organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o462-o463

2-Amino-4-(4-chloro­phen­yl)-4H-chromeno[8,7-b]pyridine-3-carbo­nitrile

aDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, cChemistry Department, Faculty of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 February 2013; accepted 22 February 2013; online 2 March 2013)

The asymmetric unit of the title compound, C19H12ClN3O, contains two mol­ecules with similar conformations. The 14 non-H atoms comprising the 4H-chromeno[8,7-b]pyridine residue are essentially coplanar (r.m.s. deviations = 0.037 and 0.042 Å for the two mol­ecules) and the main difference between them is seen in the twist about the bond linking the main residue to the attached chloro­benzene rings [dihedral angles = 79.01 (12) and 76.22 (11)° for the two mol­ecules]. Zigzag supra­molecular chains along the a-axis direction mediated by amino–pyridine N—H⋯N hydrogen bonds feature in the crystal packing; these are connected into a three-dimensional architecture by C—H⋯π inter­actions and Cl⋯Cl contacts [Cl⋯Cl = 3.3896 (14) Å].

Related literature

For background to the chemistry and biological activity of 4H-pyran derivatives, see: Al-Ghamdi et al. (2012[Al-Ghamdi, A. M., Abd EL-Wahab, A. H. F., Mohamed, H. M. & El-Agrody, A. M. (2012). Lett. Drug. Des. Discov. 9, 459-470.]); El-Agrody et al. (2012[El-Agrody, A. M., Khattab, E. S. A. E. H., Fouda, A. M. & Al-Ghamdi, A. M. (2012). Med. Chem. Res. 22, 1339-1355.]). For the structure of the 2-chloro analogue, see: Wang et al. (2003[Wang, X.-S., Shi, D.-Q. & Tu, S.-J. (2003). Chin. J. Chem. 21, 1114-1117.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12ClN3O

  • Mr = 333.77

  • Monoclinic, P 21 /n

  • a = 6.5311 (8) Å

  • b = 35.129 (3) Å

  • c = 14.0903 (14) Å

  • β = 101.740 (11)°

  • V = 3165.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.833, Tmax = 1.000

  • 20646 measured reflections

  • 7326 independent reflections

  • 3471 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.164

  • S = 1.01

  • 7326 reflections

  • 450 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N4,C20–C23,C28 and C33–C38 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N4i 0.84 (3) 2.34 (4) 3.172 (4) 174 (3)
N2—H2⋯N5i 0.89 (3) 2.61 (3) 3.308 (5) 136 (2)
N5—H3⋯N1 0.87 (3) 2.15 (3) 3.014 (3) 173 (3)
C18—H18⋯Cg1ii 0.93 2.80 3.650 (3) 152
C24—H24⋯Cg2iii 0.93 2.74 3.668 (3) 174
Symmetry codes: (i) x-1, y, z; (ii) [-x-{\script{3\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model., 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Motivated by their biological activities and in continuation of an on-going programme on the chemistry of 4H-pyran derivatives (Al-Ghamdi et al., 2012; El-Agrody et al., 2012), the synthesis and crystal structure determination of (I) is reported.

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. As illustrated in Fig. 2, where the O2-containing molecule is super-imposed upon the inverse of the O1-containing molecule, the molecules are virtually super-imposable with differences apparent in the relationship between the 4H-chromeno[8,7-b]pyridine residue and the attached benzene ring. For the O1-containing molecule, the r.m.s. deviation of the 14 non-hydrogen atoms comprising the fused ring system is 0.037 Å, the dihedral angle between this and the benzene ring is 79.01 (12)° and the twist between these groups is manifested in the C7—C12—C14—C15 torsion angle of -132.9 (3)°. The comparable values for the second molecule are 0.042 Å, 76.22 (11)° and 149.0 (3)°, respectively. The observed conformation is in accord with that established previously for the 2-chloro analogue (Wang et al., 2003).

The most prominent feature of the crystal packing is the formation of supramolecular zigzag chains along the a axis mediated by (amino)N—H···N(pyridyl) hydrogen bonding, Fig. 3 and Table 1. Whereas the second N1-bound H2 atom forms a weak interaction to the N5 atom, Table 1, reinforcing the chain, the second N2-bound H4 atom does not form a significant intermolecular interaction. The chains are connected into a three-dimensional architecture by C—H···π interactions along with Cl2···Cl2i contacts [Cl2···Cl2i = 3.3896 (14) Å for i: 2 - x, 1 - y, 2 - z], Fig. 4.

Related literature top

For background to the chemistry and biological activity of 4H-pyran derivatives, see: Al-Ghamdi et al. (2012); El-Agrody et al. (2012). For the structure of the 2-chloro analogue, see: Wang et al. (2003).

Experimental top

A solution of 8-hydroxyquinoline (0.01 mol) in EtOH (30 ml) was treated with α-cyano-p-chlorocinnamonitrile (0.01 mol) and piperidine (0.5 ml). The reaction mixture was heated for 60 minutes by which time complete precipitation occurred. The solid product was collected by filtration and recrystallized from ethanol to give yellow prisms of the title compound, (I); M.pt: 522–523 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound-H atoms were refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules comprising the asymmetric unit in (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Overlay diagram of the two independent molecules in (I) with the inverted N1-containing molecule illustrated in red. The molecules are overlaid so that the pyridyl rings are superimposed.
[Figure 3] Fig. 3. A view of the supramolecular chain along the a axis in (I) sustained by N—H···N hydrogen bonding, shown as blue dashed lines.
[Figure 4] Fig. 4. A view in projection down the a axis of the crystal packing in (I). The N—H···N, C—H···π and Cl···Cl interactions are shown as blue, purple and orange dashed lines, respectively.
2-Amino-4-(4-chlorophenyl)-4H-chromeno[8,7-b]pyridine-3-carbonitrile top
Crystal data top
C19H12ClN3OF(000) = 1376
Mr = 333.77Dx = 1.401 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2452 reflections
a = 6.5311 (8) Åθ = 2.9–27.5°
b = 35.129 (3) ŵ = 0.25 mm1
c = 14.0903 (14) ÅT = 295 K
β = 101.740 (11)°Prism, yellow
V = 3165.2 (6) Å30.30 × 0.20 × 0.05 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7326 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3471 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.068
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.0°
ω scanh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 4445
Tmin = 0.833, Tmax = 1.000l = 1818
20646 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0527P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7326 reflectionsΔρmax = 0.21 e Å3
450 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (4)
Crystal data top
C19H12ClN3OV = 3165.2 (6) Å3
Mr = 333.77Z = 8
Monoclinic, P21/nMo Kα radiation
a = 6.5311 (8) ŵ = 0.25 mm1
b = 35.129 (3) ÅT = 295 K
c = 14.0903 (14) Å0.30 × 0.20 × 0.05 mm
β = 101.740 (11)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7326 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3471 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 1.000Rint = 0.068
20646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.21 e Å3
7326 reflectionsΔρmin = 0.32 e Å3
450 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14716 (19)0.04691 (3)0.61417 (7)0.0887 (4)
Cl20.8629 (2)0.47842 (3)0.89931 (6)0.1067 (5)
O10.1506 (3)0.25977 (5)0.34064 (13)0.0470 (5)
O20.6996 (3)0.35767 (5)0.38366 (13)0.0464 (5)
N10.4684 (4)0.27492 (6)0.25590 (15)0.0455 (6)
N20.0484 (5)0.28690 (7)0.43039 (19)0.0494 (7)
N30.3636 (5)0.21391 (8)0.5043 (2)0.0800 (10)
N41.0071 (4)0.35491 (6)0.28969 (16)0.0475 (6)
N50.4811 (5)0.31956 (7)0.4397 (2)0.0500 (7)
N60.2277 (5)0.37488 (8)0.5911 (2)0.0873 (11)
C10.6186 (5)0.28248 (8)0.2095 (2)0.0512 (8)
H1A0.66960.30730.21260.061*
C20.7079 (5)0.25603 (9)0.15559 (19)0.0528 (8)
H2A0.81340.26320.12370.063*
C30.6363 (5)0.21963 (9)0.15116 (19)0.0511 (8)
H3A0.69530.20140.11710.061*
C40.4729 (5)0.20941 (8)0.19792 (18)0.0445 (7)
C50.3886 (5)0.17228 (8)0.1979 (2)0.0549 (9)
H50.43960.15290.16410.066*
C60.2346 (5)0.16457 (8)0.2465 (2)0.0542 (8)
H60.18320.13990.24580.065*
C70.1495 (5)0.19300 (7)0.29835 (18)0.0421 (7)
C80.2278 (5)0.22901 (7)0.29687 (18)0.0403 (7)
C90.3921 (5)0.23850 (7)0.24918 (17)0.0407 (7)
C100.0007 (5)0.25317 (8)0.39165 (18)0.0409 (7)
C110.0810 (5)0.21862 (8)0.40245 (19)0.0437 (7)
C120.0248 (5)0.18351 (7)0.35028 (19)0.0458 (7)
H120.14770.17720.30030.055*
C130.2384 (6)0.21591 (8)0.4580 (2)0.0531 (8)
C140.0212 (5)0.14887 (8)0.4167 (2)0.0453 (7)
C150.1253 (6)0.12104 (9)0.4144 (2)0.0702 (10)
H150.25300.12330.37120.084*
C160.0887 (7)0.08930 (9)0.4751 (3)0.0751 (11)
H160.19050.07060.47280.090*
C170.0984 (7)0.08624 (9)0.5375 (2)0.0579 (9)
C180.2466 (6)0.11359 (10)0.5426 (2)0.0690 (10)
H180.37360.11130.58630.083*
C190.2072 (6)0.14497 (9)0.4821 (2)0.0637 (9)
H190.30860.16380.48580.076*
C201.1555 (5)0.35407 (9)0.2385 (2)0.0552 (9)
H201.18590.33080.21310.066*
C211.2701 (5)0.38601 (10)0.2201 (2)0.0584 (9)
H211.37150.38380.18270.070*
C221.2309 (5)0.42014 (9)0.2577 (2)0.0562 (9)
H221.30580.44160.24610.067*
C231.0766 (5)0.42312 (8)0.31426 (19)0.0464 (8)
C241.0277 (5)0.45694 (8)0.3591 (2)0.0540 (9)
H241.09830.47930.35100.065*
C250.8789 (5)0.45719 (7)0.4137 (2)0.0482 (8)
H250.85280.47970.44390.058*
C260.7618 (5)0.42418 (7)0.42611 (17)0.0394 (7)
C270.8066 (5)0.39158 (7)0.38100 (18)0.0381 (7)
C280.9661 (5)0.38958 (7)0.32597 (17)0.0400 (7)
C290.5538 (5)0.35562 (7)0.43977 (18)0.0404 (7)
C300.5022 (5)0.38585 (7)0.48884 (18)0.0401 (7)
C310.5956 (5)0.42540 (7)0.48574 (18)0.0405 (7)
H310.48410.44220.45250.049*
C320.3499 (6)0.37995 (8)0.5446 (2)0.0537 (8)
C330.6695 (5)0.44071 (7)0.5878 (2)0.0434 (7)
C340.5327 (6)0.46012 (8)0.6330 (2)0.0602 (9)
H340.39880.46570.59870.072*
C350.5929 (7)0.47155 (9)0.7299 (3)0.0708 (11)
H350.49910.48450.75990.085*
C360.7888 (7)0.46368 (9)0.7799 (2)0.0644 (10)
C370.9283 (6)0.44463 (8)0.7368 (2)0.0613 (9)
H371.06260.43950.77130.074*
C380.8671 (5)0.43299 (8)0.6410 (2)0.0521 (8)
H380.96130.41970.61200.063*
H10.032 (6)0.3060 (10)0.397 (2)0.081 (12)*
H20.157 (5)0.2859 (8)0.460 (2)0.064 (11)*
H30.469 (5)0.3081 (9)0.384 (2)0.073 (11)*
H40.369 (5)0.3152 (8)0.467 (2)0.061 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1187 (10)0.0705 (6)0.0826 (6)0.0147 (6)0.0336 (6)0.0305 (5)
Cl20.1573 (13)0.1087 (8)0.0572 (5)0.0307 (8)0.0293 (6)0.0242 (5)
O10.0519 (15)0.0330 (10)0.0612 (11)0.0010 (10)0.0238 (11)0.0079 (8)
O20.0496 (14)0.0337 (10)0.0638 (12)0.0065 (10)0.0302 (11)0.0081 (9)
N10.0483 (18)0.0410 (13)0.0499 (13)0.0018 (12)0.0161 (13)0.0042 (11)
N20.059 (2)0.0390 (14)0.0557 (15)0.0046 (14)0.0237 (15)0.0015 (12)
N30.074 (2)0.085 (2)0.090 (2)0.0125 (19)0.038 (2)0.0017 (17)
N40.0521 (18)0.0416 (13)0.0539 (14)0.0040 (13)0.0228 (13)0.0030 (11)
N50.058 (2)0.0373 (13)0.0627 (16)0.0117 (13)0.0308 (16)0.0083 (12)
N60.093 (3)0.0567 (18)0.135 (3)0.0027 (18)0.077 (2)0.0025 (18)
C10.053 (2)0.0495 (17)0.0538 (17)0.0009 (16)0.0169 (17)0.0005 (14)
C20.052 (2)0.064 (2)0.0446 (15)0.0023 (18)0.0150 (15)0.0032 (15)
C30.057 (2)0.0555 (19)0.0419 (15)0.0101 (17)0.0140 (16)0.0029 (14)
C40.050 (2)0.0438 (16)0.0388 (14)0.0091 (15)0.0070 (14)0.0051 (12)
C50.064 (3)0.0407 (16)0.0620 (18)0.0061 (17)0.0180 (18)0.0129 (14)
C60.062 (2)0.0406 (16)0.0614 (18)0.0049 (17)0.0148 (18)0.0123 (14)
C70.044 (2)0.0355 (14)0.0461 (15)0.0006 (14)0.0074 (14)0.0048 (12)
C80.043 (2)0.0335 (14)0.0431 (14)0.0026 (14)0.0069 (14)0.0067 (12)
C90.041 (2)0.0410 (15)0.0395 (14)0.0021 (14)0.0073 (14)0.0007 (12)
C100.041 (2)0.0410 (15)0.0413 (14)0.0035 (15)0.0103 (14)0.0009 (12)
C110.038 (2)0.0440 (16)0.0491 (16)0.0006 (15)0.0102 (15)0.0001 (13)
C120.042 (2)0.0415 (15)0.0502 (16)0.0049 (15)0.0015 (15)0.0017 (13)
C130.052 (2)0.0469 (18)0.0615 (19)0.0057 (17)0.0152 (18)0.0030 (14)
C140.043 (2)0.0384 (15)0.0537 (17)0.0019 (15)0.0079 (16)0.0024 (13)
C150.061 (3)0.057 (2)0.085 (2)0.016 (2)0.004 (2)0.0148 (18)
C160.079 (3)0.054 (2)0.089 (2)0.025 (2)0.009 (2)0.0132 (19)
C170.074 (3)0.0490 (18)0.0531 (18)0.004 (2)0.0177 (19)0.0036 (15)
C180.065 (3)0.068 (2)0.067 (2)0.003 (2)0.0054 (19)0.0121 (18)
C190.055 (2)0.0527 (19)0.077 (2)0.0133 (18)0.0028 (19)0.0052 (17)
C200.059 (2)0.0555 (19)0.0569 (17)0.0111 (18)0.0257 (18)0.0023 (15)
C210.053 (2)0.072 (2)0.0566 (18)0.0007 (19)0.0259 (17)0.0088 (17)
C220.052 (2)0.060 (2)0.0598 (18)0.0096 (18)0.0187 (17)0.0118 (16)
C230.049 (2)0.0456 (16)0.0460 (15)0.0031 (16)0.0127 (15)0.0086 (13)
C240.065 (3)0.0423 (17)0.0570 (17)0.0141 (17)0.0172 (18)0.0074 (14)
C250.056 (2)0.0326 (15)0.0572 (17)0.0037 (15)0.0137 (17)0.0016 (13)
C260.0399 (19)0.0338 (14)0.0451 (14)0.0006 (14)0.0100 (14)0.0026 (12)
C270.0391 (19)0.0304 (13)0.0464 (15)0.0025 (13)0.0122 (14)0.0030 (11)
C280.044 (2)0.0383 (14)0.0390 (14)0.0003 (14)0.0103 (14)0.0042 (12)
C290.041 (2)0.0349 (14)0.0480 (15)0.0028 (14)0.0147 (14)0.0002 (12)
C300.0402 (19)0.0363 (14)0.0468 (15)0.0034 (14)0.0158 (14)0.0042 (12)
C310.0400 (19)0.0319 (13)0.0505 (15)0.0037 (14)0.0118 (14)0.0024 (12)
C320.058 (2)0.0343 (15)0.076 (2)0.0001 (16)0.0303 (19)0.0032 (14)
C330.049 (2)0.0294 (13)0.0554 (16)0.0000 (15)0.0186 (16)0.0050 (12)
C340.053 (2)0.0528 (18)0.079 (2)0.0001 (18)0.0229 (19)0.0214 (16)
C350.080 (3)0.061 (2)0.083 (2)0.015 (2)0.046 (2)0.0294 (19)
C360.084 (3)0.058 (2)0.0573 (19)0.017 (2)0.028 (2)0.0092 (16)
C370.075 (3)0.0530 (18)0.0532 (18)0.0008 (19)0.0072 (18)0.0023 (15)
C380.059 (2)0.0430 (16)0.0554 (18)0.0070 (17)0.0150 (17)0.0033 (14)
Geometric parameters (Å, º) top
Cl1—C171.743 (3)C14—C191.374 (4)
Cl2—C361.732 (3)C15—C161.396 (4)
O1—C101.355 (3)C15—H150.9300
O1—C81.389 (3)C16—C171.357 (5)
O2—C291.358 (3)C16—H160.9300
O2—C271.385 (3)C17—C181.355 (4)
N1—C11.312 (3)C18—C191.385 (4)
N1—C91.369 (3)C18—H180.9300
N2—C101.367 (3)C19—H190.9300
N2—H10.84 (3)C20—C211.402 (4)
N2—H20.89 (3)C20—H200.9300
N3—C131.147 (4)C21—C221.356 (4)
N4—C201.321 (3)C21—H210.9300
N4—C281.368 (3)C22—C231.411 (4)
N5—C291.353 (3)C22—H220.9300
N5—H30.87 (3)C23—C281.409 (4)
N5—H40.91 (3)C23—C241.412 (4)
N6—C321.145 (4)C24—C251.357 (4)
C1—C21.400 (4)C24—H240.9300
C1—H1A0.9300C25—C261.419 (4)
C2—C31.359 (4)C25—H250.9300
C2—H2A0.9300C26—C271.370 (3)
C3—C41.410 (4)C26—C311.502 (4)
C3—H3A0.9300C27—C281.421 (4)
C4—C91.414 (3)C29—C301.347 (3)
C4—C51.416 (4)C30—C321.403 (4)
C5—C61.354 (4)C30—C311.522 (3)
C5—H50.9300C31—C331.520 (4)
C6—C71.416 (4)C31—H310.9800
C6—H60.9300C33—C341.378 (4)
C7—C81.366 (4)C33—C381.381 (4)
C7—C121.510 (4)C34—C351.401 (5)
C8—C91.417 (4)C34—H340.9300
C10—C111.343 (4)C35—C361.358 (5)
C11—C131.417 (4)C35—H350.9300
C11—C121.519 (4)C36—C371.368 (5)
C12—C141.527 (4)C37—C381.390 (4)
C12—H120.9800C37—H370.9300
C14—C151.364 (4)C38—H380.9300
C10—O1—C8118.2 (2)C17—C18—H18120.3
C29—O2—C27118.59 (19)C19—C18—H18120.3
C1—N1—C9116.9 (2)C14—C19—C18121.4 (3)
C10—N2—H1114 (2)C14—C19—H19119.3
C10—N2—H2115 (2)C18—C19—H19119.3
H1—N2—H2120 (3)N4—C20—C21124.2 (3)
C20—N4—C28116.4 (2)N4—C20—H20117.9
C29—N5—H3114 (2)C21—C20—H20117.9
C29—N5—H4118.3 (19)C22—C21—C20119.0 (3)
H3—N5—H4111 (3)C22—C21—H21120.5
N1—C1—C2124.9 (3)C20—C21—H21120.5
N1—C1—H1A117.5C21—C22—C23120.0 (3)
C2—C1—H1A117.5C21—C22—H22120.0
C3—C2—C1118.2 (3)C23—C22—H22120.0
C3—C2—H2A120.9C28—C23—C22116.5 (3)
C1—C2—H2A120.9C28—C23—C24118.9 (3)
C2—C3—C4120.3 (3)C22—C23—C24124.6 (3)
C2—C3—H3A119.9C25—C24—C23120.8 (3)
C4—C3—H3A119.9C25—C24—H24119.6
C3—C4—C9116.8 (3)C23—C24—H24119.6
C3—C4—C5124.5 (3)C24—C25—C26122.0 (3)
C9—C4—C5118.7 (3)C24—C25—H25119.0
C6—C5—C4120.9 (3)C26—C25—H25119.0
C6—C5—H5119.6C27—C26—C25117.0 (2)
C4—C5—H5119.6C27—C26—C31122.0 (2)
C5—C6—C7122.0 (3)C25—C26—C31120.9 (2)
C5—C6—H6119.0C26—C27—O2123.4 (2)
C7—C6—H6119.0C26—C27—C28123.0 (2)
C8—C7—C6117.2 (3)O2—C27—C28113.7 (2)
C8—C7—C12122.2 (2)N4—C28—C23123.8 (2)
C6—C7—C12120.5 (2)N4—C28—C27118.0 (2)
C7—C8—O1122.9 (2)C23—C28—C27118.2 (2)
C7—C8—C9123.2 (2)C30—C29—N5127.9 (3)
O1—C8—C9114.0 (2)C30—C29—O2122.4 (2)
N1—C9—C4122.8 (3)N5—C29—O2109.7 (2)
N1—C9—C8119.1 (2)C29—C30—C32116.8 (2)
C4—C9—C8118.0 (2)C29—C30—C31124.2 (2)
C11—C10—O1123.9 (2)C32—C30—C31119.0 (2)
C11—C10—N2127.7 (3)C26—C31—C33114.4 (2)
O1—C10—N2108.3 (2)C26—C31—C30109.2 (2)
C10—C11—C13117.9 (3)C33—C31—C30110.4 (2)
C10—C11—C12122.8 (2)C26—C31—H31107.5
C13—C11—C12119.1 (3)C33—C31—H31107.5
C7—C12—C11109.6 (2)C30—C31—H31107.5
C7—C12—C14113.5 (2)N6—C32—C30178.9 (4)
C11—C12—C14112.8 (2)C34—C33—C38118.0 (3)
C7—C12—H12106.8C34—C33—C31120.1 (3)
C11—C12—H12106.8C38—C33—C31121.7 (2)
C14—C12—H12106.8C33—C34—C35120.8 (3)
N3—C13—C11178.9 (4)C33—C34—H34119.6
C15—C14—C19117.7 (3)C35—C34—H34119.6
C15—C14—C12120.4 (3)C36—C35—C34119.7 (3)
C19—C14—C12121.8 (3)C36—C35—H35120.2
C14—C15—C16121.7 (4)C34—C35—H35120.2
C14—C15—H15119.1C35—C36—C37120.8 (3)
C16—C15—H15119.1C35—C36—Cl2119.4 (3)
C17—C16—C15118.7 (3)C37—C36—Cl2119.8 (3)
C17—C16—H16120.7C36—C37—C38119.3 (3)
C15—C16—H16120.7C36—C37—H37120.3
C16—C17—C18121.2 (3)C38—C37—H37120.3
C16—C17—Cl1119.4 (3)C33—C38—C37121.4 (3)
C18—C17—Cl1119.4 (3)C33—C38—H38119.3
C17—C18—C19119.3 (3)C37—C38—H38119.3
C9—N1—C1—C21.2 (4)C28—N4—C20—C210.1 (5)
N1—C1—C2—C30.6 (5)N4—C20—C21—C221.0 (5)
C1—C2—C3—C41.5 (4)C20—C21—C22—C230.1 (5)
C2—C3—C4—C90.7 (4)C21—C22—C23—C281.8 (4)
C2—C3—C4—C5179.6 (3)C21—C22—C23—C24178.1 (3)
C3—C4—C5—C6178.5 (3)C28—C23—C24—C250.9 (5)
C9—C4—C5—C60.5 (5)C22—C23—C24—C25178.9 (3)
C4—C5—C6—C70.7 (5)C23—C24—C25—C261.9 (5)
C5—C6—C7—C80.6 (5)C24—C25—C26—C270.6 (4)
C5—C6—C7—C12178.9 (3)C24—C25—C26—C31179.0 (3)
C6—C7—C8—O1176.7 (3)C25—C26—C27—O2177.5 (2)
C12—C7—C8—O11.6 (4)C31—C26—C27—O22.2 (4)
C6—C7—C8—C92.1 (4)C25—C26—C27—C281.8 (4)
C12—C7—C8—C9179.6 (3)C31—C26—C27—C28178.6 (3)
C10—O1—C8—C73.9 (4)C29—O2—C27—C265.2 (4)
C10—O1—C8—C9177.2 (2)C29—O2—C27—C28175.5 (2)
C1—N1—C9—C42.1 (4)C20—N4—C28—C232.2 (4)
C1—N1—C9—C8179.1 (3)C20—N4—C28—C27179.7 (3)
C3—C4—C9—N11.2 (4)C22—C23—C28—N43.0 (4)
C5—C4—C9—N1177.8 (3)C24—C23—C28—N4176.8 (3)
C3—C4—C9—C8180.0 (3)C22—C23—C28—C27178.8 (3)
C5—C4—C9—C81.0 (4)C24—C23—C28—C271.3 (4)
C7—C8—C9—N1176.5 (3)C26—C27—C28—N4175.5 (3)
O1—C8—C9—N14.6 (4)O2—C27—C28—N45.2 (4)
C7—C8—C9—C42.3 (4)C26—C27—C28—C232.7 (4)
O1—C8—C9—C4176.6 (2)O2—C27—C28—C23176.6 (2)
C8—O1—C10—C110.1 (4)C27—O2—C29—C303.4 (4)
C8—O1—C10—N2178.2 (2)C27—O2—C29—N5174.5 (2)
O1—C10—C11—C13179.8 (3)N5—C29—C30—C322.3 (5)
N2—C10—C11—C131.9 (5)O2—C29—C30—C32179.7 (3)
O1—C10—C11—C126.0 (5)N5—C29—C30—C31178.9 (3)
N2—C10—C11—C12176.0 (3)O2—C29—C30—C311.4 (5)
C8—C7—C12—C113.7 (4)C27—C26—C31—C33126.5 (3)
C6—C7—C12—C11178.1 (3)C25—C26—C31—C3353.9 (3)
C8—C7—C12—C14130.8 (3)C27—C26—C31—C302.3 (4)
C6—C7—C12—C1451.0 (4)C25—C26—C31—C30178.1 (2)
C10—C11—C12—C77.4 (4)C29—C30—C31—C264.0 (4)
C13—C11—C12—C7178.5 (3)C32—C30—C31—C26177.1 (3)
C10—C11—C12—C14134.9 (3)C29—C30—C31—C33130.6 (3)
C13—C11—C12—C1451.0 (4)C32—C30—C31—C3350.5 (4)
C7—C12—C14—C15132.9 (3)C26—C31—C33—C34149.0 (3)
C11—C12—C14—C15101.7 (3)C30—C31—C33—C3487.4 (3)
C7—C12—C14—C1948.7 (4)C26—C31—C33—C3836.7 (4)
C11—C12—C14—C1976.7 (4)C30—C31—C33—C3887.0 (3)
C19—C14—C15—C160.7 (5)C38—C33—C34—C350.1 (4)
C12—C14—C15—C16179.2 (3)C31—C33—C34—C35174.5 (3)
C14—C15—C16—C170.3 (5)C33—C34—C35—C360.4 (5)
C15—C16—C17—C181.1 (5)C34—C35—C36—C370.1 (5)
C15—C16—C17—Cl1179.8 (3)C34—C35—C36—Cl2179.2 (2)
C16—C17—C18—C190.9 (5)C35—C36—C37—C380.6 (5)
Cl1—C17—C18—C19179.5 (2)Cl2—C36—C37—C38179.9 (2)
C15—C14—C19—C181.0 (5)C34—C33—C38—C370.6 (4)
C12—C14—C19—C18179.5 (3)C31—C33—C38—C37175.1 (2)
C17—C18—C19—C140.3 (5)C36—C37—C38—C330.9 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N4,C20–C23,C28 and C33–C38 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1···N4i0.84 (3)2.34 (4)3.172 (4)174 (3)
N2—H2···N5i0.89 (3)2.61 (3)3.308 (5)136 (2)
N5—H3···N10.87 (3)2.15 (3)3.014 (3)173 (3)
C18—H18···Cg1ii0.932.803.650 (3)152
C24—H24···Cg2iii0.932.743.668 (3)174
Symmetry codes: (i) x1, y, z; (ii) x3/2, y1/2, z1/2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H12ClN3O
Mr333.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)6.5311 (8), 35.129 (3), 14.0903 (14)
β (°) 101.740 (11)
V3)3165.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.833, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20646, 7326, 3471
Rint0.068
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.164, 1.01
No. of reflections7326
No. of parameters450
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.32

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N4,C20–C23,C28 and C33–C38 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1···N4i0.84 (3)2.34 (4)3.172 (4)174 (3)
N2—H2···N5i0.89 (3)2.61 (3)3.308 (5)136 (2)
N5—H3···N10.87 (3)2.15 (3)3.014 (3)173 (3)
C18—H18···Cg1ii0.932.803.650 (3)152
C24—H24···Cg2iii0.932.743.668 (3)174
Symmetry codes: (i) x1, y, z; (ii) x3/2, y1/2, z1/2; (iii) x+2, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: aamr1963@yahoo.com.

Acknowledgements

We thank the Research Center of the College of Pharmacy and Deanship of Scientific Research of King Saud University for supporting this study. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Ghamdi, A. M., Abd EL-Wahab, A. H. F., Mohamed, H. M. & El-Agrody, A. M. (2012). Lett. Drug. Des. Discov. 9, 459–470.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Agrody, A. M., Khattab, E. S. A. E. H., Fouda, A. M. & Al-Ghamdi, A. M. (2012). Med. Chem. Res. 22, 1339–1355.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model., 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Shi, D.-Q. & Tu, S.-J. (2003). Chin. J. Chem. 21, 1114–1117.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o462-o463
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds