metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(2,2′:4′,2′′-Terpyridin-6′-yl-κ2N1,N1′)benzoato-κO]manganese(II) trihydrate

aAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, Qilu Normal University, Shandong 250013, People's Republic of China
*Correspondence e-mail: xinzhengliu_qlnu@yahoo.com.cn

(Received 10 February 2013; accepted 2 March 2013; online 13 March 2013)

In the title complex, [Mn(C22H14N3O2)2]·3H2O, the MnII ion is coordinated by two N,N′,O-tridentate 2-(2,2′:4′,2′′-terpyridin-6′-yl-κ2N1,N1′)benzoate ligands in a distorted cis-MnO2N4 octa­hedral geometry. In one ligand, the dihedral angles between the central pyridine ring, the other bonded pyridine ring, the terminal pyridine ring and the benzene ring are 14.3 (15), 18.3 (18) and 43.9 (16)°, respectively. The equivalent angles in the second ligand are 5.8 (18), 6.3 (18), and 47.0 (17)°, respectively. In the crystal, the complex molecules and lattice water molecules are linked by O—H⋯O and O—H⋯N hydrogen bonds, generating a three-dimensional network.

Related literature

For background to the applications of coordination complexes, see: Fan et al. (2013[Fan, L. M., Zhang, X. T., Li, D. C., Sun, D., Zhang, W. & Dou, J. M. (2013). CrystEngComm, 15, 349-355.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C22H14N3O2)2]·3H2O

  • Mr = 813.71

  • Triclinic, [P \overline 1]

  • a = 11.157 (2) Å

  • b = 12.141 (2) Å

  • c = 15.517 (3) Å

  • α = 82.79 (3)°

  • β = 84.19 (3)°

  • γ = 70.59 (3)°

  • V = 1962.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.969

  • 16229 measured reflections

  • 6746 independent reflections

  • 4043 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.093

  • wR(F2) = 0.271

  • S = 1.00

  • 6746 reflections

  • 536 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −2.70 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.10 (2)
Mn1—O3 2.11 (2)
Mn1—N5 2.26 (2)
Mn1—N2 2.27 (2)
Mn1—N4 2.33 (2)
Mn1—N1 2.41 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O2i 0.82 (1) 2.23 (8) 2.768 (8) 123 (8)
O1W—H1W⋯O2ii 0.82 (1) 2.27 (7) 2.881 (8) 145 (6)
O2W—H4W⋯N3 0.82 (1) 2.24 (4) 3.022 (9) 159 (9)
O3W—H5W⋯O4iii 0.82 (1) 2.65 (8) 2.765 (8) 89 (6)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y-1, z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of coordination complexes have attracted upsurging research interest not only because of their appealing structural and topological novelty but also owing to their tremendous potential applications in gas storage, microelectronics, ion exchange, chemical separations, nonlinear optics and heterogeneous catalysis (e.g. Fan et al., 2013). Here, we report one new compound: [(C44H28MnN6O4).3(H2O)], obtained from the solvothermal reaction of 6'-(2-carboxylphenyl)-2,2':4',2''-terpyridine and manganese(II) sulfate.

The title compound, [(C44H28MnN6O4).3(H2O)], consists of one Mn(II), two 6'-(2-carboxylphenyl)-2,2':4',2''-terpyridine, and three uncoordinated water molecules. Mn(1) owns a distorted octahedral coordination geometry, completed by four N atoms and two O atoms from two depornated 6'-(2-carboxylphenyl)-2,2':4',2''-terpyridine (Figure 1). The Mn—O and Mn—N distances are in the range of 2.10 (2)–2.11 (2) and 2.26 (2)–2.41 (2) Å, respectively. O—H···O and O—H···N hydrogen bonding in the packing diagram leads to a consolidation of the structure (Fig. 2; Table 2) .

Related literature top

For background to the applications of coordination complexes, see: Fan et al. (2013).

For related literature, see: Bruker (2004).

Experimental top

A mixture of 6'-(2-carboxylphenyl)-2,2':4',2''-terpyridine (0.10 mmol, 0.035 g), manganese(II) sulfate monohydrate (0.10 mmol, 0.017 g), NaOH (0.20 mmol, 0.008 g) and 12 ml H2O was placed in a Teflon-lined stainless steel vessel, heated to 170°C for 3 days, followed by slow cooling (a descent rate of 10°C/h) to room temperature to yield orange blocks. Anal. Calc. for C44H34MnN6O7: C 64.95, H 4.21, N 10.33%; Found: C 64.91, H 4.16, N 10.28%.

Refinement top

All hydrogen atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms. The H atoms of the water molecule were located from difference density maps and were refined with d(O—H) = 0.83 (2) Å, and with a fixed Uiso of 0.80 Å2.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, displayed with hydrogen bonds as dashed lines.
[2-(2,2':4',2''-Terpyridin-6'-yl-κ2N1,N1')benzoato-κO]manganese(II) trihydrate top
Crystal data top
[Mn(C22H14N3O2)2]·3H2OZ = 2
Mr = 813.71F(000) = 842
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.157 (2) ÅCell parameters from 6746 reflections
b = 12.141 (2) Åθ = 3.0–25.0°
c = 15.517 (3) ŵ = 0.40 mm1
α = 82.79 (3)°T = 293 K
β = 84.19 (3)°Block, orange
γ = 70.59 (3)°0.12 × 0.10 × 0.08 mm
V = 1962.7 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6746 independent reflections
Radiation source: fine-focus sealed tube4043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.954, Tmax = 0.969k = 1414
16229 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.271H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.139P)2 + 1.6146P]
where P = (Fo2 + 2Fc2)/3
6746 reflections(Δ/σ)max = 0.001
536 parametersΔρmax = 0.58 e Å3
9 restraintsΔρmin = 2.70 e Å3
Crystal data top
[Mn(C22H14N3O2)2]·3H2Oγ = 70.59 (3)°
Mr = 813.71V = 1962.7 (7) Å3
Triclinic, P1Z = 2
a = 11.157 (2) ÅMo Kα radiation
b = 12.141 (2) ŵ = 0.40 mm1
c = 15.517 (3) ÅT = 293 K
α = 82.79 (3)°0.12 × 0.10 × 0.08 mm
β = 84.19 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
6746 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4043 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.969Rint = 0.098
16229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0939 restraints
wR(F2) = 0.271H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.58 e Å3
6746 reflectionsΔρmin = 2.70 e Å3
536 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.728 (3)0.730 (3)0.6259 (19)0.033 (7)
C20.605 (3)0.805 (3)0.608 (2)0.042 (8)
H20.55750.78510.57050.050*
C30.556 (3)0.910 (3)0.646 (2)0.039 (7)
C40.634 (3)0.935 (3)0.700 (2)0.041 (8)
H40.60561.00580.72490.049*
C50.753 (3)0.858 (3)0.715 (2)0.036 (7)
C60.840 (3)0.885 (3)0.7698 (19)0.039 (7)
C70.792 (4)0.934 (3)0.850 (2)0.052 (9)
H70.70680.94820.86780.063*
C80.870 (4)0.962 (3)0.900 (2)0.061 (11)
H80.83780.99250.95300.074*
C90.996 (5)0.943 (3)0.873 (3)0.067 (12)
H91.04860.96250.90740.081*
C101.046 (3)0.896 (3)0.795 (2)0.051 (9)
H101.13100.88520.77730.061*
C110.970 (3)0.865 (3)0.743 (2)0.036 (7)
C121.027 (3)0.814 (3)0.659 (2)0.038 (7)
C130.784 (3)0.615 (3)0.588 (2)0.034 (7)
C140.732 (3)0.587 (3)0.520 (2)0.042 (8)
H140.66110.64090.49520.051*
C150.788 (3)0.477 (3)0.490 (2)0.048 (9)
H150.75490.45700.44420.058*
C160.893 (3)0.400 (3)0.528 (2)0.043 (8)
H160.93040.32570.50880.052*
C170.941 (3)0.433 (3)0.596 (2)0.036 (7)
H171.01340.37980.62090.043*
C180.422 (3)0.987 (3)0.631 (2)0.042 (8)
C190.357 (4)1.069 (4)0.685 (3)0.070 (13)
H190.39481.08090.73200.084*
C200.232 (4)1.137 (4)0.667 (3)0.082 (15)
H200.18651.19560.70280.098*
C210.176 (3)1.119 (3)0.601 (3)0.062 (11)
H210.09161.16180.59010.075*
C220.248 (3)1.035 (4)0.548 (3)0.061 (10)
H220.21251.02380.49980.073*
C230.724 (3)0.575 (3)0.834 (2)0.045 (8)
H230.71450.54430.78360.054*
C240.625 (3)0.600 (4)0.894 (2)0.061 (11)
H240.54960.58810.88600.074*
C250.639 (3)0.644 (5)0.969 (3)0.067 (13)
H250.57250.66261.01120.080*
C260.754 (3)0.660 (4)0.980 (2)0.055 (10)
H260.76360.69221.02950.066*
C270.853 (3)0.629 (3)0.9173 (19)0.037 (7)
C280.982 (3)0.637 (3)0.9267 (18)0.033 (7)
C291.014 (3)0.670 (3)1.0000 (19)0.039 (7)
H290.95300.69231.04580.046*
C301.139 (3)0.671 (3)1.0061 (19)0.038 (7)
C311.225 (3)0.636 (3)0.937 (2)0.041 (8)
H311.30820.63500.93820.049*
C321.189 (3)0.600 (3)0.8639 (18)0.034 (7)
C331.285 (3)0.557 (3)0.7919 (19)0.037 (7)
C341.369 (3)0.617 (4)0.761 (2)0.050 (9)
H341.36120.68650.78310.060*
C351.464 (4)0.576 (4)0.696 (3)0.065 (12)
H351.51750.61890.67420.078*
C361.479 (3)0.472 (4)0.664 (2)0.059 (10)
H361.54500.44350.62260.070*
C371.397 (3)0.409 (4)0.693 (2)0.054 (9)
H371.40770.33810.67190.064*
C381.298 (3)0.453 (3)0.7553 (19)0.036 (7)
C391.210 (3)0.382 (3)0.7794 (18)0.036 (7)
C401.180 (3)0.706 (3)1.083 (2)0.043 (8)
C411.101 (4)0.729 (3)1.160 (2)0.047 (8)
H411.01870.72531.16250.057*
C421.145 (4)0.759 (4)1.230 (2)0.058 (10)
H421.09290.77741.28060.069*
C431.269 (4)0.759 (4)1.225 (2)0.061 (11)
H431.30300.77461.27260.073*
C441.339 (4)0.736 (5)1.149 (3)0.074 (13)
H441.42210.73831.14660.089*
Mn10.9818 (4)0.5939 (4)0.7297 (3)0.0315 (15)
N10.800 (2)0.754 (2)0.6797 (15)0.033 (6)
N20.888 (2)0.539 (2)0.6268 (15)0.034 (6)
N30.370 (3)0.968 (3)0.564 (2)0.052 (7)
N41.068 (2)0.604 (2)0.8581 (15)0.031 (5)
N50.837 (2)0.591 (2)0.8421 (16)0.036 (6)
N61.299 (3)0.711 (3)1.079 (2)0.063 (9)
O11.0765 (19)0.7039 (19)0.6607 (13)0.038 (5)
O21.023 (3)0.885 (2)0.5930 (17)0.066 (7)
O31.104 (2)0.4190 (19)0.7432 (15)0.045 (5)
O41.244 (3)0.289 (2)0.8273 (15)0.058 (7)
O1W0.867 (3)0.128 (2)0.5750 (18)0.063 (7)
O2W0.409 (4)0.792 (4)0.433 (3)0.106 (13)
H3W0.40 (3)0.734 (17)0.46 (2)0.080*
H4W0.42 (5)0.84 (3)0.464 (19)0.080*
H2W0.84 (4)0.15 (2)0.527 (12)0.080*
H1W0.88 (4)0.060 (10)0.59 (2)0.080*
O3W0.438 (3)0.099 (3)0.894 (2)0.080*
H5W0.367 (19)0.11 (4)0.94 (2)0.2 (3)*
H6W0.50 (4)0.13 (2)0.91 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.031 (15)0.033 (16)0.033 (16)0.005 (13)0.007 (12)0.009 (12)
C20.041 (18)0.036 (18)0.046 (19)0.003 (15)0.013 (15)0.014 (14)
C30.034 (16)0.037 (18)0.042 (18)0.001 (14)0.006 (14)0.008 (14)
C40.035 (16)0.031 (17)0.05 (2)0.001 (14)0.006 (14)0.016 (14)
C50.031 (15)0.033 (17)0.042 (18)0.006 (13)0.004 (13)0.012 (13)
C60.047 (18)0.042 (19)0.030 (16)0.014 (16)0.009 (14)0.012 (13)
C70.06 (2)0.05 (2)0.05 (2)0.003 (18)0.007 (17)0.024 (16)
C80.08 (3)0.06 (2)0.04 (2)0.01 (2)0.018 (19)0.022 (17)
C90.08 (3)0.05 (2)0.07 (3)0.01 (2)0.04 (2)0.02 (2)
C100.048 (19)0.05 (2)0.06 (2)0.019 (17)0.024 (17)0.007 (17)
C110.037 (16)0.033 (17)0.044 (18)0.015 (14)0.008 (13)0.005 (13)
C120.037 (17)0.041 (19)0.034 (17)0.011 (15)0.001 (13)0.000 (14)
C130.030 (15)0.029 (16)0.039 (17)0.004 (13)0.002 (13)0.004 (13)
C140.044 (18)0.037 (18)0.043 (18)0.003 (15)0.015 (14)0.010 (14)
C150.047 (19)0.05 (2)0.044 (19)0.003 (17)0.013 (15)0.021 (16)
C160.06 (2)0.033 (17)0.037 (18)0.006 (16)0.005 (15)0.012 (13)
C170.039 (16)0.031 (16)0.039 (17)0.010 (14)0.009 (13)0.009 (13)
C180.040 (17)0.032 (17)0.06 (2)0.008 (15)0.016 (15)0.007 (14)
C190.05 (2)0.08 (3)0.07 (3)0.01 (2)0.018 (19)0.05 (2)
C200.05 (2)0.08 (3)0.11 (4)0.01 (2)0.02 (2)0.06 (3)
C210.037 (19)0.05 (2)0.09 (3)0.004 (18)0.03 (2)0.02 (2)
C220.042 (19)0.06 (3)0.07 (3)0.005 (19)0.018 (18)0.02 (2)
C230.034 (17)0.06 (2)0.05 (2)0.014 (17)0.013 (14)0.004 (16)
C240.031 (17)0.11 (3)0.05 (2)0.03 (2)0.003 (16)0.01 (2)
C250.031 (18)0.12 (4)0.05 (2)0.02 (2)0.004 (16)0.01 (2)
C260.042 (19)0.09 (3)0.035 (19)0.02 (2)0.002 (15)0.007 (18)
C270.031 (16)0.045 (19)0.030 (16)0.009 (14)0.002 (12)0.001 (13)
C280.034 (15)0.038 (17)0.028 (15)0.011 (14)0.001 (12)0.004 (12)
C290.039 (17)0.046 (19)0.031 (16)0.012 (15)0.003 (13)0.014 (14)
C300.044 (18)0.037 (18)0.031 (16)0.010 (15)0.006 (13)0.008 (13)
C310.035 (16)0.05 (2)0.041 (18)0.020 (16)0.007 (14)0.006 (15)
C320.036 (16)0.041 (18)0.026 (15)0.012 (14)0.006 (12)0.000 (12)
C330.027 (14)0.05 (2)0.033 (16)0.010 (14)0.004 (12)0.002 (14)
C340.048 (19)0.07 (2)0.04 (2)0.025 (19)0.002 (16)0.003 (17)
C350.05 (2)0.10 (4)0.06 (2)0.04 (2)0.001 (18)0.00 (2)
C360.04 (2)0.09 (3)0.05 (2)0.02 (2)0.007 (16)0.03 (2)
C370.043 (19)0.07 (3)0.04 (2)0.001 (19)0.010 (15)0.014 (17)
C380.027 (14)0.052 (19)0.026 (15)0.007 (14)0.005 (12)0.010 (13)
C390.043 (17)0.035 (17)0.023 (15)0.001 (14)0.003 (13)0.012 (13)
C400.05 (2)0.05 (2)0.032 (17)0.021 (17)0.011 (15)0.007 (14)
C410.06 (2)0.06 (2)0.033 (18)0.029 (19)0.001 (15)0.013 (15)
C420.08 (3)0.07 (3)0.04 (2)0.04 (2)0.005 (18)0.016 (17)
C430.08 (3)0.07 (3)0.04 (2)0.02 (2)0.021 (19)0.021 (18)
C440.06 (2)0.11 (4)0.07 (3)0.03 (3)0.01 (2)0.04 (3)
Mn10.032 (2)0.035 (3)0.027 (2)0.009 (2)0.0035 (17)0.0057 (18)
N10.033 (13)0.031 (14)0.034 (14)0.009 (11)0.003 (10)0.007 (10)
N20.041 (14)0.029 (13)0.031 (13)0.007 (11)0.005 (11)0.010 (10)
N30.042 (16)0.051 (18)0.060 (19)0.004 (14)0.017 (14)0.014 (14)
N40.031 (13)0.036 (14)0.028 (13)0.013 (11)0.003 (10)0.001 (10)
N50.032 (13)0.043 (15)0.035 (14)0.013 (12)0.006 (10)0.007 (11)
N60.053 (18)0.10 (3)0.050 (19)0.035 (19)0.006 (14)0.029 (18)
O10.035 (11)0.043 (14)0.039 (12)0.015 (11)0.001 (9)0.007 (9)
O20.082 (19)0.052 (16)0.048 (16)0.010 (14)0.010 (13)0.014 (12)
O30.037 (12)0.038 (13)0.056 (14)0.006 (10)0.007 (10)0.008 (10)
O40.078 (18)0.046 (15)0.043 (14)0.011 (14)0.013 (13)0.001 (11)
O1W0.076 (19)0.057 (17)0.056 (17)0.015 (16)0.012 (14)0.011 (13)
O2W0.10 (3)0.09 (3)0.11 (3)0.00 (2)0.01 (2)0.05 (2)
Geometric parameters (Å, º) top
C1—N11.34 (4)C25—C261.39 (5)
C1—C21.41 (4)C25—H250.9300
C1—C131.49 (4)C26—C271.39 (5)
C2—C31.39 (4)C26—H260.9300
C2—H20.9300C27—N51.35 (4)
C3—C41.39 (4)C27—C281.50 (4)
C3—C181.50 (4)C28—N41.36 (4)
C4—C51.38 (4)C28—C291.37 (4)
C4—H40.9300C29—C301.42 (4)
C5—N11.35 (4)C29—H290.9300
C5—C61.49 (4)C30—C311.38 (4)
C6—C111.41 (4)C30—C401.48 (4)
C6—C71.42 (4)C31—C321.40 (4)
C7—C81.37 (5)C31—H310.9300
C7—H70.9300C32—N41.35 (4)
C8—C91.38 (6)C32—C331.49 (4)
C8—H80.9300C33—C341.39 (5)
C9—C101.39 (6)C33—C381.40 (4)
C9—H90.9300C34—C351.40 (5)
C10—C111.40 (4)C34—H340.9300
C10—H100.9300C35—C361.36 (6)
C11—C121.50 (4)C35—H350.9300
C12—O21.24 (4)C36—C371.39 (6)
C12—O11.27 (4)C36—H360.9300
C13—N21.35 (4)C37—C381.39 (5)
C13—C141.38 (4)C37—H370.9300
C14—C151.39 (4)C38—C391.50 (5)
C14—H140.9300C39—O41.24 (4)
C15—C161.36 (5)C39—O31.28 (4)
C15—H150.9300C40—N61.34 (4)
C16—C171.39 (4)C40—C411.40 (5)
C16—H160.9300C41—C421.38 (5)
C17—N21.36 (4)C41—H410.9300
C17—H170.9300C42—C431.37 (6)
C18—N31.33 (4)C42—H420.9300
C18—C191.35 (5)C43—C441.35 (6)
C19—C201.40 (5)C43—H430.9300
C19—H190.9300C44—N61.33 (5)
C20—C211.33 (6)C44—H440.9300
C20—H200.9300Mn1—O12.10 (2)
C21—C221.37 (5)Mn1—O32.11 (2)
C21—H210.9300Mn1—N52.26 (2)
C22—N31.36 (4)Mn1—N22.27 (2)
C22—H220.9300Mn1—N42.33 (2)
C23—N51.36 (4)Mn1—N12.41 (2)
C23—C241.36 (5)O1W—H2W0.819 (18)
C23—H230.9300O1W—H1W0.82 (2)
C24—C251.37 (5)O2W—H3W0.821 (17)
C24—H240.9300O2W—H4W0.82 (2)
N1—C1—C2122 (3)C29—C28—C27123 (3)
N1—C1—C13116 (2)C28—C29—C30120 (3)
C2—C1—C13122 (3)C28—C29—H29120.0
C1—C2—C3120 (3)C30—C29—H29120.0
C1—C2—H2120.3C31—C30—C29117 (3)
C3—C2—H2120.2C31—C30—C40120 (3)
C4—C3—C2117 (3)C29—C30—C40123 (3)
C4—C3—C18123 (3)C30—C31—C32121 (3)
C2—C3—C18120 (3)C30—C31—H31119.4
C3—C4—C5121 (3)C32—C31—H31119.6
C3—C4—H4119.6N4—C32—C31121 (3)
C5—C4—H4119.5N4—C32—C33119 (2)
N1—C5—C4122 (3)C31—C32—C33120 (3)
N1—C5—C6116 (3)C34—C33—C38118 (3)
C4—C5—C6122 (3)C34—C33—C32120 (3)
C11—C6—C7119 (3)C38—C33—C32123 (3)
C11—C6—C5121 (3)C33—C34—C35121 (4)
C7—C6—C5120 (3)C33—C34—H34119.2
C8—C7—C6121 (4)C35—C34—H34119.3
C8—C7—H7119.7C36—C35—C34120 (4)
C6—C7—H7119.6C36—C35—H35120.0
C9—C8—C7120 (4)C34—C35—H35120.0
C9—C8—H8120.2C35—C36—C37120 (3)
C7—C8—H8119.9C35—C36—H36119.8
C8—C9—C10121 (3)C37—C36—H36119.9
C8—C9—H9119.7C36—C37—C38120 (4)
C10—C9—H9119.5C36—C37—H37120.1
C9—C10—C11121 (4)C38—C37—H37120.2
C9—C10—H10119.9C33—C38—C37121 (3)
C11—C10—H10119.5C33—C38—C39123 (3)
C6—C11—C10119 (3)C37—C38—C39116 (3)
C6—C11—C12122 (3)O4—C39—O3123 (3)
C10—C11—C12119 (3)O4—C39—C38121 (3)
O2—C12—O1125 (3)O3—C39—C38116 (3)
O2—C12—C11117 (3)N6—C40—C41121 (3)
O1—C12—C11118 (3)N6—C40—C30117 (3)
N2—C13—C14122 (3)C41—C40—C30122 (3)
N2—C13—C1115 (3)C42—C41—C40120 (3)
C14—C13—C1122 (3)C42—C41—H41120.3
C13—C14—C15119 (3)C40—C41—H41120.1
C13—C14—H14120.5C43—C42—C41119 (3)
C15—C14—H14120.5C43—C42—H42120.7
C16—C15—C14120 (3)C41—C42—H42120.7
C16—C15—H15120.3C42—C43—C44118 (3)
C14—C15—H15120.2C42—C43—H43120.6
C15—C16—C17119 (3)C44—C43—H43121.0
C15—C16—H16120.4N6—C44—C43125 (4)
C17—C16—H16120.4N6—C44—H44117.5
N2—C17—C16122 (3)C43—C44—H44117.4
N2—C17—H17118.9O1—Mn1—O3110.7 (9)
C16—C17—H17118.9O1—Mn1—N5141.2 (9)
N3—C18—C19122 (3)O3—Mn1—N5100.9 (9)
N3—C18—C3116 (3)O1—Mn1—N2104.9 (9)
C19—C18—C3122 (3)O3—Mn1—N287.1 (9)
C18—C19—C20119 (4)N5—Mn1—N298.5 (9)
C18—C19—H19120.6O1—Mn1—N490.8 (8)
C20—C19—H19120.7O3—Mn1—N482.7 (9)
C21—C20—C19121 (4)N5—Mn1—N471.0 (8)
C21—C20—H20119.5N2—Mn1—N4163.5 (9)
C19—C20—H20119.5O1—Mn1—N180.6 (8)
C22—C21—C20117 (3)O3—Mn1—N1156.2 (9)
C22—C21—H21121.3N5—Mn1—N179.2 (9)
C20—C21—H21121.6N2—Mn1—N169.5 (8)
C21—C22—N3123 (4)N4—Mn1—N1119.0 (8)
C21—C22—H22118.4C1—N1—C5118 (2)
N3—C22—H22118.5C1—N1—Mn1116.3 (18)
N5—C23—C24123 (3)C5—N1—Mn1124.1 (19)
N5—C23—H23118.3C17—N2—C13118 (2)
C24—C23—H23118.4C17—N2—Mn1120.5 (19)
C25—C24—C23119 (3)C13—N2—Mn1121.4 (19)
C25—C24—H24120.6C18—N3—C22118 (3)
C23—C24—H24120.5C32—N4—C28119 (2)
C24—C25—C26119 (3)C32—N4—Mn1124.5 (18)
C24—C25—H25120.3C28—N4—Mn1115.6 (18)
C26—C25—H25120.2C23—N5—C27118 (3)
C25—C26—C27119 (3)C23—N5—Mn1123 (2)
C25—C26—H26120.4C27—N5—Mn1117.7 (19)
C27—C26—H26120.4C40—N6—C44118 (3)
N5—C27—C26121 (3)C12—O1—Mn1120.0 (18)
N5—C27—C28116 (2)C39—O3—Mn1126 (2)
C26—C27—C28123 (3)H2W—O1W—H1W114.5 (16)
N4—C28—C29122 (3)H3W—O2W—H4W115 (3)
N4—C28—C27115 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2i0.82 (1)2.23 (8)2.768 (8)123 (8)
O1W—H1W···O2ii0.82 (1)2.27 (7)2.881 (8)145 (6)
O2W—H4W···N30.82 (1)2.24 (4)3.022 (9)159 (9)
O3W—H5W···O4iii0.82 (1)2.65 (8)2.765 (8)89 (6)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C22H14N3O2)2]·3H2O
Mr813.71
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.157 (2), 12.141 (2), 15.517 (3)
α, β, γ (°)82.79 (3), 84.19 (3), 70.59 (3)
V3)1962.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.954, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
16229, 6746, 4043
Rint0.098
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.271, 1.00
No. of reflections6746
No. of parameters536
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 2.70

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O12.10 (2)Mn1—N22.27 (2)
Mn1—O32.11 (2)Mn1—N42.33 (2)
Mn1—N52.26 (2)Mn1—N12.41 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2i0.8199 (15)2.23 (8)2.768 (8)123 (8)
O1W—H1W···O2ii0.821 (3)2.27 (7)2.881 (8)145 (6)
O2W—H4W···N30.8201 (12)2.24 (4)3.022 (9)159 (9)
O3W—H5W···O4iii0.818 (2)2.65 (8)2.765 (8)89 (6)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x1, y, z.
 

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, L. M., Zhang, X. T., Li, D. C., Sun, D., Zhang, W. & Dou, J. M. (2013). CrystEngComm, 15, 349–355.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds