organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o478-o479

3-Amino-1-(4-fluoro­phen­yl)-7-meth­­oxy-1H-benzo[f]chromene-2-carbo­nitrile

aDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, cChemistry Department, Faculty of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia, dChemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt, ePharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, fDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and gChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 February 2013; accepted 25 February 2013; online 2 March 2013)

In the title compound, C21H15FN2O2, the furan ring has a flattened half-chair conformation [the methine C atom lies 0.136 (2) Å above the C5 plane which has an r.m.s. deviation of 0.0229 Å]. Overall, the 1H-benzo[f]chromene fused-ring system approximates a plane (r.m.s. deviation of the 14 non-H atoms = 0.049 Å). The fluoro­benzene ring is almost perpendicular to this plane [dihedral angle = 89.58 (8)°]. Zigzag supra­molecular tapes along the b axis are the most notable feature of the crystal packing. This arises through an alternating sequence of 12-membered {⋯HNC3N}2 and eight-membered {⋯HNCO}2 synthons. These are connected into a three-dimensional architecture by ππ [inter­centroid distance for centrosymmetrically related fluoro­benzene rings = 3.5181 (10) Å] and C—H⋯π inter­actions.

Related literature

For a related structure and background to 4H-chromene derivatives, see: El-Agrody et al. (2013[El-Agrody, A. M., Al-Omar, M. A., Amr, A. E.-G. E., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o476-o477.]). For related structures, see: Wang et al. (2008[Wang, X.-S., Yang, G.-S. & Zhao, G. (2008). Tetrahedron Asymmetry, 19, 709-714.]); Shekhar et al. (2012[Shekhar, A. C., Kumar, A. R., Sathaiah, G., Raju, K., Rao, P. S., Sridhar, M., Narsaiah, B., Srinivas, P. V. S. S. & Sridhar, B. (2012). Helv. Chim. Acta, 95, 502-508.]);

[Scheme 1]

Experimental

Crystal data
  • C21H15FN2O2

  • Mr = 346.35

  • Triclinic, [P \overline 1]

  • a = 8.7798 (9) Å

  • b = 9.6329 (6) Å

  • c = 10.9130 (11) Å

  • α = 77.074 (7)°

  • β = 68.414 (10)°

  • γ = 87.083 (7)°

  • V = 835.99 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.821, Tmax = 1.000

  • 7587 measured reflections

  • 3868 independent reflections

  • 2569 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.145

  • S = 1.02

  • 3868 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–CC20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.89 (2) 2.34 (3) 3.189 (2) 160 (2)
N1—H2⋯O1ii 0.87 (2) 2.36 (3) 3.219 (2) 169 (2)
C19—H19⋯Cg1iii 0.93 2.90 3.831 (2) 174
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As part of our ongoing studies of 4H-Chromene derivatives (El-Agrody et al., 2013), the crystal and molecular structure of the title compound, (I), is described herein.

In (I), Fig. 1, the furan ring has a flattened half-chair conformation with the methine-C11 atom lying only 0.136 (2) Å above the plane of the remaining atoms (r.m.s. deviation = 0.0229 Å). In fact, the 14 non-hydrogen atoms of the 1H-benzo[f]chromene fused-ring system are co-planar with a r.m.s. deviation of the fitted atoms = 0.049 Å. The maximum deviations are 0.068 (2) Å for the aforementioned methine-C11 atom and -0.107 (2) Å for the adjacent C12 atom. The fluorobenzene ring is perpendicular to the 1H-benzo[f]chromene residue, forming a dihedral angle of 89.58 (8)°. The methoxy group is co-planar with the ring to which it is attached as manifested in the C14—O2—C7—C6 torsion angle of 177.17 (19)°. The structure described here resembles very closely those of the 4-bromo (Wang et al., 2008) and 2-CF3 (Shekhar et al., 2012) derivatives of the parent compound, as well as that of the 8-methoxy analogue (El-Agrody et al., 2013).

In the crystal packing, zigzag tapes are formed along the b axis via an alternating sequence of 12-membered {···HNC3N}2, arising from amine-NH···N(cyano) hydrogen bonds, and eight-membered {···HNCO}2, arising from amine-NH···O(furan) hydrogen bonds, synthons, Fig. 2 and Table 1. These are connected into a layer in the ab plane by ππ interactions occurring between centrosymmetrically related fluorobenzene rings [inter-centroid distance = 3.5181 (10) Å for symmetry operation: 1 - x, 1 - y, 1 - z]. Layers are connected along the c axis by C—H···π interactions where both the donor atom and acceptor-π system are derived from fluorobenzene rings, Fig. 3 and Table 1, highlighting the key role this residue plays in consolidating the crystal structure of (I).

Related literature top

For a related structure and background to 4H-chromene derivatives, see: El-Agrody et al. (2013). For related structures, see: Wang et al. (2008); Shekhar et al. (2012);

Experimental top

A solution of 7-methoxy-2-naphthol (0.01 mol) in EtOH (30 ml) was treated with α-cyano-p-fluorocinnamonitrile (0.01 mol) and piperidine (0.5 ml). The reaction mixture was heated until complete precipitation occurred (reaction time: 60 min). The solid product which formed was collected by filtration and recrystallized from ethanol to give the title compound, (I), as light-brown prisms; M.pt: 533–534 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound-H atoms were refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular zigzag tape along the b axis in (I). The N—H···N and N—H···O hydrogen bonds are shown as blue and orange dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the a axis of the crystal packing in (I). The N—H···N, N—H···O, C—H···π and ππ interactions are shown as blue, orange, brown and purple dashed lines, respectively.
3-Amino-1-(4-fluorophenyl)-7-methoxy-1H-benzo[f]chromene-2-carbonitrile top
Crystal data top
C21H15FN2O2Z = 2
Mr = 346.35F(000) = 360
Triclinic, P1Dx = 1.376 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7798 (9) ÅCell parameters from 1958 reflections
b = 9.6329 (6) Åθ = 3.1–27.5°
c = 10.9130 (11) ŵ = 0.10 mm1
α = 77.074 (7)°T = 295 K
β = 68.414 (10)°Prism, light-brown
γ = 87.083 (7)°0.30 × 0.30 × 0.10 mm
V = 835.99 (13) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3868 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2569 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.1°
ω scanh = 811
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.821, Tmax = 1.000l = 1314
7587 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.1106P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3868 reflectionsΔρmax = 0.19 e Å3
244 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (3)
Crystal data top
C21H15FN2O2γ = 87.083 (7)°
Mr = 346.35V = 835.99 (13) Å3
Triclinic, P1Z = 2
a = 8.7798 (9) ÅMo Kα radiation
b = 9.6329 (6) ŵ = 0.10 mm1
c = 10.9130 (11) ÅT = 295 K
α = 77.074 (7)°0.30 × 0.30 × 0.10 mm
β = 68.414 (10)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3868 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2569 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 1.000Rint = 0.029
7587 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
3868 reflectionsΔρmin = 0.16 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2857 (2)0.90095 (14)1.15726 (13)0.0943 (5)
O10.77412 (14)0.54184 (11)0.57793 (13)0.0452 (3)
O20.11449 (16)0.62729 (15)0.84385 (16)0.0692 (5)
N10.97391 (19)0.70744 (19)0.49939 (18)0.0537 (5)
H11.020 (3)0.790 (2)0.492 (2)0.078 (7)*
H21.030 (3)0.633 (3)0.480 (2)0.080 (7)*
N20.7893 (2)1.04350 (16)0.51621 (19)0.0677 (6)
C10.6096 (2)0.49698 (16)0.62727 (16)0.0366 (4)
C20.5869 (2)0.35217 (16)0.63298 (17)0.0414 (4)
H2A0.67660.29580.60400.050*
C30.4316 (2)0.29574 (17)0.68165 (17)0.0446 (4)
H30.41560.19960.68690.054*
C40.2945 (2)0.38016 (17)0.72431 (17)0.0414 (4)
C50.1313 (3)0.3245 (2)0.7744 (2)0.0564 (5)
H50.11330.22850.78070.068*
C60.0011 (3)0.4075 (2)0.8134 (2)0.0633 (6)
H60.10470.36810.84690.076*
C70.0254 (2)0.5534 (2)0.8034 (2)0.0513 (5)
C80.1808 (2)0.61196 (18)0.75438 (18)0.0441 (4)
H80.19570.70890.74650.053*
C90.3190 (2)0.52689 (16)0.71562 (16)0.0372 (4)
C100.4828 (2)0.58616 (15)0.66581 (15)0.0343 (4)
C110.51257 (19)0.74259 (15)0.65506 (16)0.0351 (4)
H110.45410.79770.60020.042*
C120.6944 (2)0.78082 (15)0.58154 (16)0.0373 (4)
C130.8109 (2)0.68330 (16)0.55414 (17)0.0392 (4)
C140.0958 (3)0.7740 (2)0.8413 (3)0.0734 (7)
H14A0.20180.81300.87660.110*
H14B0.03910.82470.75000.110*
H14C0.03380.78320.89570.110*
C150.44924 (19)0.78420 (15)0.79176 (16)0.0370 (4)
C160.3506 (2)0.89994 (17)0.8121 (2)0.0509 (5)
H160.32060.95160.74210.061*
C170.2955 (3)0.9403 (2)0.9351 (2)0.0634 (6)
H170.22951.01830.94830.076*
C180.3407 (3)0.8624 (2)1.0362 (2)0.0575 (6)
C190.4377 (3)0.7473 (2)1.02070 (19)0.0548 (5)
H190.46700.69631.09130.066*
C200.4910 (2)0.70854 (18)0.89766 (17)0.0454 (4)
H200.55640.62990.88580.054*
C210.7466 (2)0.92564 (17)0.54616 (18)0.0441 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1272 (14)0.0935 (10)0.0578 (8)0.0132 (9)0.0173 (8)0.0393 (7)
O10.0329 (7)0.0349 (6)0.0654 (8)0.0018 (5)0.0135 (6)0.0140 (5)
O20.0339 (7)0.0678 (9)0.1011 (12)0.0024 (6)0.0146 (8)0.0258 (8)
N10.0325 (9)0.0453 (9)0.0791 (12)0.0011 (7)0.0103 (8)0.0220 (8)
N20.0572 (11)0.0378 (9)0.0939 (14)0.0085 (7)0.0128 (10)0.0095 (8)
C10.0352 (9)0.0358 (8)0.0379 (9)0.0014 (6)0.0123 (7)0.0075 (6)
C20.0444 (10)0.0335 (8)0.0458 (10)0.0038 (7)0.0160 (8)0.0093 (7)
C30.0556 (12)0.0310 (8)0.0483 (10)0.0068 (7)0.0209 (9)0.0059 (7)
C40.0446 (10)0.0375 (9)0.0418 (9)0.0071 (7)0.0171 (8)0.0043 (7)
C50.0511 (12)0.0434 (10)0.0715 (13)0.0151 (8)0.0205 (10)0.0060 (9)
C60.0401 (11)0.0596 (12)0.0834 (15)0.0168 (9)0.0165 (11)0.0085 (10)
C70.0355 (10)0.0569 (11)0.0599 (12)0.0041 (8)0.0149 (9)0.0125 (9)
C80.0373 (10)0.0430 (9)0.0520 (11)0.0034 (7)0.0156 (8)0.0107 (7)
C90.0376 (9)0.0387 (9)0.0361 (9)0.0049 (7)0.0151 (7)0.0060 (6)
C100.0355 (9)0.0332 (8)0.0346 (8)0.0020 (6)0.0130 (7)0.0074 (6)
C110.0303 (8)0.0328 (8)0.0418 (9)0.0004 (6)0.0130 (7)0.0076 (6)
C120.0353 (9)0.0321 (8)0.0420 (9)0.0023 (6)0.0114 (7)0.0076 (7)
C130.0361 (9)0.0343 (8)0.0459 (10)0.0027 (7)0.0122 (8)0.0104 (7)
C140.0436 (12)0.0753 (15)0.1080 (19)0.0078 (10)0.0225 (12)0.0435 (13)
C150.0321 (8)0.0325 (8)0.0435 (9)0.0049 (6)0.0092 (7)0.0095 (7)
C160.0594 (12)0.0367 (9)0.0555 (11)0.0048 (8)0.0190 (9)0.0122 (8)
C170.0748 (16)0.0451 (11)0.0654 (14)0.0113 (9)0.0140 (11)0.0251 (9)
C180.0646 (14)0.0588 (12)0.0443 (11)0.0064 (10)0.0069 (10)0.0220 (9)
C190.0575 (13)0.0618 (12)0.0440 (11)0.0024 (9)0.0169 (9)0.0110 (9)
C200.0409 (10)0.0473 (10)0.0469 (10)0.0013 (7)0.0142 (8)0.0115 (8)
C210.0345 (9)0.0397 (9)0.0531 (10)0.0008 (7)0.0099 (8)0.0106 (7)
Geometric parameters (Å, º) top
F1—C181.359 (2)C8—C91.414 (2)
O1—C131.3613 (18)C8—H80.9300
O1—C11.3966 (19)C9—C101.434 (2)
O2—C71.365 (2)C10—C111.514 (2)
O2—C141.424 (2)C11—C121.521 (2)
N1—C131.343 (2)C11—C151.526 (2)
N1—H10.89 (2)C11—H110.9800
N1—H20.87 (2)C12—C131.349 (2)
N2—C211.151 (2)C12—C211.414 (2)
C1—C101.369 (2)C14—H14A0.9600
C1—C21.403 (2)C14—H14B0.9600
C2—C31.360 (2)C14—H14C0.9600
C2—H2A0.9300C15—C201.382 (2)
C3—C41.409 (3)C15—C161.383 (2)
C3—H30.9300C16—C171.387 (3)
C4—C51.418 (2)C16—H160.9300
C4—C91.417 (2)C17—C181.363 (3)
C5—C61.352 (3)C17—H170.9300
C5—H50.9300C18—C191.366 (3)
C6—C71.405 (3)C19—C201.380 (2)
C6—H60.9300C19—H190.9300
C7—C81.369 (2)C20—H200.9300
C13—O1—C1118.63 (12)C10—C11—C15113.09 (12)
C7—O2—C14117.06 (15)C12—C11—C15110.77 (13)
C13—N1—H1122.0 (15)C10—C11—H11107.8
C13—N1—H2114.6 (16)C12—C11—H11107.8
H1—N1—H2123 (2)C15—C11—H11107.8
C10—C1—O1123.09 (14)C13—C12—C21117.59 (15)
C10—C1—C2123.33 (16)C13—C12—C11123.60 (13)
O1—C1—C2113.58 (14)C21—C12—C11118.71 (14)
C3—C2—C1118.86 (16)N1—C13—C12127.20 (15)
C3—C2—H2A120.6N1—C13—O1110.29 (14)
C1—C2—H2A120.6C12—C13—O1122.50 (15)
C2—C3—C4121.27 (15)O2—C14—H14A109.5
C2—C3—H3119.4O2—C14—H14B109.5
C4—C3—H3119.4H14A—C14—H14B109.5
C3—C4—C5122.50 (16)O2—C14—H14C109.5
C3—C4—C9119.31 (16)H14A—C14—H14C109.5
C5—C4—C9118.18 (17)H14B—C14—H14C109.5
C6—C5—C4121.72 (17)C20—C15—C16118.34 (16)
C6—C5—H5119.1C20—C15—C11120.85 (15)
C4—C5—H5119.1C16—C15—C11120.80 (16)
C5—C6—C7120.09 (18)C15—C16—C17121.12 (19)
C5—C6—H6120.0C15—C16—H16119.4
C7—C6—H6120.0C17—C16—H16119.4
O2—C7—C8124.64 (17)C18—C17—C16118.26 (18)
O2—C7—C6115.14 (17)C18—C17—H17120.9
C8—C7—C6120.21 (18)C16—C17—H17120.9
C7—C8—C9120.80 (16)F1—C18—C19119.1 (2)
C7—C8—H8119.6F1—C18—C17118.35 (19)
C9—C8—H8119.6C19—C18—C17122.58 (18)
C8—C9—C4118.98 (15)C18—C19—C20118.36 (19)
C8—C9—C10121.54 (15)C18—C19—H19120.8
C4—C9—C10119.47 (15)C20—C19—H19120.8
C1—C10—C9117.74 (14)C15—C20—C19121.33 (17)
C1—C10—C11121.65 (14)C15—C20—H20119.3
C9—C10—C11120.61 (14)C19—C20—H20119.3
C10—C11—C12109.49 (13)N2—C21—C12179.4 (2)
C13—O1—C1—C106.8 (2)C4—C9—C10—C11179.82 (14)
C13—O1—C1—C2172.96 (14)C1—C10—C11—C127.1 (2)
C10—C1—C2—C31.4 (3)C9—C10—C11—C12172.08 (14)
O1—C1—C2—C3178.88 (15)C1—C10—C11—C15116.92 (17)
C1—C2—C3—C40.8 (3)C9—C10—C11—C1563.9 (2)
C2—C3—C4—C5179.49 (17)C10—C11—C12—C1311.2 (2)
C2—C3—C4—C90.3 (3)C15—C11—C12—C13114.20 (18)
C3—C4—C5—C6179.2 (2)C10—C11—C12—C21172.48 (15)
C9—C4—C5—C60.0 (3)C15—C11—C12—C2162.1 (2)
C4—C5—C6—C70.7 (4)C21—C12—C13—N11.9 (3)
C14—O2—C7—C83.6 (3)C11—C12—C13—N1174.45 (18)
C14—O2—C7—C6177.17 (19)C21—C12—C13—O1176.76 (15)
C5—C6—C7—O2179.2 (2)C11—C12—C13—O16.9 (3)
C5—C6—C7—C80.1 (3)C1—O1—C13—N1176.14 (15)
O2—C7—C8—C9179.56 (18)C1—O1—C13—C122.7 (2)
C6—C7—C8—C91.2 (3)C10—C11—C15—C2051.2 (2)
C7—C8—C9—C41.9 (3)C12—C11—C15—C2072.18 (18)
C7—C8—C9—C10179.13 (17)C10—C11—C15—C16129.82 (17)
C3—C4—C9—C8177.90 (16)C12—C11—C15—C16106.85 (18)
C5—C4—C9—C81.3 (3)C20—C15—C16—C170.5 (3)
C3—C4—C9—C101.1 (2)C11—C15—C16—C17178.57 (17)
C5—C4—C9—C10179.75 (16)C15—C16—C17—C180.2 (3)
O1—C1—C10—C9179.64 (14)C16—C17—C18—F1179.39 (18)
C2—C1—C10—C90.6 (3)C16—C17—C18—C190.1 (3)
O1—C1—C10—C111.1 (3)F1—C18—C19—C20179.25 (17)
C2—C1—C10—C11178.59 (15)C17—C18—C19—C200.2 (3)
C8—C9—C10—C1178.36 (16)C16—C15—C20—C190.6 (3)
C4—C9—C10—C10.6 (2)C11—C15—C20—C19178.43 (16)
C8—C9—C10—C110.9 (3)C18—C19—C20—C150.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–CC20 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.89 (2)2.34 (3)3.189 (2)160 (2)
N1—H2···O1ii0.87 (2)2.36 (3)3.219 (2)169 (2)
C19—H19···Cg1iii0.932.903.831 (2)174
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC21H15FN2O2
Mr346.35
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.7798 (9), 9.6329 (6), 10.9130 (11)
α, β, γ (°)77.074 (7), 68.414 (10), 87.083 (7)
V3)835.99 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.821, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7587, 3868, 2569
Rint0.029
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.02
No. of reflections3868
No. of parameters244
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–CC20 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.89 (2)2.34 (3)3.189 (2)160 (2)
N1—H2···O1ii0.87 (2)2.36 (3)3.219 (2)169 (2)
C19—H19···Cg1iii0.932.903.831 (2)174
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: aamr1963@yahoo.com.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project No. RGP-VPP-099. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Agrody, A. M., Al-Omar, M. A., Amr, A. E.-G. E., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o476–o477.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShekhar, A. C., Kumar, A. R., Sathaiah, G., Raju, K., Rao, P. S., Sridhar, M., Narsaiah, B., Srinivas, P. V. S. S. & Sridhar, B. (2012). Helv. Chim. Acta, 95, 502–508.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Yang, G.-S. & Zhao, G. (2008). Tetrahedron Asymmetry, 19, 709–714.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o478-o479
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds