organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

o-Phenyl­enediaminium chloride nitrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS–UHP 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 4 March 2013; accepted 18 March 2013; online 28 March 2013)

In the title mol­ecular salt, C6H10N22+·NO3·Cl, the complete cation is generated by a crystallographic mirror plane. The complete nitrate ion is also generated by reflection, with the N atom and one O atom lying on the mirror plane; the chloride ion also lies on the reflection plane. In the crystal, the components are linked by N—H⋯Cl and N—H⋯(N,O) hydrogen bonds, forming (001) layers with the benzene rings projecting into the inter­layer regions. The layers are linked by weak C—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For background to inorganic–organic hybrid compounds, see: Bringley & Rajeswaram (2006[Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304-m1305.]); Dai et al. (2002[Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, Q.-Q. (2002). Inorg. Chem. 41, 1391-1396.]). For reference structural data, see: Riahi et al. (2012[Riahi, S., Mrad, M. L., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2012). Elixir Appl. Chem. 51, 10855-10860.]); Engh & Huber (1991[Engh, R. A. & Huber, R. (1991). Acta Cryst. A47, 392-400.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N22+·Cl·NO3

  • Mr = 207.61

  • Orthorhombic, P n m a

  • a = 7.3695 (5) Å

  • b = 8.2367 (5) Å

  • c = 14.2398 (7) Å

  • V = 864.36 (8) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.27 × 0.20 × 0.15 mm

Data collection
  • Bruker Photon100 CMOS detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.751, Tmax = 0.967

  • 26823 measured reflections

  • 812 independent reflections

  • 812 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.053

  • S = 0.80

  • 812 reflections

  • 66 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H34⋯O10 1.033 (4) 2.41 (1) 2.896 (2) 107.4 (9)
N3—H34⋯N1 1.033 (4) 2.429 (9) 3.263 (2) 137.1 (8)
N3—H31⋯Cl1i 1.033 (4) 2.181 (4) 3.179 (2) 161.8 (5)
N3—H32⋯Cl1 1.033 (4) 2.183 (5) 3.156 (2) 156.2 (5)
C2—H2⋯O11 1.08 2.48 3.299 (2) 132
C1—H1⋯O10ii 1.08 2.52 3.427 (2) 141
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: COLLECT (Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: MoPro (Jelsch et al., 2005[Jelsch, C., Guillot, B., Lagoutte, A. & Lecomte, C. (2005). J. Appl. Cryst. 38, 38-54.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Inorganic-organic hybrid compounds provide a class of materials with interesting potential technological applications (Bringley & Rajeswaram 2006; Dai et al., 2002). As part of our studies in this area, we report here the synthesis and the crystal structure of the title compound, (I), formed by the reaction between benzene-1,2-diamine, nitric acid and hydrochloric acid. The structure consists of one nitrate anion, one chloride anion and one benzene-1,2-diaminium dication (Fig. 1). In the crystal, the H atoms of the ammonium groups are involved in two kinds of hydrogen bonds: N—H···Cl and N3—H34···(N1, O10), which is a bifurcated H-bond interaction (Table 1). These hydrogen bonds link the ionic units (NH3+, Cl- and NO3-) into layers parallel to (001) (Fig. 2) and situated at z = n +/- 1/4 (Fig. 3). The chloride ion is actually located on a special position with y = 1/4. The phenyl groups of the benzene-1,2-diaminium dications are located alternatively on either side of the ionic layers via three weak C—H···O hydrogen bonds (Fig. 3) with the nitrate anion, which is perpendicular to the phenyl plane. No π-π stacking interactions between the organic rings or C—H···π interactions towards them are observed.

The geometrical parameters of the title compound are in the normal range. A N—O moiety of the nitrate is located on a special position y=3/4 and the two independant N—O bond distances are 1.243 (2) and 1.284 (1) Å. In addition, the O—N—O bond angle values are 118.6 (2)° and 122.8 (2), showing that the nitrate anion exhibits a slightly distorted C3 h geometry. These anionic geometrical features are comparable to those previously reported for 2-cyanoanilinium nitrate where the N—O bond length distances are in the range 1.228 (2)–1.273 (2) Å and the values of the O—N—O angles are between 117.52 (2) and 121,80 (15)° (Riahi et al., 2012). For the organic cation, the mean value of the C—C bond lengths of the aromatic ring is 1.391 (2) Å which is close to the 1.382 (3) value between >CH aromatic atoms in the Engh & Huber (1991) stereochemical dictionary.

Related literature top

For background to inorganic–organic hybrid compounds, see: Bringley & Rajeswaram (2006); Dai et al. (2002). For reference structural data, see: Riahi et al. (2012); Engh & Huber (1991).

Experimental top

A mixture of an aqueous solution of benzene-1,2-diamine (3 mmol), nitric acid (3 mmol) and hydrochloric acid (3 mmol) was slowly evaporated at room temperature over several days leading to formation of transparent light brown prismatic crystals (yield 60%). The crystals are stable for months under normal conditions of temperature and humidity.

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: MoPro (Jelsch et al., 2005); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 50% probability displacement ellipsoids and spheres for the H atoms. Symmetry codes: (i) x, 1/2-y, z; (ii) x, 3/2-y, z.
[Figure 2] Fig. 2. Projection along the c-axis of the inorganic layers in the structure of the title compound. Hydrogen bonds are shown as broken lines.
[Figure 3] Fig. 3. The packing diagram of the compound viewed down the b-axis. Hydrogen bonds are shown as broken lines.
o-Phenylenediaminium chloride nitrate top
Crystal data top
C6H10N22+·Cl·NO3F(000) = 432
Mr = 207.61Dx = 1.596 Mg m3
Orthorhombic, PnmaAg Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ac 2nCell parameters from 64 reflections
a = 7.3695 (5) Åθ = 3.1–20.3°
b = 8.2367 (5) ŵ = 0.22 mm1
c = 14.2398 (7) ÅT = 100 K
V = 864.36 (8) Å3Prismatic, yellow
Z = 40.27 × 0.20 × 0.15 mm
Data collection top
Bruker Photon100 CMOS detector
diffractometer
812 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
ω scansθmax = 19.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 08
Tmin = 0.751, Tmax = 0.967k = 09
26823 measured reflectionsl = 016
812 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 0.80 w = 1/[σ2(Fo2) + (0.P)2 + 2.3P]
where P = (Fo2 + 2Fc2)/3
812 reflections(Δ/σ)max = 0.002
66 parametersΔρmax = 0.27 e Å3
12 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H10N22+·Cl·NO3V = 864.36 (8) Å3
Mr = 207.61Z = 4
Orthorhombic, PnmaAg Kα radiation, λ = 0.56085 Å
a = 7.3695 (5) ŵ = 0.22 mm1
b = 8.2367 (5) ÅT = 100 K
c = 14.2398 (7) Å0.27 × 0.20 × 0.15 mm
Data collection top
Bruker Photon100 CMOS detector
diffractometer
812 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
812 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.967Rint = 0.049
26823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02412 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 0.80Δρmax = 0.27 e Å3
812 reflectionsΔρmin = 0.26 e Å3
66 parameters
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84182 (9)0.250000.34646 (4)0.00937 (9)
N10.2199 (3)0.750000.3046 (2)0.0091 (3)
O110.3554 (3)0.750000.3614 (1)0.0098 (3)
O100.1566 (2)0.6174 (2)0.27870 (9)0.0143 (2)
C10.1707 (3)0.3346 (2)0.5526 (1)0.0117 (3)
H10.104000.403370.607520.01410*
C20.2654 (3)0.4193 (2)0.4834 (1)0.0100 (2)
H20.264390.550740.482910.01199*
C30.3611 (2)0.3345 (2)0.4152 (1)0.0071 (2)
N30.4604 (2)0.4241 (2)0.3431 (1)0.0083 (2)
H310.417 (1)0.393 (1)0.2766 (3)0.01240*
H320.5979 (4)0.400 (1)0.3466 (10)0.01240*
H340.443 (2)0.5479 (3)0.3506 (9)0.01240*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0105 (3)0.0079 (3)0.0097 (3)00.0003 (3)0
N10.011 (1)0.006 (1)0.010 (1)00.0011 (9)0
O110.0117 (9)0.0032 (9)0.0145 (10)00.0032 (8)0
O100.0168 (7)0.0076 (6)0.0184 (7)0.0016 (6)0.0052 (6)0.0023 (6)
C10.0149 (9)0.0101 (10)0.0102 (9)0.0008 (8)0.0030 (8)0.0012 (8)
C20.0128 (9)0.0058 (9)0.0113 (9)0.0008 (8)0.0011 (7)0.0014 (7)
C30.0084 (9)0.0052 (9)0.0079 (9)0.0001 (8)0.0010 (7)0.0003 (7)
N30.0099 (8)0.0049 (7)0.0100 (7)0.0008 (6)0.0002 (6)0.0008 (6)
Geometric parameters (Å, º) top
N1—O101.243 (2)C2—H21.083
N1—O111.284 (3)C3—N31.461 (2)
C1—C21.395 (3)N3—H321.033 (4)
C1—H11.083N3—H341.033 (4)
C2—C31.389 (3)N3—H311.033 (4)
O11—N1—O10118.6 (2)C3—N3—H32111.2 (7)
O10—N1—O10i122.8 (2)C3—N3—H34111.3 (7)
C1—C2—C3119.8 (2)C3—N3—H31111.1 (6)
C1—C2—H2120.1H31—N3—H32107.7 (8)
H1—C1—C2118.4H31—N3—H34107.6 (9)
C2—C3—N3119.5 (2)H32—N3—H34107.7 (10)
H2—C2—C3120.1
C1—C2—C3—N3179.8 (2)C2—C3—N3—H342.1 (7)
H1—C1—C2—C3176.3C2—C3—N3—H31122.0 (7)
H1—C1—C2—H23.7H2—C2—C3—N30.2
C2—C3—N3—H32118.0 (8)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H34···O101.033 (4)2.41 (1)2.896 (2)107.4 (9)
N3—H34···N11.033 (4)2.429 (9)3.263 (2)137.1 (8)
N3—H31···Cl1ii1.033 (4)2.181 (4)3.179 (2)161.8 (5)
N3—H32···Cl11.033 (4)2.183 (5)3.156 (2)156.2 (5)
C2—H2···O111.082.483.299 (2)132
C1—H1···O10iii1.082.523.427 (2)141
Symmetry codes: (ii) x1/2, y+1/2, z+1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H10N22+·Cl·NO3
Mr207.61
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)100
a, b, c (Å)7.3695 (5), 8.2367 (5), 14.2398 (7)
V3)864.36 (8)
Z4
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.22
Crystal size (mm)0.27 × 0.20 × 0.15
Data collection
DiffractometerBruker Photon100 CMOS detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.751, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
26823, 812, 812
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.053, 0.80
No. of reflections812
No. of parameters66
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: COLLECT (Bruker, 2004), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), MoPro (Jelsch et al., 2005), DIAMOND (Brandenburg, 1998), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H34···O101.033 (4)2.41 (1)2.896 (2)107.4 (9)
N3—H34···N11.033 (4)2.429 (9)3.263 (2)137.1 (8)
N3—H31···Cl1i1.033 (4)2.181 (4)3.179 (2)161.8 (5)
N3—H32···Cl11.033 (4)2.183 (5)3.156 (2)156.2 (5)
C2—H2···O111.082.483.299 (2)132
C1—H1···O10ii1.082.523.427 (2)141
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x, y+1, z+1.
 

Acknowledgements

We thank the Secretary of State for Scientific Research and Technology of Tunisia for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304–m1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, Q.-Q. (2002). Inorg. Chem. 41, 1391–1396.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEngh, R. A. & Huber, R. (1991). Acta Cryst. A47, 392–400.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJelsch, C., Guillot, B., Lagoutte, A. & Lecomte, C. (2005). J. Appl. Cryst. 38, 38–54.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRiahi, S., Mrad, M. L., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2012). Elixir Appl. Chem. 51, 10855–10860.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds