organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-Aza­niumyleth­yl)carbamo­yl]phenolate–phenol (1/1)

aLaboratoire de Chimie Inorganiue et d'Environment, Université def Tlemcen, BP 119, Tlemcen 13 000, Algeria, bUnité de Recherche de Cimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 , Algeria, cLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and dCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 25 February 2013; accepted 28 February 2013; online 6 March 2013)

In the title 1:1 adduct, C9H12N2O2·C6H6O, the dihedral angle between the benzene ring and the salicylic amide group is 6.68 (6)°. The conformation of the amide group is supported by two intra­molecular N—H⋯O hydrogen bonds, which close S(6) and S(7) rings. In the crystal, the components are linked by O—H⋯O and N—H⋯O hydrogen bonds, generating (100) sheets.

Related literature

For background to salicylic amides as ligands, see: Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216, 473-488.]); Hancock & Martell (1989[Hancock, R. D. & Martell, A. E. (1989). Chem. Rev. 89, 1875-1914.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N2O2·C6H6O

  • Mr = 274.31

  • Monoclinic, P 21 /c

  • a = 12.6494 (4) Å

  • b = 13.2145 (6) Å

  • c = 8.5445 (4) Å

  • β = 100.637 (2)°

  • V = 1403.72 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.58 × 0.52 × 0.38 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.860, Tmax = 0.966

  • 12244 measured reflections

  • 3208 independent reflections

  • 2649 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.03

  • 3208 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.87 2.6696 (13) 166
N1—H1N⋯O2 0.86 1.93 2.6490 (13) 140
N2—H2A⋯O1 0.89 2.21 2.8995 (14) 134
N2—H2A⋯O3 0.89 2.56 3.0547 (13) 116
N2—H2B⋯O2ii 0.89 1.93 2.7506 (13) 152
N2—H2C⋯O2iii 0.89 1.81 2.6939 (13) 174
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Salicylic amide with its diverse amidic forms namely ethylelenediamine or other amines were found to be as good chelating agents currently applied in coordination chemistry (Koch, 2001; Hancock et al., 1989).

The molecule structure of (I), is illustrated in Fig. 1. In the title structure the phenol molecule is cocrystalized with ethylenediamine Salicylic amide The crystal packing can be described by layers parallel to (100) planes (Fig. 2). It features intermolecular O—H···O and N—H···O hydrogen bonds (Fig. 2, Table 1). These interactions link the molecules within the layers and also link the layers together.

Related literature top

For background to salicylic amides as ligands, see: Koch (2001); Hancock & Martell (1989).

Experimental top

0.06 g (1 mmol) ethylenediamine was dissolved in 20 ml of methanol. To this methanolic solution 0.214 g (1 mmol) of phenyl salicylate were added in one portion. This mixture was stirred for one hour at room temperature, and then 0.172 g (1 mmol) of 2-hydroxynaphtaldehyde were also added and heated to 60 °C for 4 h. The solid obtained was recovered by filtration after reducing of its volume on vaccum with rotating evaporator to obtain colourless prisms.

Refinement top

The H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atom (C,O and N) with C—H = 0.97 Å (ethylene)or 0.93 Å (aromatic), O—H = 0.82 Å and N—H = 0.86 Å or 0.89 Å (ammonium); with Uiso(H) = 1.2Ueq(ammonium and hydroxy) and Uiso(H) = 1.5Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Alternating layers of (I) viewed via b axis showing hydrogen bonds as dashed lines [O—H···O and N—H···O interactions].
2-[(2-Azaniumylethyl)carbamoyl]phenolate–phenol (1/1) top
Crystal data top
C9H12N2O2·C6H6OF(000) = 584
Mr = 274.31Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4306 reflections
a = 12.6494 (4) Åθ = 2.9–27.4°
b = 13.2145 (6) ŵ = 0.09 mm1
c = 8.5445 (4) ÅT = 150 K
β = 100.637 (2)°Prism, colorless
V = 1403.72 (10) Å30.58 × 0.52 × 0.38 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1616
Tmin = 0.860, Tmax = 0.966k = 1217
12244 measured reflectionsl = 1111
3208 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.4498P]
where P = (Fo2 + 2Fc2)/3
3208 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H12N2O2·C6H6OV = 1403.72 (10) Å3
Mr = 274.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6494 (4) ŵ = 0.09 mm1
b = 13.2145 (6) ÅT = 150 K
c = 8.5445 (4) Å0.58 × 0.52 × 0.38 mm
β = 100.637 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3208 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
2649 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.966Rint = 0.035
12244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
3208 reflectionsΔρmin = 0.21 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.59307 (7)0.65808 (6)0.29145 (10)0.0207 (2)
O30.56158 (7)0.34524 (7)0.37386 (11)0.0260 (2)
N10.47865 (8)0.48940 (8)0.27880 (12)0.0195 (2)
H1N0.48450.55320.26270.023*
N20.43633 (8)0.32203 (8)0.03416 (11)0.0186 (2)
H2A0.50360.34210.07010.022*
H2B0.42870.3060.06840.022*
H2C0.42190.26810.08910.022*
C70.67497 (10)0.60303 (9)0.36441 (13)0.0192 (3)
C80.77747 (11)0.64776 (10)0.40959 (17)0.0290 (3)
H80.78690.71480.38190.035*
C90.86393 (11)0.59533 (11)0.49331 (19)0.0338 (3)
H90.93020.62740.52150.041*
C100.85282 (11)0.49477 (11)0.53593 (17)0.0302 (3)
H100.91060.45990.5950.036*
C110.75500 (10)0.44784 (10)0.48917 (14)0.0227 (3)
H110.74780.38030.51620.027*
C120.66564 (10)0.49853 (9)0.40198 (13)0.0183 (3)
C130.56553 (10)0.43867 (9)0.35241 (13)0.0186 (3)
C140.37497 (10)0.44126 (9)0.22499 (14)0.0201 (3)
H14A0.31820.48890.23460.024*
H14B0.36810.38390.29330.024*
C150.36081 (10)0.40533 (9)0.05392 (14)0.0202 (3)
H15A0.28750.3820.01950.024*
H15B0.37260.46170.01350.024*
O10.65559 (7)0.32899 (7)0.02109 (12)0.0300 (2)
H10.63340.27580.06440.045*
C10.76300 (10)0.33979 (9)0.02608 (15)0.0212 (3)
C20.82529 (11)0.39958 (10)0.08869 (16)0.0272 (3)
H20.79420.43320.16450.033*
C30.93442 (12)0.40858 (11)0.08896 (19)0.0368 (4)
H30.97690.44820.16590.044*
C40.98085 (12)0.35932 (12)0.0238 (2)0.0418 (4)
H41.05440.36480.02170.05*
C50.91760 (12)0.30184 (11)0.1397 (2)0.0374 (4)
H50.94850.26950.21680.045*
C60.80857 (11)0.29210 (10)0.14187 (16)0.0265 (3)
H60.7660.25380.22060.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0266 (5)0.0161 (4)0.0188 (4)0.0027 (3)0.0023 (3)0.0004 (3)
O30.0273 (5)0.0163 (4)0.0321 (5)0.0016 (4)0.0003 (4)0.0016 (4)
N10.0217 (5)0.0143 (5)0.0213 (5)0.0006 (4)0.0008 (4)0.0005 (4)
N20.0217 (5)0.0175 (5)0.0163 (5)0.0020 (4)0.0026 (4)0.0013 (4)
C70.0242 (6)0.0188 (6)0.0148 (5)0.0032 (5)0.0042 (4)0.0022 (4)
C80.0284 (7)0.0205 (7)0.0378 (8)0.0028 (5)0.0052 (6)0.0014 (5)
C90.0219 (7)0.0310 (8)0.0462 (9)0.0034 (6)0.0001 (6)0.0067 (6)
C100.0250 (7)0.0284 (7)0.0332 (7)0.0060 (6)0.0050 (5)0.0052 (6)
C110.0274 (7)0.0189 (6)0.0203 (6)0.0038 (5)0.0009 (5)0.0030 (5)
C120.0222 (6)0.0177 (6)0.0150 (5)0.0014 (5)0.0030 (4)0.0028 (4)
C130.0240 (6)0.0168 (6)0.0147 (5)0.0023 (5)0.0029 (4)0.0021 (4)
C140.0201 (6)0.0192 (6)0.0209 (6)0.0014 (5)0.0033 (5)0.0013 (5)
C150.0211 (6)0.0177 (6)0.0203 (6)0.0018 (5)0.0004 (4)0.0015 (5)
O10.0244 (5)0.0233 (5)0.0436 (6)0.0046 (4)0.0096 (4)0.0114 (4)
C10.0237 (6)0.0157 (6)0.0240 (6)0.0004 (5)0.0033 (5)0.0034 (5)
C20.0358 (8)0.0214 (6)0.0235 (6)0.0041 (6)0.0030 (5)0.0011 (5)
C30.0340 (8)0.0288 (8)0.0420 (8)0.0099 (6)0.0076 (6)0.0050 (6)
C40.0240 (7)0.0311 (8)0.0709 (11)0.0010 (6)0.0101 (7)0.0105 (8)
C50.0388 (8)0.0247 (7)0.0543 (10)0.0025 (6)0.0232 (7)0.0029 (7)
C60.0338 (7)0.0192 (6)0.0272 (7)0.0009 (5)0.0074 (5)0.0004 (5)
Geometric parameters (Å, º) top
O2—C71.3239 (15)C12—C131.4868 (17)
O3—C131.2505 (15)C14—C151.5158 (16)
N1—C131.3408 (16)C14—H14A0.97
N1—C141.4537 (15)C14—H14B0.97
N1—H1N0.86C15—H15A0.97
N2—C151.4874 (16)C15—H15B0.97
N2—H2A0.8899O1—C11.3747 (15)
N2—H2B0.8897O1—H10.8195
N2—H2C0.8904C1—C61.3852 (18)
C7—C81.4123 (18)C1—C21.3862 (18)
C7—C121.4276 (17)C2—C31.385 (2)
C8—C91.378 (2)C2—H20.93
C8—H80.93C3—C41.381 (2)
C9—C101.392 (2)C3—H30.93
C9—H90.93C4—C51.380 (2)
C10—C111.3758 (19)C4—H40.93
C10—H100.93C5—C61.382 (2)
C11—C121.4037 (17)C5—H50.93
C11—H110.93C6—H60.93
C13—N1—C14122.89 (10)N1—C14—H14A109.1
C13—N1—H1N118.6C15—C14—H14A109.1
C14—N1—H1N118.5N1—C14—H14B109.1
C15—N2—H2A109.5C15—C14—H14B109.1
C15—N2—H2B109.4H14A—C14—H14B107.9
H2A—N2—H2B109.5N2—C15—C14112.16 (10)
C15—N2—H2C109.5N2—C15—H15A109.2
H2A—N2—H2C109.5C14—C15—H15A109.2
H2B—N2—H2C109.4N2—C15—H15B109.2
O2—C7—C8119.86 (11)C14—C15—H15B109.2
O2—C7—C12123.18 (11)H15A—C15—H15B107.9
C8—C7—C12116.95 (11)C1—O1—H1109.5
C9—C8—C7122.14 (13)O1—C1—C6121.26 (12)
C9—C8—H8118.9O1—C1—C2118.24 (12)
C7—C8—H8118.9C6—C1—C2120.50 (12)
C8—C9—C10120.46 (13)C3—C2—C1119.09 (13)
C8—C9—H9119.8C3—C2—H2120.5
C10—C9—H9119.8C1—C2—H2120.5
C11—C10—C9118.90 (13)C4—C3—C2120.70 (14)
C11—C10—H10120.5C4—C3—H3119.6
C9—C10—H10120.5C2—C3—H3119.6
C10—C11—C12122.14 (12)C5—C4—C3119.69 (14)
C10—C11—H11118.9C5—C4—H4120.2
C12—C11—H11118.9C3—C4—H4120.2
C11—C12—C7119.27 (11)C4—C5—C6120.38 (14)
C11—C12—C13117.22 (11)C4—C5—H5119.8
C7—C12—C13123.50 (11)C6—C5—H5119.8
O3—C13—N1120.72 (11)C5—C6—C1119.60 (13)
O3—C13—C12122.58 (11)C5—C6—H6120.2
N1—C13—C12116.68 (11)C1—C6—H6120.2
N1—C14—C15112.41 (10)
O2—C7—C8—C9176.44 (12)C7—C12—C13—O3173.39 (11)
C12—C7—C8—C93.24 (19)C11—C12—C13—N1175.56 (10)
C7—C8—C9—C100.3 (2)C7—C12—C13—N14.97 (16)
C8—C9—C10—C111.8 (2)C13—N1—C14—C1592.17 (13)
C9—C10—C11—C121.0 (2)N1—C14—C15—N266.25 (13)
C10—C11—C12—C72.00 (18)O1—C1—C2—C3177.79 (12)
C10—C11—C12—C13177.50 (11)C6—C1—C2—C31.91 (19)
O2—C7—C12—C11175.68 (11)C1—C2—C3—C40.4 (2)
C8—C7—C12—C113.98 (16)C2—C3—C4—C51.1 (2)
O2—C7—C12—C134.86 (17)C3—C4—C5—C61.0 (2)
C8—C7—C12—C13175.47 (11)C4—C5—C6—C10.5 (2)
C14—N1—C13—O32.23 (17)O1—C1—C6—C5177.71 (12)
C14—N1—C13—C12179.37 (10)C2—C1—C6—C51.98 (19)
C11—C12—C13—O36.08 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.872.6696 (13)166
N1—H1N···O20.861.932.6490 (13)140
N2—H2A···O10.892.212.8995 (14)134
N2—H2A···O30.892.563.0547 (13)116
N2—H2B···O2ii0.891.932.7506 (13)152
N2—H2C···O2iii0.891.812.6939 (13)174
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H12N2O2·C6H6O
Mr274.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)12.6494 (4), 13.2145 (6), 8.5445 (4)
β (°) 100.637 (2)
V3)1403.72 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.58 × 0.52 × 0.38
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.860, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
12244, 3208, 2649
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.03
No. of reflections3208
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.872.6696 (13)166
N1—H1N···O20.861.932.6490 (13)140
N2—H2A···O10.892.212.8995 (14)134
N2—H2A···O30.892.563.0547 (13)116
N2—H2B···O2ii0.891.932.7506 (13)152
N2—H2C···O2iii0.891.812.6939 (13)174
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la direction générale de la recherche - Algeria) for financial support.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHancock, R. D. & Martell, A. E. (1989). Chem. Rev. 89, 1875–1914.  CrossRef CAS Web of Science Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216, 473–488.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds