of benzene solution of 4-iodonitrobenene (2.49 g, 10 mmol) were added with stirring to 40 ml of ethanol solution of potassium hydroxide (4 g, 0.1 mole). The mixture was stirred for 4 h at 323 K, then poured into 150 ml of water and acidified with hydrochloric acid. The precipitate was isolated by filtration, washed with water and dried. Recrystallization of crude product from ethanol gave 2.57 g (80% yield) of 5-iodo-3-phenyl-2,1-benzoxazole as pale yellow needles suitable for X-ray analysis, m.p. 390–391 K.

Refinement top

All H atoms were found in difference Fourier maps. All H atoms were positioned geometrically and treated as riding on their carriers, with C–H = 0.95 Å and Uiso(H) = values of 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound showing intermolecular interactions as dashed lines (molecule A - red, molecule B - green).
5-Iodo-3-phenyl-2,1-benzoxazole top
Crystal data top
C13H8INOF(000) = 616
Mr = 321.10Dx = 1.901 Mg m3
Monoclinic, P21Melting point = 390–391 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 5.381 (3) ÅCell parameters from 15060 reflections
b = 15.225 (7) Åθ = 3.0–34.7°
c = 13.749 (7) ŵ = 2.83 mm1
β = 94.92 (3)°T = 100 K
V = 1122.2 (10) Å3Needle, pale yellow
Z = 40.25 × 0.08 × 0.03 mm
Data collection top
Kuma KM-4-CCD four-circle
diffractometer
6015 independent reflections
Radiation source: fine-focus sealed tube4621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 34.7°, θmin = 3.0°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 87
Tmin = 0.44, Tmax = 0.80k = 1723
15060 measured reflectionsl = 2021
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.046P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
6015 reflectionsΔρmax = 1.98 e Å3
289 parametersΔρmin = 1.01 e Å3
1 restraintAbsolute structure: Flack (1983), 1659 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
C13H8INOV = 1122.2 (10) Å3
Mr = 321.10Z = 4
Monoclinic, P21Mo Kα radiation
a = 5.381 (3) ŵ = 2.83 mm1
b = 15.225 (7) ÅT = 100 K
c = 13.749 (7) Å0.25 × 0.08 × 0.03 mm
β = 94.92 (3)°
Data collection top
Kuma KM-4-CCD four-circle
diffractometer
6015 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
4621 reflections with I > 2σ(I)
Tmin = 0.44, Tmax = 0.80Rint = 0.053
15060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.090Δρmax = 1.98 e Å3
S = 1.00Δρmin = 1.01 e Å3
6015 reflectionsAbsolute structure: Flack (1983), 1659 Friedel pairs
289 parametersAbsolute structure parameter: 0.00 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I1A0.51472 (6)0.01154 (2)0.19512 (2)0.02514 (9)
O1A0.2353 (8)0.2574 (3)0.4305 (3)0.0262 (9)
N1A0.0803 (9)0.3076 (4)0.3739 (4)0.0316 (10)
C1A0.0530 (10)0.2453 (4)0.3322 (4)0.0256 (12)
C2A0.2425 (11)0.2686 (4)0.2666 (5)0.0303 (13)
H2A0.27650.32760.24990.036*
C3A0.3651 (11)0.2002 (4)0.2316 (4)0.0261 (11)
H3A0.49260.21100.18940.031*
C4A0.3088 (10)0.1115 (4)0.2561 (4)0.0219 (10)
C5A0.1314 (10)0.0903 (4)0.3171 (4)0.0204 (10)
H5A0.09810.03090.33280.024*
C6A0.0029 (10)0.1613 (3)0.3564 (4)0.0201 (10)
C7A0.1871 (10)0.1707 (4)0.4203 (4)0.0213 (10)
C8A0.3335 (10)0.1101 (4)0.4753 (4)0.0204 (10)
C9A0.2895 (11)0.0191 (4)0.4735 (4)0.0260 (11)
H9A0.16080.00340.43730.031*
C10A0.4324 (12)0.0380 (4)0.5240 (4)0.0267 (12)
H10A0.39820.09920.52300.032*
C11A0.6211 (10)0.0080 (4)0.5750 (4)0.0296 (14)
H11A0.72010.04780.60840.036*
C12A0.6676 (11)0.0838 (4)0.5776 (4)0.0229 (11)
H12A0.79730.10540.61380.027*
C13A0.5264 (10)0.1421 (4)0.5282 (4)0.0220 (11)
H13A0.55970.20330.53000.026*
I1B0.05111 (7)0.30782 (2)0.66158 (3)0.02711 (9)
O1B0.7816 (8)0.2167 (3)1.0229 (3)0.0258 (8)
N1B0.6242 (9)0.2844 (3)1.0482 (4)0.0270 (10)
C1B0.4622 (10)0.2937 (3)0.9704 (4)0.0232 (11)
C2B0.2531 (11)0.3519 (4)0.9611 (5)0.0272 (12)
H2B0.21660.38901.01360.033*
C3B0.1074 (11)0.3530 (4)0.8749 (4)0.0249 (11)
H3B0.03350.39070.86730.030*
C4B0.1657 (9)0.2974 (3)0.7956 (4)0.0206 (10)
C5B0.3589 (10)0.2384 (4)0.8030 (4)0.0220 (11)
H5B0.39020.20100.75010.026*
C6B0.5112 (10)0.2353 (3)0.8931 (4)0.0199 (10)
C7B0.7150 (10)0.1873 (3)0.9304 (4)0.0196 (10)
C8B0.8618 (10)0.1135 (4)0.8959 (4)0.0216 (10)
C9B0.8005 (11)0.0769 (4)0.8031 (4)0.0258 (12)
H9B0.66440.09960.76210.031*
C10B0.9389 (10)0.0082 (4)0.7720 (4)0.0255 (10)
H10B0.89690.01580.70890.031*
C11B1.1383 (12)0.0274 (4)0.8297 (4)0.0285 (12)
H11B1.23150.07530.80760.034*
C12B1.1968 (11)0.0099 (5)0.9218 (4)0.0301 (11)
H12B1.33280.01310.96260.036*
C13B1.0630 (11)0.0790 (4)0.9549 (4)0.0253 (11)
H13B1.10710.10321.01770.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I1A0.02109 (16)0.03002 (19)0.02445 (17)0.00079 (15)0.00275 (13)0.00571 (15)
O1A0.028 (2)0.021 (2)0.031 (2)0.0056 (16)0.0085 (17)0.0011 (16)
N1A0.036 (3)0.024 (2)0.037 (3)0.001 (3)0.014 (2)0.007 (2)
C1A0.010 (2)0.055 (4)0.011 (2)0.000 (2)0.0008 (18)0.000 (2)
C2A0.029 (3)0.033 (3)0.030 (3)0.001 (3)0.006 (2)0.011 (2)
C3A0.029 (3)0.028 (3)0.022 (3)0.001 (2)0.006 (2)0.004 (2)
C4A0.021 (3)0.025 (3)0.020 (2)0.006 (2)0.0003 (19)0.002 (2)
C5A0.021 (3)0.015 (2)0.025 (3)0.000 (2)0.001 (2)0.0027 (19)
C6A0.021 (3)0.018 (3)0.021 (3)0.000 (2)0.001 (2)0.0002 (19)
C7A0.020 (3)0.021 (3)0.022 (3)0.001 (2)0.003 (2)0.0008 (19)
C8A0.021 (2)0.023 (3)0.017 (2)0.001 (2)0.0032 (19)0.0026 (19)
C9A0.042 (3)0.018 (3)0.019 (2)0.005 (3)0.005 (2)0.001 (2)
C10A0.039 (3)0.017 (3)0.024 (3)0.001 (2)0.000 (2)0.002 (2)
C11A0.021 (3)0.048 (4)0.020 (3)0.012 (2)0.001 (2)0.008 (2)
C12A0.020 (3)0.026 (3)0.023 (3)0.000 (2)0.000 (2)0.003 (2)
C13A0.020 (3)0.025 (3)0.021 (3)0.003 (2)0.001 (2)0.002 (2)
I1B0.02550 (18)0.02499 (18)0.03013 (19)0.00099 (17)0.00173 (14)0.00057 (16)
O1B0.032 (2)0.028 (2)0.0171 (19)0.0014 (18)0.0017 (15)0.0014 (16)
N1B0.035 (3)0.021 (2)0.025 (2)0.0026 (19)0.004 (2)0.0006 (17)
C1B0.030 (3)0.022 (3)0.019 (2)0.005 (2)0.007 (2)0.0006 (18)
C2B0.027 (3)0.026 (3)0.030 (3)0.003 (2)0.012 (2)0.001 (2)
C3B0.021 (3)0.024 (3)0.032 (3)0.000 (2)0.009 (2)0.001 (2)
C4B0.022 (2)0.018 (3)0.022 (2)0.004 (2)0.0011 (19)0.0015 (18)
C5B0.023 (3)0.021 (3)0.022 (3)0.004 (2)0.003 (2)0.0012 (19)
C6B0.021 (3)0.018 (2)0.021 (3)0.003 (2)0.005 (2)0.0020 (18)
C7B0.023 (3)0.017 (2)0.019 (2)0.005 (2)0.002 (2)0.0018 (18)
C8B0.020 (3)0.019 (2)0.026 (3)0.003 (2)0.003 (2)0.003 (2)
C9B0.024 (3)0.028 (3)0.025 (3)0.000 (2)0.000 (2)0.001 (2)
C10B0.026 (3)0.025 (3)0.026 (2)0.002 (3)0.0045 (19)0.004 (2)
C11B0.029 (3)0.026 (3)0.031 (3)0.003 (2)0.009 (2)0.004 (2)
C12B0.029 (3)0.031 (3)0.029 (3)0.005 (3)0.003 (2)0.006 (3)
C13B0.027 (3)0.028 (3)0.020 (3)0.001 (2)0.002 (2)0.002 (2)
Geometric parameters (Å, º) top
I1A—C4A2.100 (5)I1B—C4B2.100 (5)
O1A—C7A1.354 (6)O1B—C7B1.366 (6)
O1A—N1A1.413 (6)O1B—N1B1.397 (6)
N1A—C1A1.346 (8)N1B—C1B1.329 (8)
C1A—C6A1.361 (8)C1B—C6B1.427 (7)
C1A—C2A1.462 (8)C1B—C2B1.430 (8)
C2A—C3A1.344 (9)C2B—C3B1.363 (9)
C2A—H2A0.9500C2B—H2B0.9500
C3A—C4A1.430 (8)C3B—C4B1.437 (8)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.362 (7)C4B—C5B1.371 (8)
C5A—C6A1.432 (7)C5B—C6B1.426 (8)
C5A—H5A0.9500C5B—H5B0.9500
C6A—C7A1.387 (7)C6B—C7B1.379 (7)
C7A—C8A1.466 (7)C7B—C8B1.475 (8)
C8A—C9A1.405 (8)C8B—C13B1.398 (8)
C8A—C13A1.405 (7)C8B—C9B1.406 (8)
C9A—C10A1.387 (8)C9B—C10B1.374 (8)
C9A—H9A0.9500C9B—H9B0.9500
C10A—C11A1.362 (8)C10B—C11B1.389 (8)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.420 (9)C11B—C12B1.399 (9)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.384 (8)C12B—C13B1.374 (9)
C12A—H12A0.9500C12B—H12B0.9500
C13A—H13A0.9500C13B—H13B0.9500
C7A—O1A—N1A110.0 (4)C7B—O1B—N1B110.9 (4)
C1A—N1A—O1A102.4 (5)C1B—N1B—O1B104.3 (4)
N1A—C1A—C6A114.9 (5)N1B—C1B—C6B112.5 (5)
N1A—C1A—C2A121.2 (6)N1B—C1B—C2B126.5 (5)
C6A—C1A—C2A123.9 (6)C6B—C1B—C2B121.0 (5)
C3A—C2A—C1A115.1 (6)C3B—C2B—C1B118.3 (5)
C3A—C2A—H2A122.5C3B—C2B—H2B120.8
C1A—C2A—H2A122.5C1B—C2B—H2B120.8
C2A—C3A—C4A121.7 (5)C2B—C3B—C4B120.4 (5)
C2A—C3A—H3A119.1C2B—C3B—H3B119.8
C4A—C3A—H3A119.1C4B—C3B—H3B119.8
C5A—C4A—C3A122.9 (5)C5B—C4B—C3B122.9 (5)
C5A—C4A—I1A119.7 (4)C5B—C4B—I1B118.4 (4)
C3A—C4A—I1A117.4 (4)C3B—C4B—I1B118.7 (4)
C4A—C5A—C6A117.1 (5)C4B—C5B—C6B117.5 (5)
C4A—C5A—H5A121.4C4B—C5B—H5B121.2
C6A—C5A—H5A121.4C6B—C5B—H5B121.2
C1A—C6A—C7A104.0 (5)C7B—C6B—C5B136.0 (5)
C1A—C6A—C5A119.2 (5)C7B—C6B—C1B104.2 (5)
C7A—C6A—C5A136.8 (5)C5B—C6B—C1B119.8 (5)
O1A—C7A—C6A108.7 (5)O1B—C7B—C6B108.0 (4)
O1A—C7A—C8A116.4 (5)O1B—C7B—C8B116.3 (5)
C6A—C7A—C8A134.9 (5)C6B—C7B—C8B135.6 (5)
C9A—C8A—C13A119.0 (5)C13B—C8B—C9B119.2 (5)
C9A—C8A—C7A120.9 (5)C13B—C8B—C7B120.6 (5)
C13A—C8A—C7A120.1 (5)C9B—C8B—C7B120.2 (5)
C10A—C9A—C8A120.5 (5)C10B—C9B—C8B119.6 (6)
C10A—C9A—H9A119.8C10B—C9B—H9B120.2
C8A—C9A—H9A119.8C8B—C9B—H9B120.2
C11A—C10A—C9A121.2 (5)C9B—C10B—C11B122.1 (6)
C11A—C10A—H10A119.4C9B—C10B—H10B118.9
C9A—C10A—H10A119.4C11B—C10B—H10B118.9
C10A—C11A—C12A118.9 (5)C10B—C11B—C12B117.5 (6)
C10A—C11A—H11A120.5C10B—C11B—H11B121.3
C12A—C11A—H11A120.5C12B—C11B—H11B121.3
C13A—C12A—C11A120.9 (5)C13B—C12B—C11B121.8 (5)
C13A—C12A—H12A119.6C13B—C12B—H12B119.1
C11A—C12A—H12A119.6C11B—C12B—H12B119.1
C12A—C13A—C8A119.5 (5)C12B—C13B—C8B119.8 (5)
C12A—C13A—H13A120.3C12B—C13B—H13B120.1
C8A—C13A—H13A120.3C8B—C13B—H13B120.1
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1B–C6B ring.
D—H···AD—HH···AD···AD—H···A
C3A—H3A···N1Bi0.952.403.247 (7)149
C11A—H11A···N1Aii0.952.473.339 (8)152
C4A—I1A···Cgiii2.10 (1)3.62 (1)5.637 (6)160 (1)
C4B—I1B···O1A2.10 (1)3.34 (1)5.325 (7)156 (1)
Symmetry codes: (i) x, y, z1; (ii) x1, y1/2, z+1; (iii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H8INO
Mr321.10
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)5.381 (3), 15.225 (7), 13.749 (7)
β (°) 94.92 (3)
V3)1122.2 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.25 × 0.08 × 0.03
Data collection
DiffractometerKuma KM-4-CCD four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.44, 0.80
No. of measured, independent and
observed [I > 2σ(I)] reflections
15060, 6015, 4621
Rint0.053
(sin θ/λ)max1)0.800
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.090, 1.00
No. of reflections6015
No. of parameters289
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.98, 1.01
Absolute structureFlack (1983), 1659 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1B–C6B ring.
D—H···AD—HH···AD···AD—H···A
C3A—H3A···N1Bi0.952.403.247 (7)149
C11A—H11A···N1Aii0.952.473.339 (8)152
C4A—I1A···Cgiii2.100 (5)3.618 (2)5.637 (6)160.0 (2)
C4B—I1B···O1A2.100 (5)3.335 (5)5.325 (7)156.3 (2)
Symmetry codes: (i) x, y, z1; (ii) x1, y1/2, z+1; (iii) x+1, y1/2, z+1.
 

Acknowledgements

The authors are grateful to the State fund for fundamental research of Ukraine for the financial support (Project F54.3/004).

References

First citationAngibaud, P., Bourdrez, X., Devine, A., End, D. W., Freyne, E., Ligny, Y., Muller, P., Mannens, G., Pilatte, I., Poncelet, V., Skrzat, S., Smets, G., Van Dun, J., Van Remoortere, P., Venet, M. & Wouters, W. (2003). Bioorg. Med. Chem. Lett. 13, 1543–1548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDavis, R. B. & Pizzini, L. C. (1960). J. Org. Chem. 25, 1884–1888.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHester, J. B., Ludens, J. H., Emmert, D. E. & West, B. E. (1989). J. Med. Chem. 32, 1157–1163.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMcEvoy, F. J., Greenblatt, E. N., Osterrerg, A. C. & Allen, G. R. Jr (1968). J. Med. Chem. 11, 1248–1250.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeslenko, Y., Matiychuk, V., Obushak, M., Kinzhybalo, V. & Ślepokura, K. (2008). Acta Cryst. E64, o2420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWalsh, D. A., Moran, H. W., Shamblee, D. A. & Welstead, W. J. (1990). J. Med. Chem. 33, 2296–2304.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds