organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo­chroman-4-one

aSchool of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban 4000, South Africa, bDiscipline of Pharmaceutical Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa, and cSchool of Engineering, University of KwaZulu-Natal, Durban 4041, South Africa
*Correspondence e-mail: koorbanally@ukzn.ac.za

(Received 18 February 2013; accepted 25 February 2013; online 2 March 2013)

The heterocyclic ring of the title compound, C9H7BrO2, obtained by bromination of 4-chromanone with copper bromide, adopts a half-chair conformation. The supramol­ecular structure is governed by a weak C—H⋯O hydrogen bond. There is also ππ stacking between symmetry-related benzene rings; the centroid–centroid distance is 3.9464 (18), the perpendicular distance between the rings is 3.4703 (11) and the offset is 1.879 Å.

Related literature

For similar structures, see: Schollmeyer et al. (2005[Schollmeyer, D., Kammerer, B., Peifer, C. & Laufer, S. (2005). Acta Cryst. E61, o868-o869.]); Piel et al. (2011[Piel, I., Steinmetz, M., Hirano, K., Fröhlich, R., Grimme, S. & Glorius, F. (2011). Angew. Chem. Int. Ed. 50, 4983-4987.]); Betz et al. (2011[Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1151.]). For synthesis involving chromanone inter­mediates, see: Simas et al. (2002[Simas, A. B. C., Furtado, L. F. O. & Costa, P. R. R. (2002). Tetrahedron Lett. 43, 6893-6895.]); Zhang et al. (2008[Zhang, L., Zhang, W.-G., Kang, J., Bao, K., Dai, Y. & Yao, X.-S. (2008). J. Asian Nat. Prod. Res. 10, 909-913.]). For the biological activity of chromanone derivatives, see: Cho et al. (1996[Cho, H., Katoh, S., Sayama, S., Murakami, K., Nakanishi, H., Kajimoto, Y., Ueno, H., Kawasaki, H., Aisaka, K. & Uchida, I. (1996). J. Med. Chem. 39, 3797-3805.]); Xu et al. (1998[Xu, Z.-Q., Buckheit Jnr, R. W., Stup, T. L., Flavin, M. T., Khilevich, A., Rizzo, J. D., Lin, L. & Zembower, D. E. (1998). Bioorg. Med. Chem. Lett. 8, 2179-2184.]); Shaikh et al. (2012[Shaikh, M. M., Kruger, H. G., Bodenstein, J., Smith, P. & du Toit, K. (2012). Nat. Prod. Res. 26, 1473-1483.], 2013a[Shaikh, M. M., Kruger, H. G., Smith, P., Bodenstein, J. & du Toit, K. (2013a). J. Pharm. Res. 6, 21-25.],b[Shaikh, M. M., Kruger, H. G., Smith, P., Munro, O. Q., Bodenstein, J. & du Toit, K. (2013b). J. Pharm. Res. 6, 1-5.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7BrO2

  • Mr = 227.06

  • Monoclinic, P 21 /c

  • a = 10.0846 (7) Å

  • b = 7.9104 (6) Å

  • c = 10.9330 (8) Å

  • β = 110.164 (2)°

  • V = 818.71 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.97 mm−1

  • T = 173 K

  • 0.16 × 0.12 × 0.12 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.504, Tmax = 0.587

  • 5434 measured reflections

  • 1659 independent reflections

  • 1392 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.061

  • S = 1.05

  • 1659 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.99 2.44 3.311 (3) 146
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many chromanone derivatives are used as versatile intermediates in the synthesis of natural products such as flavanone, isoflavanone and homoisoflavanones (Simas et al., 2002, Zhang et al., 2008). These derivatives possess anticancer and antibiotic properties (Cho et al., 1996.). Chromanone derivatives also possess antiviral activities against HIV and the simian immunodeficiency virus (SIV) (Xu et al., 1998). We recently reported the synthesis of several homoisoflavanone analogues from their corresponding chromanone derivatives with antiinflammatory (Shaikh et al., 2012; Shaikh et al., 2013a) and antifungal activities (Shaikh et al., 2013b).

In the title compound, the pyranone moiety is fused with the benzene ring and adopts a half chair conformation. The dihedral angle between the benzene ring and the (C3—C2—O1) of the pyranone moiety is 43.03 (17)° and C2 flips out of the plane of the benzene ring by 0.5734 (31) Å (Fig. 1).

The supramolecular structure is governed by a weak C-H···O hydrogen bond, C2 –H2A···.O2 (-x,1-y,-z) with an H···O distance of 2.44 Å, a C···O distance of 3.311 (3)Å and an angle at H of 146°.

There is also ππ stacking between the two benzene rings across the centre-of-symmetry at (1/2,1/2,0), the centroid to centroid distance is 3.9464 (18)Å, the perpendicular distance between the rings is 3.4703 (11)Å and the offset is 1.879Å.

Related literature top

For similar structures, see: Schollmeyer et al. (2005); Piel et al. (2011); Betz et al. (2011). For synthesis involving chromanone intermediates, see: Simas et al. (2002); Zhang et al. (2008). For the biological activity of chromanone derivatives, see: Cho et al. (1996); Xu et al. (1998); Shaikh et al. (2012, 2013a,b).

Experimental top

To a mixture of copper bromide (II) (11.351 g, 50.673 mmol) in ethyl acetate, chloroform (20:20 ml) was stirred under inert atmosphere at room temperature. Into this mixture, chroman-4-one (5 g, 33.783 mmol) in chloroform (20 ml) was added and the reaction mixture refluxed vigorously under inert atmosphere at 70 °C for 6 h. Completion of the reaction was monitored by thin layer chromatography. Upon completion, the reaction mixture was cooled, filtered and washed with chloroform (20 ml). The filtrate solution was evaporated under reduced pressure to get the pure title compound with a yield of 86%.

1H NMR (400 MHz, CDCl3): δ (p.p.m.): 4.53–4.65 (3H, m, H-2a, H-2 b & H-3), 6.98–7.06 (2H, m, H-6 & H-8), 7.48–7.52 (1H, m, H-7), 7.89 (1H, dd, J = 1.60, 7.92 Hz, H-5).

13C NMR (400 MHz, CDCl3): δ (p.p.m.): 45.43 (C-3), 71.26 (C-2), 117.95 (C-8), 11877 (C-10), 122.33 (C-6), 128.24 (C-7), 136.74 (C-5), 160.65 (C-9), 185.21 (C-4).

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in idealized positions and refined with geometrical constraints. The structure was refined to a R factor of 0.0251.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
3-Bromochroman-4-one top
Crystal data top
C9H7BrO2F(000) = 448
Mr = 227.06Dx = 1.842 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 5434 reflections
a = 10.0846 (7) Åθ = 2.2–26.4°
b = 7.9104 (6) ŵ = 4.97 mm1
c = 10.9330 (8) ÅT = 173 K
β = 110.164 (2)°Block, colourless
V = 818.71 (10) Å30.16 × 0.12 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa DUO APEXII
diffractometer
1659 independent reflections
Radiation source: fine-focus sealed tube1392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
0.5° ϕ scans and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 128
Tmin = 0.504, Tmax = 0.587k = 99
5434 measured reflectionsl = 713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.3551P]
where P = (Fo2 + 2Fc2)/3
1659 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C9H7BrO2V = 818.71 (10) Å3
Mr = 227.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0846 (7) ŵ = 4.97 mm1
b = 7.9104 (6) ÅT = 173 K
c = 10.9330 (8) Å0.16 × 0.12 × 0.12 mm
β = 110.164 (2)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
1659 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1392 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 0.587Rint = 0.026
5434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
1659 reflectionsΔρmin = 0.39 e Å3
109 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3): δ (p.p.m.): 4.53–4.65 (3H, m, H-2a, H-2b & H-3), 6.98–7.06 (2H, m, H-6 & H-8), 7.48–7.52 (1H, m, H-7), 7.89 (1H, dd, J = 1.60, 7.92 Hz, H-5). 13C NMR (400 MHz, CDCl3): δ (p.p.m.): 45.43 (C-3), 71.26 (C-2), 117.95 (C-8), 118.77 (C-10), 122.33 (C-6), 128.24 (C-7), 136.74 (C-5), 160.65 (C-9), 185.21 (C-4).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22559 (3)0.04339 (3)0.04673 (3)0.03040 (11)
O10.33588 (18)0.3999 (2)0.20473 (16)0.0258 (4)
O20.00306 (19)0.3386 (2)0.13799 (18)0.0348 (5)
C20.2062 (3)0.3261 (3)0.2053 (2)0.0261 (6)
H2A0.14700.41550.22380.031*
H2B0.22760.24180.27640.031*
C30.1239 (3)0.2415 (3)0.0786 (2)0.0251 (6)
H30.02970.20530.08070.030*
C40.1031 (3)0.3566 (3)0.0374 (2)0.0242 (5)
C50.2106 (3)0.5942 (3)0.1218 (3)0.0274 (6)
H50.13480.58720.20260.033*
C60.3170 (3)0.7098 (3)0.1066 (3)0.0330 (7)
H60.31480.78250.17640.040*
C70.4279 (3)0.7196 (3)0.0121 (3)0.0339 (7)
H70.50180.79870.02230.041*
C80.4323 (3)0.6165 (3)0.1148 (3)0.0284 (6)
H80.50800.62530.19550.034*
C90.3249 (3)0.4994 (3)0.0995 (2)0.0212 (5)
C100.2132 (3)0.4865 (3)0.0193 (2)0.0210 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04127 (18)0.01971 (15)0.03327 (17)0.00253 (11)0.01674 (13)0.00006 (12)
O10.0294 (10)0.0252 (9)0.0199 (9)0.0012 (8)0.0046 (8)0.0022 (8)
O20.0315 (11)0.0358 (11)0.0289 (11)0.0004 (8)0.0002 (9)0.0033 (9)
C20.0339 (15)0.0240 (13)0.0218 (13)0.0027 (11)0.0116 (12)0.0023 (11)
C30.0265 (13)0.0225 (13)0.0294 (14)0.0016 (11)0.0137 (12)0.0006 (11)
C40.0259 (13)0.0233 (13)0.0242 (13)0.0058 (11)0.0095 (12)0.0027 (11)
C50.0392 (15)0.0233 (13)0.0217 (13)0.0094 (12)0.0129 (12)0.0008 (11)
C60.0521 (18)0.0196 (13)0.0364 (16)0.0075 (12)0.0269 (15)0.0071 (12)
C70.0394 (16)0.0199 (14)0.0504 (18)0.0021 (12)0.0255 (15)0.0019 (13)
C80.0276 (14)0.0236 (13)0.0348 (15)0.0006 (11)0.0116 (12)0.0066 (12)
C90.0263 (13)0.0175 (12)0.0209 (12)0.0033 (9)0.0097 (11)0.0014 (9)
C100.0267 (13)0.0172 (12)0.0221 (13)0.0032 (10)0.0122 (11)0.0027 (10)
Geometric parameters (Å, º) top
Br1—C31.969 (2)C5—C61.375 (4)
O1—C91.367 (3)C5—C101.401 (4)
O1—C21.434 (3)C5—H50.9500
O2—C41.218 (3)C6—C71.393 (4)
C2—C31.505 (3)C6—H60.9500
C2—H2A0.9900C7—C81.376 (4)
C2—H2B0.9900C7—H70.9500
C3—C41.515 (3)C8—C91.390 (4)
C3—H31.0000C8—H80.9500
C4—C101.476 (4)C9—C101.399 (4)
C9—O1—C2115.40 (19)C6—C5—H5119.7
O1—C2—C3113.01 (19)C10—C5—H5119.7
O1—C2—H2A109.0C5—C6—C7119.5 (2)
C3—C2—H2A109.0C5—C6—H6120.2
O1—C2—H2B109.0C7—C6—H6120.2
C3—C2—H2B109.0C8—C7—C6121.1 (3)
H2A—C2—H2B107.8C8—C7—H7119.5
C2—C3—C4112.1 (2)C6—C7—H7119.5
C2—C3—Br1111.18 (17)C7—C8—C9119.5 (3)
C4—C3—Br1105.11 (15)C7—C8—H8120.3
C2—C3—H3109.4C9—C8—H8120.3
C4—C3—H3109.4O1—C9—C8116.7 (2)
Br1—C3—H3109.4O1—C9—C10123.0 (2)
O2—C4—C10123.6 (2)C8—C9—C10120.3 (2)
O2—C4—C3121.3 (2)C9—C10—C5119.0 (2)
C10—C4—C3115.2 (2)C9—C10—C4120.2 (2)
C6—C5—C10120.6 (3)C5—C10—C4120.7 (2)
C9—O1—C2—C349.0 (3)C7—C8—C9—O1179.5 (2)
O1—C2—C3—C451.4 (3)C7—C8—C9—C100.1 (4)
O1—C2—C3—Br166.0 (2)O1—C9—C10—C5179.9 (2)
C2—C3—C4—O2153.8 (2)C8—C9—C10—C50.5 (3)
Br1—C3—C4—O285.3 (2)O1—C9—C10—C42.5 (3)
C2—C3—C4—C1027.4 (3)C8—C9—C10—C4177.1 (2)
Br1—C3—C4—C1093.5 (2)C6—C5—C10—C90.6 (3)
C10—C5—C6—C70.0 (4)C6—C5—C10—C4177.0 (2)
C5—C6—C7—C80.6 (4)O2—C4—C10—C9179.9 (2)
C6—C7—C8—C90.7 (4)C3—C4—C10—C91.4 (3)
C2—O1—C9—C8158.5 (2)O2—C4—C10—C52.5 (4)
C2—O1—C9—C1021.8 (3)C3—C4—C10—C5176.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.992.443.311 (3)146
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H7BrO2
Mr227.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.0846 (7), 7.9104 (6), 10.9330 (8)
β (°) 110.164 (2)
V3)818.71 (10)
Z4
Radiation typeMo Kα
µ (mm1)4.97
Crystal size (mm)0.16 × 0.12 × 0.12
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.504, 0.587
No. of measured, independent and
observed [I > 2σ(I)] reflections
5434, 1659, 1392
Rint0.026
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.05
No. of reflections1659
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.39

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.992.443.311 (3)146
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank the University of KwaZulu-Natal, the National Research Foundation (NRF) and the South African Research Chairs initiative of the Department of Science and Technology for financial support and Ms Hong Su for the data collection.

References

First citationBetz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, H., Katoh, S., Sayama, S., Murakami, K., Nakanishi, H., Kajimoto, Y., Ueno, H., Kawasaki, H., Aisaka, K. & Uchida, I. (1996). J. Med. Chem. 39, 3797–3805.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPiel, I., Steinmetz, M., Hirano, K., Fröhlich, R., Grimme, S. & Glorius, F. (2011). Angew. Chem. Int. Ed. 50, 4983–4987.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchollmeyer, D., Kammerer, B., Peifer, C. & Laufer, S. (2005). Acta Cryst. E61, o868–o869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaikh, M. M., Kruger, H. G., Bodenstein, J., Smith, P. & du Toit, K. (2012). Nat. Prod. Res. 26, 1473–1483.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShaikh, M. M., Kruger, H. G., Smith, P., Bodenstein, J. & du Toit, K. (2013a). J. Pharm. Res. 6, 21–25.  CrossRef CAS Google Scholar
First citationShaikh, M. M., Kruger, H. G., Smith, P., Munro, O. Q., Bodenstein, J. & du Toit, K. (2013b). J. Pharm. Res. 6, 1–5.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimas, A. B. C., Furtado, L. F. O. & Costa, P. R. R. (2002). Tetrahedron Lett. 43, 6893–6895.  Web of Science CrossRef CAS Google Scholar
First citationXu, Z.-Q., Buckheit Jnr, R. W., Stup, T. L., Flavin, M. T., Khilevich, A., Rizzo, J. D., Lin, L. & Zembower, D. E. (1998). Bioorg. Med. Chem. Lett. 8, 2179–2184.  Web of Science CAS PubMed Google Scholar
First citationZhang, L., Zhang, W.-G., Kang, J., Bao, K., Dai, Y. & Yao, X.-S. (2008). J. Asian Nat. Prod. Res. 10, 909–913.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds