organic compounds
3-Bromochroman-4-one
aSchool of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban 4000, South Africa, bDiscipline of Pharmaceutical Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa, and cSchool of Engineering, University of KwaZulu-Natal, Durban 4041, South Africa
*Correspondence e-mail: koorbanally@ukzn.ac.za
The heterocyclic ring of the title compound, C9H7BrO2, obtained by bromination of 4-chromanone with copper bromide, adopts a half-chair conformation. The supramolecular structure is governed by a weak C—H⋯O hydrogen bond. There is also π–π stacking between symmetry-related benzene rings; the centroid–centroid distance is 3.9464 (18), the perpendicular distance between the rings is 3.4703 (11) and the offset is 1.879 Å.
Related literature
For similar structures, see: Schollmeyer et al. (2005); Piel et al. (2011); Betz et al. (2011). For synthesis involving chromanone intermediates, see: Simas et al. (2002); Zhang et al. (2008). For the biological activity of chromanone derivatives, see: Cho et al. (1996); Xu et al. (1998); Shaikh et al. (2012, 2013a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813005394/go2082sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813005394/go2082Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813005394/go2082Isup3.cml
To a mixture of copper bromide (II) (11.351 g, 50.673 mmol) in ethyl acetate, chloroform (20:20 ml) was stirred under inert atmosphere at room temperature. Into this mixture, chroman-4-one (5 g, 33.783 mmol) in chloroform (20 ml) was added and the reaction mixture refluxed vigorously under inert atmosphere at 70 °C for 6 h. Completion of the reaction was monitored by thin layer
Upon completion, the reaction mixture was cooled, filtered and washed with chloroform (20 ml). The filtrate solution was evaporated under reduced pressure to get the pure title compound with a yield of 86%.1H NMR (400 MHz, CDCl3): δ (p.p.m.): 4.53–4.65 (3H, m, H-2a, H-2 b & H-3), 6.98–7.06 (2H, m, H-6 & H-8), 7.48–7.52 (1H, m, H-7), 7.89 (1H, dd, J = 1.60, 7.92 Hz, H-5).
13C NMR (400 MHz, CDCl3): δ (p.p.m.): 45.43 (C-3), 71.26 (C-2), 117.95 (C-8), 11877 (C-10), 122.33 (C-6), 128.24 (C-7), 136.74 (C-5), 160.65 (C-9), 185.21 (C-4).
All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in idealized positions and refined with geometrical constraints. The structure was refined to a
factor of 0.0251.Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level). |
C9H7BrO2 | F(000) = 448 |
Mr = 227.06 | Dx = 1.842 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -p 2ybc | Cell parameters from 5434 reflections |
a = 10.0846 (7) Å | θ = 2.2–26.4° |
b = 7.9104 (6) Å | µ = 4.97 mm−1 |
c = 10.9330 (8) Å | T = 173 K |
β = 110.164 (2)° | Block, colourless |
V = 818.71 (10) Å3 | 0.16 × 0.12 × 0.12 mm |
Z = 4 |
Bruker Kappa DUO APEXII diffractometer | 1659 independent reflections |
Radiation source: fine-focus sealed tube | 1392 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
0.5° ϕ scans and ω scans | θmax = 26.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −12→8 |
Tmin = 0.504, Tmax = 0.587 | k = −9→9 |
5434 measured reflections | l = −7→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0298P)2 + 0.3551P] where P = (Fo2 + 2Fc2)/3 |
1659 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C9H7BrO2 | V = 818.71 (10) Å3 |
Mr = 227.06 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.0846 (7) Å | µ = 4.97 mm−1 |
b = 7.9104 (6) Å | T = 173 K |
c = 10.9330 (8) Å | 0.16 × 0.12 × 0.12 mm |
β = 110.164 (2)° |
Bruker Kappa DUO APEXII diffractometer | 1659 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 1392 reflections with I > 2σ(I) |
Tmin = 0.504, Tmax = 0.587 | Rint = 0.026 |
5434 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.39 e Å−3 |
1659 reflections | Δρmin = −0.39 e Å−3 |
109 parameters |
Experimental. 1H NMR (400 MHz, CDCl3): δ (p.p.m.): 4.53–4.65 (3H, m, H-2a, H-2b & H-3), 6.98–7.06 (2H, m, H-6 & H-8), 7.48–7.52 (1H, m, H-7), 7.89 (1H, dd, J = 1.60, 7.92 Hz, H-5). 13C NMR (400 MHz, CDCl3): δ (p.p.m.): 45.43 (C-3), 71.26 (C-2), 117.95 (C-8), 118.77 (C-10), 122.33 (C-6), 128.24 (C-7), 136.74 (C-5), 160.65 (C-9), 185.21 (C-4). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.22559 (3) | 0.04339 (3) | 0.04673 (3) | 0.03040 (11) | |
O1 | 0.33588 (18) | 0.3999 (2) | 0.20473 (16) | 0.0258 (4) | |
O2 | 0.00306 (19) | 0.3386 (2) | −0.13799 (18) | 0.0348 (5) | |
C2 | 0.2062 (3) | 0.3261 (3) | 0.2053 (2) | 0.0261 (6) | |
H2A | 0.1470 | 0.4155 | 0.2238 | 0.031* | |
H2B | 0.2276 | 0.2418 | 0.2764 | 0.031* | |
C3 | 0.1239 (3) | 0.2415 (3) | 0.0786 (2) | 0.0251 (6) | |
H3 | 0.0297 | 0.2053 | 0.0807 | 0.030* | |
C4 | 0.1031 (3) | 0.3566 (3) | −0.0374 (2) | 0.0242 (5) | |
C5 | 0.2106 (3) | 0.5942 (3) | −0.1218 (3) | 0.0274 (6) | |
H5 | 0.1348 | 0.5872 | −0.2026 | 0.033* | |
C6 | 0.3170 (3) | 0.7098 (3) | −0.1066 (3) | 0.0330 (7) | |
H6 | 0.3148 | 0.7825 | −0.1764 | 0.040* | |
C7 | 0.4279 (3) | 0.7196 (3) | 0.0121 (3) | 0.0339 (7) | |
H7 | 0.5018 | 0.7987 | 0.0223 | 0.041* | |
C8 | 0.4323 (3) | 0.6165 (3) | 0.1148 (3) | 0.0284 (6) | |
H8 | 0.5080 | 0.6253 | 0.1955 | 0.034* | |
C9 | 0.3249 (3) | 0.4994 (3) | 0.0995 (2) | 0.0212 (5) | |
C10 | 0.2132 (3) | 0.4865 (3) | −0.0193 (2) | 0.0210 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.04127 (18) | 0.01971 (15) | 0.03327 (17) | 0.00253 (11) | 0.01674 (13) | 0.00006 (12) |
O1 | 0.0294 (10) | 0.0252 (9) | 0.0199 (9) | −0.0012 (8) | 0.0046 (8) | 0.0022 (8) |
O2 | 0.0315 (11) | 0.0358 (11) | 0.0289 (11) | 0.0004 (8) | −0.0002 (9) | −0.0033 (9) |
C2 | 0.0339 (15) | 0.0240 (13) | 0.0218 (13) | 0.0027 (11) | 0.0116 (12) | 0.0023 (11) |
C3 | 0.0265 (13) | 0.0225 (13) | 0.0294 (14) | 0.0016 (11) | 0.0137 (12) | −0.0006 (11) |
C4 | 0.0259 (13) | 0.0233 (13) | 0.0242 (13) | 0.0058 (11) | 0.0095 (12) | −0.0027 (11) |
C5 | 0.0392 (15) | 0.0233 (13) | 0.0217 (13) | 0.0094 (12) | 0.0129 (12) | 0.0008 (11) |
C6 | 0.0521 (18) | 0.0196 (13) | 0.0364 (16) | 0.0075 (12) | 0.0269 (15) | 0.0071 (12) |
C7 | 0.0394 (16) | 0.0199 (14) | 0.0504 (18) | −0.0021 (12) | 0.0255 (15) | −0.0019 (13) |
C8 | 0.0276 (14) | 0.0236 (13) | 0.0348 (15) | −0.0006 (11) | 0.0116 (12) | −0.0066 (12) |
C9 | 0.0263 (13) | 0.0175 (12) | 0.0209 (12) | 0.0033 (9) | 0.0097 (11) | −0.0014 (9) |
C10 | 0.0267 (13) | 0.0172 (12) | 0.0221 (13) | 0.0032 (10) | 0.0122 (11) | −0.0027 (10) |
Br1—C3 | 1.969 (2) | C5—C6 | 1.375 (4) |
O1—C9 | 1.367 (3) | C5—C10 | 1.401 (4) |
O1—C2 | 1.434 (3) | C5—H5 | 0.9500 |
O2—C4 | 1.218 (3) | C6—C7 | 1.393 (4) |
C2—C3 | 1.505 (3) | C6—H6 | 0.9500 |
C2—H2A | 0.9900 | C7—C8 | 1.376 (4) |
C2—H2B | 0.9900 | C7—H7 | 0.9500 |
C3—C4 | 1.515 (3) | C8—C9 | 1.390 (4) |
C3—H3 | 1.0000 | C8—H8 | 0.9500 |
C4—C10 | 1.476 (4) | C9—C10 | 1.399 (4) |
C9—O1—C2 | 115.40 (19) | C6—C5—H5 | 119.7 |
O1—C2—C3 | 113.01 (19) | C10—C5—H5 | 119.7 |
O1—C2—H2A | 109.0 | C5—C6—C7 | 119.5 (2) |
C3—C2—H2A | 109.0 | C5—C6—H6 | 120.2 |
O1—C2—H2B | 109.0 | C7—C6—H6 | 120.2 |
C3—C2—H2B | 109.0 | C8—C7—C6 | 121.1 (3) |
H2A—C2—H2B | 107.8 | C8—C7—H7 | 119.5 |
C2—C3—C4 | 112.1 (2) | C6—C7—H7 | 119.5 |
C2—C3—Br1 | 111.18 (17) | C7—C8—C9 | 119.5 (3) |
C4—C3—Br1 | 105.11 (15) | C7—C8—H8 | 120.3 |
C2—C3—H3 | 109.4 | C9—C8—H8 | 120.3 |
C4—C3—H3 | 109.4 | O1—C9—C8 | 116.7 (2) |
Br1—C3—H3 | 109.4 | O1—C9—C10 | 123.0 (2) |
O2—C4—C10 | 123.6 (2) | C8—C9—C10 | 120.3 (2) |
O2—C4—C3 | 121.3 (2) | C9—C10—C5 | 119.0 (2) |
C10—C4—C3 | 115.2 (2) | C9—C10—C4 | 120.2 (2) |
C6—C5—C10 | 120.6 (3) | C5—C10—C4 | 120.7 (2) |
C9—O1—C2—C3 | 49.0 (3) | C7—C8—C9—O1 | 179.5 (2) |
O1—C2—C3—C4 | −51.4 (3) | C7—C8—C9—C10 | −0.1 (4) |
O1—C2—C3—Br1 | 66.0 (2) | O1—C9—C10—C5 | 179.9 (2) |
C2—C3—C4—O2 | −153.8 (2) | C8—C9—C10—C5 | −0.5 (3) |
Br1—C3—C4—O2 | 85.3 (2) | O1—C9—C10—C4 | −2.5 (3) |
C2—C3—C4—C10 | 27.4 (3) | C8—C9—C10—C4 | 177.1 (2) |
Br1—C3—C4—C10 | −93.5 (2) | C6—C5—C10—C9 | 0.6 (3) |
C10—C5—C6—C7 | 0.0 (4) | C6—C5—C10—C4 | −177.0 (2) |
C5—C6—C7—C8 | −0.6 (4) | O2—C4—C10—C9 | 179.9 (2) |
C6—C7—C8—C9 | 0.7 (4) | C3—C4—C10—C9 | −1.4 (3) |
C2—O1—C9—C8 | 158.5 (2) | O2—C4—C10—C5 | −2.5 (4) |
C2—O1—C9—C10 | −21.8 (3) | C3—C4—C10—C5 | 176.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O2i | 0.99 | 2.44 | 3.311 (3) | 146 |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C9H7BrO2 |
Mr | 227.06 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 10.0846 (7), 7.9104 (6), 10.9330 (8) |
β (°) | 110.164 (2) |
V (Å3) | 818.71 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.97 |
Crystal size (mm) | 0.16 × 0.12 × 0.12 |
Data collection | |
Diffractometer | Bruker Kappa DUO APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.504, 0.587 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5434, 1659, 1392 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.061, 1.05 |
No. of reflections | 1659 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.39 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O2i | 0.99 | 2.44 | 3.311 (3) | 146 |
Symmetry code: (i) −x, −y+1, −z. |
Acknowledgements
We thank the University of KwaZulu-Natal, the National Research Foundation (NRF) and the South African Research Chairs initiative of the Department of Science and Technology for financial support and Ms Hong Su for the data collection.
References
Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1151. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cho, H., Katoh, S., Sayama, S., Murakami, K., Nakanishi, H., Kajimoto, Y., Ueno, H., Kawasaki, H., Aisaka, K. & Uchida, I. (1996). J. Med. Chem. 39, 3797–3805. CSD CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Piel, I., Steinmetz, M., Hirano, K., Fröhlich, R., Grimme, S. & Glorius, F. (2011). Angew. Chem. Int. Ed. 50, 4983–4987. Web of Science CSD CrossRef CAS Google Scholar
Schollmeyer, D., Kammerer, B., Peifer, C. & Laufer, S. (2005). Acta Cryst. E61, o868–o869. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shaikh, M. M., Kruger, H. G., Bodenstein, J., Smith, P. & du Toit, K. (2012). Nat. Prod. Res. 26, 1473–1483. Web of Science CrossRef CAS PubMed Google Scholar
Shaikh, M. M., Kruger, H. G., Smith, P., Bodenstein, J. & du Toit, K. (2013a). J. Pharm. Res. 6, 21–25. CrossRef CAS Google Scholar
Shaikh, M. M., Kruger, H. G., Smith, P., Munro, O. Q., Bodenstein, J. & du Toit, K. (2013b). J. Pharm. Res. 6, 1–5. CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simas, A. B. C., Furtado, L. F. O. & Costa, P. R. R. (2002). Tetrahedron Lett. 43, 6893–6895. Web of Science CrossRef CAS Google Scholar
Xu, Z.-Q., Buckheit Jnr, R. W., Stup, T. L., Flavin, M. T., Khilevich, A., Rizzo, J. D., Lin, L. & Zembower, D. E. (1998). Bioorg. Med. Chem. Lett. 8, 2179–2184. Web of Science CAS PubMed Google Scholar
Zhang, L., Zhang, W.-G., Kang, J., Bao, K., Dai, Y. & Yao, X.-S. (2008). J. Asian Nat. Prod. Res. 10, 909–913. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Many chromanone derivatives are used as versatile intermediates in the synthesis of natural products such as flavanone, isoflavanone and homoisoflavanones (Simas et al., 2002, Zhang et al., 2008). These derivatives possess anticancer and antibiotic properties (Cho et al., 1996.). Chromanone derivatives also possess antiviral activities against HIV and the simian immunodeficiency virus (SIV) (Xu et al., 1998). We recently reported the synthesis of several homoisoflavanone analogues from their corresponding chromanone derivatives with antiinflammatory (Shaikh et al., 2012; Shaikh et al., 2013a) and antifungal activities (Shaikh et al., 2013b).
In the title compound, the pyranone moiety is fused with the benzene ring and adopts a half chair conformation. The dihedral angle between the benzene ring and the (C3—C2—O1) of the pyranone moiety is 43.03 (17)° and C2 flips out of the plane of the benzene ring by 0.5734 (31) Å (Fig. 1).
The supramolecular structure is governed by a weak C-H···O hydrogen bond, C2 –H2A···.O2 (-x,1-y,-z) with an H···O distance of 2.44 Å, a C···O distance of 3.311 (3)Å and an angle at H of 146°.
There is also π–π stacking between the two benzene rings across the centre-of-symmetry at (1/2,1/2,0), the centroid to centroid distance is 3.9464 (18)Å, the perpendicular distance between the rings is 3.4703 (11)Å and the offset is 1.879Å.