organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o480-o481

2-Amino-4-(4-bromo­phen­yl)-6-meth­­oxy-4H-benzo[h]chromene-3-carbo­nitrile

aChemistry Department, Faculty of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia, bChemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt, cPharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, dDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, eApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, fDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and gChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 February 2013; accepted 25 February 2013; online 2 March 2013)

In the title compound, C21H15BrN2O2, the 14 non-H atoms of the 4H-benzo[h]chromene fused-ring system are approximately coplanar (r.m.s. deviation = 0.129 Å). Within this system, the 4H-pyran ring adopts a flattened half-chair conformation with the methine C atom lying 0.281 (4) Å above the plane of the remaining atoms (r.m.s. deviation = 0.0446 Å). The bromo­benzene ring is almost perpendicular to the fused-ring system [dihedral angle = 85.34 (13)°]. In the crystal, supra­molecular layers parallel to (101) are sustained by amine–cyano N—H⋯N and amine–meth­oxy N—H⋯O hydrogen bonds. The layers stack with inter­actions of the type (bromo­benzene)C—H⋯π(outer-C6 ring of the fused-ring system) connecting them.

Related literature

For background to biologically active mol­ecules having the 4H-chromene or 4H-benzochromene residue, see: Sabry et al. (2011[Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.]); Amin et al. (2010[Amin, K. M., Kamel, M. M., Anwar, M. M., Khedr, M. & Syam, Y. M. (2010). Eur. J. Med. Chem. 45, 2117-2131.]); Kidwai et al. (2010[Kidwai, M., Poddar, R., Bhardwaj, S., Singh, S. & Mehta Luthra, P. (2010). Eur. J. Med. Chem. 45, 5031-5038.]); Singh et al. (2010[Singh, O. M., Devi, N. S., Thokchom, D. S. & Sharma, G. J. (2010). Eur. J. Med. Chem. 45, 2250-2257.]), For the structure of the fluoro derivative, see: Al-Dies et al. (2012[Al-Dies, A.-A. M., Amr, A.-G. E., El-Agrody, A. M., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1934-o1935.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15BrN2O2

  • Mr = 407.26

  • Monoclinic, P 21 /c

  • a = 6.0823 (7) Å

  • b = 16.6918 (18) Å

  • c = 17.7700 (16) Å

  • β = 93.646 (9)°

  • V = 1800.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 295 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.694, Tmax = 1.000

  • 8976 measured reflections

  • 4144 independent reflections

  • 2250 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.150

  • S = 1.03

  • 4144 reflections

  • 243 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 (1) 2.22 (2) 3.059 (5) 159 (4)
N1—H2⋯O2ii 0.87 (3) 2.56 (5) 3.324 (4) 147 (4)
C18—H18⋯Cg1iii 0.93 2.87 3.528 (4) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Nitrogen-containing heterocyclic compounds having a 4H-chromene or 4H-benzochromene residue are often found in biologically active molecules (Amin et al., 2010; Kidwai et al., 2010; Singh et al., 2010). As part of our on-going program investigating the chemistry of 4H-pyran derivatives (Sabry et al., 2011), we now report the synthesis of the title compound, (I), and its crystal structure.

In (I), Fig. 1, the 4H-pyran ring approximates a half-chair conformation with the methine-C11 atom lying 0.281 (4) Å out of the least-squares plane defined by the remaining atoms (O1,C1,C10,C12,C13) which has a r.m.s. deviation of 0.0446 Å. Nevertheless, the 14 non-hydrogen atoms comprising the sequence of three six-membered rings of the 4H-benzo[h]chromene residue approximate a plane with the r.m.s. deviation of the fitted atoms being 0.129 Å. The bromobenzene ring forms a dihedral angle of 85.34 (13)° with this plane, indicating an almost perpendicular relationship. The methoxy group is co-planar with the ring to which it is connected as seen in the value of the C14—O2—C8—C7 torsion angle of 177.4 (3)°. The overall structure resembles closely the recently reported fluoro derivative (Al-Dies et al., 2012).

In the crystal packing, amine-NH···N(cyano) hydrogen bonds between centrosymmetrically related molecules lead to dimeric aggregates, stabilized by 12-membered {···HNC3N}2 synthons, which are connected into a supramolecular layer parallel to (1 0 1) by amine-NH···O(methoxy) hydrogen bonds, Fig. 2 and Table 1. Layers stack with the main interactions between them being of the type (bromobenzene)C—H···π(outer-C6 ring of the fused ring system), Fig. 3 and Table 1.

Related literature top

For background to biologically active molecules having the 4H-chromene or 4H-benzochromene residue, see: Sabry et al. (2011); Amin et al. (2010); Kidwai et al. (2010); Singh et al. (2010), For the structure of the fluoro derivative, see: Al-Dies et al. (2012).

Experimental top

A solution of 4-methoxy-1-naphthol (0.01 mol) in EtOH (30 ml) was treated with α-cyano-p-bromocinnamonitrile (0.01 mol) and piperidine (0.5 ml). The reaction mixture was heated until complete precipitation occurred (reaction time: 60 min). The solid product which formed was collected by filtration and recrystallized from ethanol to give the title compound as yellow prisms; M. pt: 503–504 K.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atoms were refined with the distance restraint N—H = 0.88±0.01 Å and with free Ueq.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer parallel to (1 0 1) in (I). The N—H···N and N—H···O hydrogen bonds are shown as blue and orange dashed lines, respectively.
[Figure 3] Fig. 3. View in projection down the b axis of the crystal packing in (I). The N—H···N, N—H···O and C—H···π interactions are shown as blue, orange and purple dashed lines, respectively. One layer has been highlighted in space-filling mode.
2-Amino-4-(4-bromophenyl)-6-methoxy-4H-benzo[h]chromene-3-carbonitrile top
Crystal data top
C21H15BrN2O2F(000) = 824
Mr = 407.26Dx = 1.502 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1634 reflections
a = 6.0823 (7) Åθ = 3.4–27.5°
b = 16.6918 (18) ŵ = 2.30 mm1
c = 17.7700 (16) ÅT = 295 K
β = 93.646 (9)°Prism, yellow
V = 1800.4 (3) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4144 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2250 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.4°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1521
Tmin = 0.694, Tmax = 1.000l = 2223
8976 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.057P)2 + 0.4428P]
where P = (Fo2 + 2Fc2)/3
4144 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.71 e Å3
2 restraintsΔρmin = 0.78 e Å3
Crystal data top
C21H15BrN2O2V = 1800.4 (3) Å3
Mr = 407.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0823 (7) ŵ = 2.30 mm1
b = 16.6918 (18) ÅT = 295 K
c = 17.7700 (16) Å0.30 × 0.10 × 0.10 mm
β = 93.646 (9)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4144 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2250 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 1.000Rint = 0.041
8976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.71 e Å3
4144 reflectionsΔρmin = 0.78 e Å3
243 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.16537 (9)0.98612 (4)0.33868 (3)0.0969 (3)
O10.0181 (4)0.64654 (15)0.64437 (13)0.0504 (6)
O20.1773 (4)0.92192 (15)0.81237 (13)0.0573 (7)
N10.1307 (6)0.5382 (2)0.5848 (2)0.0582 (8)
H10.207 (7)0.513 (3)0.552 (2)0.093 (17)*
H20.008 (4)0.517 (3)0.598 (3)0.089 (17)*
N20.6286 (6)0.5888 (2)0.50299 (19)0.0676 (9)
C10.0644 (5)0.7191 (2)0.68158 (16)0.0393 (8)
C20.0802 (5)0.73721 (19)0.73914 (16)0.0375 (7)
C30.2638 (6)0.6894 (2)0.75334 (18)0.0453 (8)
H30.29310.64370.72460.054*
C40.3989 (6)0.7094 (2)0.80851 (19)0.0520 (9)
H40.52250.67830.81600.062*
C50.3531 (6)0.7762 (2)0.8539 (2)0.0547 (10)
H50.44460.78870.89220.066*
C60.1753 (6)0.8235 (2)0.84260 (18)0.0500 (9)
H60.14470.86720.87410.060*
C70.0360 (5)0.8068 (2)0.78307 (17)0.0405 (8)
C80.1447 (6)0.8565 (2)0.76620 (17)0.0430 (8)
C90.2710 (5)0.8382 (2)0.70790 (18)0.0446 (8)
H90.38470.87250.69640.054*
C100.2321 (5)0.7680 (2)0.66466 (16)0.0390 (7)
C110.3774 (5)0.7476 (2)0.60075 (17)0.0411 (8)
H110.53110.75560.61920.049*
C120.3481 (5)0.6601 (2)0.58086 (17)0.0419 (8)
C130.1747 (6)0.6157 (2)0.60137 (18)0.0455 (8)
C140.3613 (7)0.9720 (2)0.8004 (2)0.0635 (11)
H14A0.36201.01660.83450.095*
H14B0.35090.99130.74940.095*
H14C0.49490.94190.80920.095*
C150.5037 (6)0.6215 (2)0.53744 (19)0.0479 (9)
C160.3287 (5)0.8045 (2)0.53448 (17)0.0409 (8)
C170.1278 (6)0.8030 (3)0.4940 (2)0.0577 (10)
H170.02320.76510.50580.069*
C180.0789 (6)0.8566 (3)0.4364 (2)0.0627 (11)
H180.05800.85510.41000.075*
C190.2331 (7)0.9121 (2)0.41810 (19)0.0549 (10)
C200.4365 (6)0.9136 (2)0.4556 (2)0.0581 (10)
H200.54210.95040.44230.070*
C210.4832 (6)0.8596 (2)0.51378 (19)0.0505 (9)
H210.62140.86060.53940.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1155 (5)0.0841 (4)0.0888 (4)0.0019 (3)0.0114 (3)0.0431 (3)
O10.0523 (13)0.0429 (15)0.0572 (13)0.0032 (11)0.0139 (11)0.0239 (12)
O20.0760 (17)0.0383 (15)0.0578 (14)0.0057 (13)0.0074 (12)0.0170 (12)
N10.063 (2)0.0407 (19)0.073 (2)0.0020 (17)0.0213 (18)0.0202 (17)
N20.079 (2)0.054 (2)0.073 (2)0.0104 (19)0.0324 (18)0.0012 (18)
C10.0484 (19)0.0320 (18)0.0372 (16)0.0036 (15)0.0016 (15)0.0055 (14)
C20.0478 (18)0.0313 (17)0.0333 (15)0.0080 (15)0.0011 (14)0.0027 (14)
C30.056 (2)0.0330 (19)0.0466 (19)0.0026 (16)0.0040 (16)0.0014 (16)
C40.056 (2)0.049 (2)0.053 (2)0.0027 (18)0.0115 (18)0.0047 (18)
C50.066 (2)0.050 (2)0.050 (2)0.008 (2)0.0177 (18)0.0008 (18)
C60.070 (2)0.039 (2)0.0417 (18)0.0098 (19)0.0078 (17)0.0074 (16)
C70.0516 (19)0.0335 (18)0.0361 (16)0.0076 (16)0.0003 (15)0.0001 (14)
C80.057 (2)0.0304 (18)0.0404 (17)0.0094 (16)0.0021 (16)0.0060 (15)
C90.0510 (19)0.0344 (19)0.0482 (19)0.0006 (16)0.0011 (16)0.0017 (15)
C100.0486 (18)0.0333 (18)0.0353 (16)0.0043 (16)0.0041 (14)0.0009 (14)
C110.0445 (18)0.040 (2)0.0390 (17)0.0029 (16)0.0023 (14)0.0008 (15)
C120.0511 (19)0.0356 (19)0.0397 (17)0.0065 (16)0.0087 (15)0.0006 (15)
C130.056 (2)0.041 (2)0.0400 (17)0.0097 (18)0.0032 (16)0.0114 (16)
C140.066 (2)0.041 (2)0.083 (3)0.005 (2)0.000 (2)0.016 (2)
C150.063 (2)0.037 (2)0.0444 (18)0.0100 (18)0.0124 (17)0.0034 (16)
C160.0457 (18)0.0371 (19)0.0399 (17)0.0018 (16)0.0032 (15)0.0047 (15)
C170.052 (2)0.062 (3)0.059 (2)0.0083 (19)0.0018 (18)0.013 (2)
C180.057 (2)0.071 (3)0.059 (2)0.005 (2)0.0058 (19)0.015 (2)
C190.076 (3)0.043 (2)0.0458 (19)0.004 (2)0.0022 (19)0.0060 (17)
C200.066 (2)0.047 (2)0.062 (2)0.014 (2)0.008 (2)0.0042 (19)
C210.051 (2)0.047 (2)0.053 (2)0.0032 (18)0.0037 (17)0.0006 (18)
Geometric parameters (Å, º) top
Br1—C191.901 (3)C8—C91.363 (5)
O1—C131.360 (4)C9—C101.413 (4)
O1—C11.399 (4)C9—H90.9300
O2—C81.372 (4)C10—C111.521 (4)
O2—C141.423 (5)C11—C121.510 (5)
N1—C131.349 (5)C11—C161.528 (4)
N1—H10.877 (10)C11—H110.9800
N1—H20.874 (10)C12—C131.357 (5)
N2—C151.144 (4)C12—C151.414 (5)
C1—C101.355 (5)C14—H14A0.9600
C1—C21.423 (4)C14—H14B0.9600
C2—C31.408 (5)C14—H14C0.9600
C2—C71.416 (4)C16—C171.378 (5)
C3—C41.360 (5)C16—C211.382 (5)
C3—H30.9300C17—C181.378 (5)
C4—C51.395 (5)C17—H170.9300
C4—H40.9300C18—C191.372 (5)
C5—C61.364 (5)C18—H180.9300
C5—H50.9300C19—C201.368 (5)
C6—C71.424 (5)C20—C211.387 (5)
C6—H60.9300C20—H200.9300
C7—C81.424 (5)C21—H210.9300
C13—O1—C1117.8 (3)C12—C11—C16114.0 (3)
C8—O2—C14117.6 (3)C10—C11—C16110.1 (3)
C13—N1—H1120 (3)C12—C11—H11107.8
C13—N1—H2120 (3)C10—C11—H11107.8
H1—N1—H2118 (5)C16—C11—H11107.8
C10—C1—O1123.2 (3)C13—C12—C15117.1 (3)
C10—C1—C2122.6 (3)C13—C12—C11123.2 (3)
O1—C1—C2114.1 (3)C15—C12—C11119.7 (3)
C3—C2—C7119.4 (3)N1—C13—C12127.7 (3)
C3—C2—C1122.8 (3)N1—C13—O1110.5 (3)
C7—C2—C1117.8 (3)C12—C13—O1121.9 (3)
C4—C3—C2120.9 (3)O2—C14—H14A109.5
C4—C3—H3119.6O2—C14—H14B109.5
C2—C3—H3119.6H14A—C14—H14B109.5
C3—C4—C5120.3 (4)O2—C14—H14C109.5
C3—C4—H4119.8H14A—C14—H14C109.5
C5—C4—H4119.8H14B—C14—H14C109.5
C6—C5—C4120.6 (3)N2—C15—C12178.6 (4)
C6—C5—H5119.7C17—C16—C21117.9 (3)
C4—C5—H5119.7C17—C16—C11120.8 (3)
C5—C6—C7120.7 (3)C21—C16—C11121.2 (3)
C5—C6—H6119.7C18—C17—C16121.2 (4)
C7—C6—H6119.7C18—C17—H17119.4
C2—C7—C8119.0 (3)C16—C17—H17119.4
C2—C7—C6118.0 (3)C19—C18—C17119.8 (3)
C8—C7—C6123.1 (3)C19—C18—H18120.1
C9—C8—O2124.5 (3)C17—C18—H18120.1
C9—C8—C7120.6 (3)C20—C19—C18120.5 (3)
O2—C8—C7114.9 (3)C20—C19—Br1119.7 (3)
C8—C9—C10121.1 (3)C18—C19—Br1119.7 (3)
C8—C9—H9119.5C19—C20—C21119.1 (4)
C10—C9—H9119.5C19—C20—H20120.4
C1—C10—C9118.8 (3)C21—C20—H20120.4
C1—C10—C11120.8 (3)C16—C21—C20121.4 (3)
C9—C10—C11120.4 (3)C16—C21—H21119.3
C12—C11—C10109.0 (3)C20—C21—H21119.3
C13—O1—C1—C1014.6 (4)C8—C9—C10—C11178.8 (3)
C13—O1—C1—C2165.3 (3)C1—C10—C11—C1217.0 (4)
C10—C1—C2—C3175.4 (3)C9—C10—C11—C12162.5 (3)
O1—C1—C2—C34.7 (4)C1—C10—C11—C16108.7 (3)
C10—C1—C2—C74.1 (4)C9—C10—C11—C1671.8 (4)
O1—C1—C2—C7175.8 (3)C10—C11—C12—C1317.6 (4)
C7—C2—C3—C40.1 (5)C16—C11—C12—C13105.8 (3)
C1—C2—C3—C4179.4 (3)C10—C11—C12—C15163.8 (3)
C2—C3—C4—C52.3 (5)C16—C11—C12—C1572.8 (4)
C3—C4—C5—C61.5 (5)C15—C12—C13—N10.6 (5)
C4—C5—C6—C71.6 (5)C11—C12—C13—N1178.1 (3)
C3—C2—C7—C8177.4 (3)C15—C12—C13—O1178.7 (3)
C1—C2—C7—C82.1 (4)C11—C12—C13—O12.7 (5)
C3—C2—C7—C62.8 (4)C1—O1—C13—N1165.0 (3)
C1—C2—C7—C6177.7 (3)C1—O1—C13—C1214.4 (4)
C5—C6—C7—C23.7 (5)C12—C11—C16—C1756.2 (4)
C5—C6—C7—C8176.6 (3)C10—C11—C16—C1766.6 (4)
C14—O2—C8—C92.8 (5)C12—C11—C16—C21124.5 (3)
C14—O2—C8—C7177.4 (3)C10—C11—C16—C21112.6 (4)
C2—C7—C8—C91.1 (5)C21—C16—C17—C182.2 (6)
C6—C7—C8—C9179.1 (3)C11—C16—C17—C18177.0 (3)
C2—C7—C8—O2179.0 (3)C16—C17—C18—C190.7 (6)
C6—C7—C8—O20.7 (4)C17—C18—C19—C201.3 (6)
O2—C8—C9—C10177.5 (3)C17—C18—C19—Br1179.9 (3)
C7—C8—C9—C102.6 (5)C18—C19—C20—C211.7 (6)
O1—C1—C10—C9177.2 (3)Br1—C19—C20—C21179.6 (3)
C2—C1—C10—C92.7 (5)C17—C16—C21—C201.9 (5)
O1—C1—C10—C112.3 (5)C11—C16—C21—C20177.3 (3)
C2—C1—C10—C11177.8 (3)C19—C20—C21—C160.0 (6)
C8—C9—C10—C10.7 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.88 (1)2.22 (2)3.059 (5)159 (4)
N1—H2···O2ii0.87 (3)2.56 (5)3.324 (4)147 (4)
C18—H18···Cg1iii0.932.873.528 (4)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+3/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H15BrN2O2
Mr407.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)6.0823 (7), 16.6918 (18), 17.7700 (16)
β (°) 93.646 (9)
V3)1800.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.694, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8976, 4144, 2250
Rint0.041
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.150, 1.03
No. of reflections4144
No. of parameters243
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.78

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.877 (10)2.22 (2)3.059 (5)159 (4)
N1—H2···O2ii0.87 (3)2.56 (5)3.324 (4)147 (4)
C18—H18···Cg1iii0.932.873.528 (4)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+3/2; (iii) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: aamr1963@yahoo.com.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project No. RGP-VPP-099. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Dies, A.-A. M., Amr, A.-G. E., El-Agrody, A. M., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1934–o1935.  CSD CrossRef IUCr Journals Google Scholar
First citationAmin, K. M., Kamel, M. M., Anwar, M. M., Khedr, M. & Syam, Y. M. (2010). Eur. J. Med. Chem. 45, 2117–2131.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKidwai, M., Poddar, R., Bhardwaj, S., Singh, S. & Mehta Luthra, P. (2010). Eur. J. Med. Chem. 45, 5031–5038.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, O. M., Devi, N. S., Thokchom, D. S. & Sharma, G. J. (2010). Eur. J. Med. Chem. 45, 2250–2257.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o480-o481
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds