organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-1,5-di­phenyl-4,5-di­hydro-1H-pyrazole

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and bPost Graduate Department of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 6 March 2013; accepted 19 March 2013; online 28 March 2013)

In the title compound, C16H16N2, the dihydro­pyrazole ring adopts a shallow envelope conformation, with the C atom bearing the phenyl group displaced by 0.298 (2) Å from the other atoms (r.m.s. deviation = 0.015 Å). The dihedral angles between the four near coplanar atoms of the central ring and the N- and C-bonded phenyl groups are 13.49 (13) and 82.22 (16)°, respectively.

Related literature

For background to pyrazoles, see: Govindaraju et al. (2012[Govindaraju, M., Vasanth Kumar, G., Pavithra, G., Harish Nayaka, M. A., Mylarappa, B. N. & Ajay Kumar, K. (2012). IOSR J. Pharm. Biol. Sci. 2, 30-34.]); Jayaroopa et al. (2013[Jayaroopa, P., Vasanth Kumar, G., Renuka, N., Harish Nayaka, M. A. & Ajay Kumar, K. (2013). Int. J. PharmTech Res. 5, 264-270.]); Kalirajan et al. (2013[Kalirajan, R., Leela, R., Jubie, S., Gowramma, B., Gomathi, S. & Sankar, S. (2013). Indian J. Chem. Sect. B, 50, 1794-1799.]); Mariappan et al. (2010[Mariappan, G., Saha, B. P., Sutharson, L. & Haldar, A. (2010). Indian J. Chem. Sect. B, 49, 1671-1674.]); Shyama et al. (2009[Shyama, S., Robert, A., Ying, S., Sonoko, N., Brown, B., Jose, L. M., Eduard, S. & Nicholas, D. P. C. (2009). Bioorg. Med. Chem. Lett. 19, 222-225.]). For related structures, see: Baktır et al. (2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o328-o329.]); Fun et al. (2011[Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3513.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2

  • Mr = 236.31

  • Monoclinic, C c

  • a = 18.1224 (17) Å

  • b = 7.8055 (6) Å

  • c = 12.5057 (13) Å

  • β = 132.207 (9)°

  • V = 1310.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 301 K

  • 0.32 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • 11856 measured reflections

  • 2973 independent reflections

  • 2362 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.131

  • S = 0.91

  • 2973 reflections

  • 165 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.10 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: Mercury.

Supporting information


Comment top

Pyrazoles are five-member heterocycles with two nitrogen atoms in a ring at 1,2-positions. They have been efficiently transformed in to a potential medicinally and pharmaceutically important molecule. Pyrazole derivatives have known to exhibit diverse biological applications such as antidiabetic, anaesthetic, antifungal (Jayaroopa et al., 2013), antiandrogenic, antioxidant, analgesic and anti-inflammatory activities. In addition, they have also showed potential anti-bacterial (Govindaraju et al., 2012), anticancer (Kalirajan et al., 2013), antiamoebic, potent and selective inhibitors of tissue-nonspecific alkaline phosphatase (Shyama et al., 2009), anti-inflammatory and protein kinase C inhibitor (Mariappan et al., 2010) properties.

we have synthesized the title compound to study its crystal structure in order to understand the structure-activity relationship for its biological activity.

The title compound C16 H16 N2, contains two benzene rings (C1-C6 and C8-C13), these two rings are attached to the central pyrazole ring and the molecules are connected by non classical hydrogen bonds. The dihydropyrazole ring is a shallow envelope, with atom C7 displaced from the other four atoms by 0.298 (2)Å. The dihedral angles between the four near coplanar atoms of the central ring and the N- and C-bonded phenyl groups are 13.49 (13) and 82.22 (16)°, respectively. Bond lengths and bond angles are within normal ranges and are comparable to related structures (Baktır et al., 2011 & Fun et al., 2011).

Related literature top

For background to pyrazoles, see: Govindaraju et al. (2012); Jayaroopa et al. (2013); Kalirajan et al. (2013); Mariappan et al. (2010); Shyama et al. (2009). For related structures, see: Baktır et al. (2011); Fun et al. (2011).

Experimental top

A mixture of 4-phenylbut-3-en-2-one (0.05 mmol), phenyl hydrazine hydrochloride (0.05 mmol) and sodium acetate (0.05 mmol) in ethyl alcohol (25 ml) was stirred at room temperature for 1 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was poured into ice cold water. The solid formed was separated and crystallized with acetonitrile to get the title compound as yellow blocks.

Flash Point: 178 ° C. 1H NMR (CDCl3): δ 2.015 (s, 3H, CH3), 2.619–2.671 (q, 1H, C4—H), 3.475–3.536 (q, 1H, C4—H), 5.108–5.146 (q, 1H, C5—H), 6.622–6.655 (t, 1H, Ar—H), 6.805–6.829 (d, 2H, Ar—H), 7.061–7.097 (t, 2H, Ar—H), 7.230–7.373 (m, 5H, Ar—H).

Refinement top

All hydrogen atoms were located geometrically with C—H = 0.93–0.97) Å and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(aromatic C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of molecule, viewed along the crystallographic b axis.
3-Methyl-1,5-diphenyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C16H16N2F(000) = 504
Mr = 236.31Dx = 1.198 Mg m3
Monoclinic, CcMelting point = 363–365 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 18.1224 (17) ÅCell parameters from 2973 reflections
b = 7.8055 (6) Åθ = 3.0–27.6°
c = 12.5057 (13) ŵ = 0.07 mm1
β = 132.207 (9)°T = 301 K
V = 1310.3 (3) Å3Block, pale yellow
Z = 40.32 × 0.20 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2362 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.6°, θmin = 3.0°
Detector resolution: 16.0839 pixels mm-1h = 2323
ω scansk = 1010
11856 measured reflectionsl = 1616
2973 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2973 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = 0.10 e Å3
Crystal data top
C16H16N2V = 1310.3 (3) Å3
Mr = 236.31Z = 4
Monoclinic, CcMo Kα radiation
a = 18.1224 (17) ŵ = 0.07 mm1
b = 7.8055 (6) ÅT = 301 K
c = 12.5057 (13) Å0.32 × 0.20 × 0.18 mm
β = 132.207 (9)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2362 reflections with I > 2σ(I)
11856 measured reflectionsRint = 0.033
2973 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.91Δρmax = 0.14 e Å3
2973 reflectionsΔρmin = 0.10 e Å3
165 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57189 (12)0.5350 (3)0.53221 (17)0.0583 (6)
N20.63012 (12)0.5538 (2)0.49747 (18)0.0528 (5)
C10.43700 (15)0.4218 (3)0.2954 (2)0.0539 (6)
C20.34060 (17)0.3632 (3)0.1948 (2)0.0683 (7)
C30.27852 (16)0.3631 (3)0.2214 (3)0.0694 (7)
C40.31410 (16)0.4245 (3)0.3516 (3)0.0617 (7)
C50.41076 (14)0.4857 (2)0.4546 (2)0.0529 (6)
C60.47391 (13)0.4829 (2)0.42818 (19)0.0439 (5)
C70.62148 (15)0.5986 (2)0.6767 (2)0.0487 (5)
C80.58591 (12)0.7740 (2)0.67789 (18)0.0425 (5)
C90.53469 (16)0.8844 (3)0.5615 (2)0.0558 (6)
C100.50989 (18)1.0475 (3)0.5715 (3)0.0710 (8)
C110.53636 (18)1.1018 (3)0.6979 (3)0.0725 (9)
C120.58650 (17)0.9929 (3)0.8138 (3)0.0644 (8)
C130.61057 (14)0.8294 (3)0.80360 (19)0.0502 (6)
C140.73007 (16)0.6028 (3)0.7433 (2)0.0618 (6)
C150.71843 (15)0.5947 (2)0.6134 (2)0.0563 (6)
C160.8000 (2)0.6260 (4)0.6152 (4)0.0878 (11)
H10.477600.420500.274800.0650*
H20.317000.322700.106600.0820*
H30.213600.322400.152600.0830*
H40.272800.425000.371100.0740*
H50.433300.528600.541600.0640*
H70.614300.515800.728100.0580*
H90.516700.848900.475700.0670*
H100.475201.120700.492400.0850*
H110.520301.212000.704800.0870*
H120.604301.029100.899400.0770*
H130.643800.755700.882200.0600*
H14A0.763200.707600.797300.0740*
H14B0.767300.505300.806300.0740*
H16A0.773700.623000.518300.1320*
H16B0.850000.539000.671700.1320*
H16C0.829000.736400.656900.1320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0465 (9)0.0796 (11)0.0514 (9)0.0147 (8)0.0339 (8)0.0253 (8)
N20.0518 (9)0.0527 (8)0.0596 (9)0.0064 (7)0.0397 (8)0.0083 (7)
C10.0477 (11)0.0618 (11)0.0449 (9)0.0008 (8)0.0281 (9)0.0037 (9)
C20.0521 (12)0.0800 (14)0.0474 (11)0.0079 (10)0.0231 (10)0.0109 (10)
C30.0457 (11)0.0665 (13)0.0668 (14)0.0070 (9)0.0259 (11)0.0034 (10)
C40.0532 (11)0.0519 (10)0.0866 (15)0.0036 (9)0.0497 (11)0.0054 (10)
C50.0551 (11)0.0494 (10)0.0590 (11)0.0021 (8)0.0403 (10)0.0077 (8)
C60.0413 (9)0.0383 (7)0.0461 (9)0.0022 (7)0.0269 (8)0.0015 (7)
C70.0479 (9)0.0476 (9)0.0425 (9)0.0016 (7)0.0271 (8)0.0040 (7)
C80.0391 (8)0.0454 (8)0.0420 (8)0.0051 (7)0.0269 (7)0.0026 (7)
C90.0574 (11)0.0567 (11)0.0491 (10)0.0004 (8)0.0341 (9)0.0071 (8)
C100.0650 (14)0.0544 (11)0.0800 (16)0.0095 (10)0.0431 (13)0.0199 (11)
C110.0664 (14)0.0499 (12)0.110 (2)0.0015 (9)0.0628 (15)0.0042 (12)
C120.0686 (14)0.0652 (13)0.0789 (15)0.0099 (10)0.0575 (13)0.0201 (11)
C130.0490 (10)0.0567 (10)0.0457 (10)0.0039 (8)0.0322 (9)0.0032 (8)
C140.0480 (11)0.0595 (11)0.0545 (11)0.0037 (9)0.0249 (9)0.0119 (9)
C150.0463 (11)0.0505 (10)0.0644 (12)0.0024 (8)0.0340 (10)0.0060 (9)
C160.0631 (15)0.105 (2)0.100 (2)0.0193 (14)0.0567 (15)0.0180 (16)
Geometric parameters (Å, º) top
N1—N21.393 (4)C14—C151.492 (3)
N1—C61.381 (3)C15—C161.484 (6)
N1—C71.462 (3)C1—H10.9300
N2—C151.284 (3)C2—H20.9300
C1—C21.375 (4)C3—H30.9300
C1—C61.393 (3)C4—H40.9300
C2—C31.371 (5)C5—H50.9300
C3—C41.373 (4)C7—H70.9800
C4—C51.387 (4)C9—H90.9300
C5—C61.388 (4)C10—H100.9300
C7—C81.518 (3)C11—H110.9300
C7—C141.538 (4)C12—H120.9300
C8—C91.381 (3)C13—H130.9300
C8—C131.384 (3)C14—H14A0.9700
C9—C101.383 (4)C14—H14B0.9700
C10—C111.375 (4)C16—H16A0.9600
C11—C121.371 (4)C16—H16B0.9600
C12—C131.382 (4)C16—H16C0.9600
N2—N1—C6120.09 (17)C2—C3—H3121.00
N2—N1—C7112.6 (2)C4—C3—H3121.00
C6—N1—C7126.7 (2)C3—C4—H4120.00
N1—N2—C15107.8 (2)C5—C4—H4119.00
C2—C1—C6120.1 (3)C4—C5—H5120.00
C1—C2—C3121.6 (2)C6—C5—H5120.00
C2—C3—C4118.6 (3)N1—C7—H7110.00
C3—C4—C5121.0 (3)C8—C7—H7110.00
C4—C5—C6120.2 (2)C14—C7—H7110.00
N1—C6—C1120.5 (3)C8—C9—H9120.00
N1—C6—C5121.00 (18)C10—C9—H9120.00
C1—C6—C5118.5 (2)C9—C10—H10120.00
N1—C7—C8113.95 (16)C11—C10—H10120.00
N1—C7—C14100.2 (2)C10—C11—H11120.00
C8—C7—C14111.89 (18)C12—C11—H11120.00
C7—C8—C9122.80 (19)C11—C12—H12120.00
C7—C8—C13118.56 (16)C13—C12—H12120.00
C9—C8—C13118.55 (19)C8—C13—H13120.00
C8—C9—C10120.5 (2)C12—C13—H13120.00
C9—C10—C11120.3 (2)C7—C14—H14A111.00
C10—C11—C12119.7 (2)C7—C14—H14B111.00
C11—C12—C13120.1 (3)C15—C14—H14A111.00
C8—C13—C12120.8 (2)C15—C14—H14B111.00
C7—C14—C15102.47 (18)H14A—C14—H14B109.00
N2—C15—C14113.4 (3)C15—C16—H16A109.00
N2—C15—C16122.1 (2)C15—C16—H16B109.00
C14—C15—C16124.5 (2)C15—C16—H16C109.00
C2—C1—H1120.00H16A—C16—H16B110.00
C6—C1—H1120.00H16A—C16—H16C110.00
C1—C2—H2119.00H16B—C16—H16C109.00
C3—C2—H2119.00
C6—N1—N2—C15176.91 (18)C4—C5—C6—N1176.63 (19)
C7—N1—N2—C1511.2 (2)C4—C5—C6—C11.7 (3)
N2—N1—C6—C110.6 (3)N1—C7—C8—C918.0 (4)
N2—N1—C6—C5171.14 (17)N1—C7—C8—C13165.6 (2)
C7—N1—C6—C1178.8 (2)C14—C7—C8—C994.8 (3)
C7—N1—C6—C50.5 (3)C14—C7—C8—C1381.6 (3)
N2—N1—C7—C8101.5 (3)N1—C7—C14—C1517.20 (19)
N2—N1—C7—C1418.2 (2)C8—C7—C14—C15103.93 (19)
C6—N1—C7—C869.7 (3)C7—C8—C9—C10175.5 (3)
C6—N1—C7—C14170.6 (2)C13—C8—C9—C100.8 (4)
N1—N2—C15—C141.8 (2)C7—C8—C13—C12175.1 (3)
N1—N2—C15—C16179.6 (2)C9—C8—C13—C121.4 (4)
C6—C1—C2—C30.1 (3)C8—C9—C10—C110.3 (5)
C2—C1—C6—N1177.2 (2)C9—C10—C11—C120.8 (6)
C2—C1—C6—C51.1 (3)C10—C11—C12—C130.2 (6)
C1—C2—C3—C40.5 (4)C11—C12—C13—C80.9 (5)
C2—C3—C4—C50.1 (4)C7—C14—C15—N212.9 (2)
C3—C4—C5—C61.1 (3)C7—C14—C15—C16168.6 (2)

Experimental details

Crystal data
Chemical formulaC16H16N2
Mr236.31
Crystal system, space groupMonoclinic, Cc
Temperature (K)301
a, b, c (Å)18.1224 (17), 7.8055 (6), 12.5057 (13)
β (°) 132.207 (9)
V3)1310.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.32 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11856, 2973, 2362
Rint0.033
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.131, 0.91
No. of reflections2973
No. of parameters165
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.10

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

 

Acknowledgements

MM thanks the IOE, University of Mysore, for the award of a fellowship. We thank the Solid Sate and Structural Chemistry Unit, IISc, Bangalore, for the data collection.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o328–o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGovindaraju, M., Vasanth Kumar, G., Pavithra, G., Harish Nayaka, M. A., Mylarappa, B. N. & Ajay Kumar, K. (2012). IOSR J. Pharm. Biol. Sci. 2, 30–34.  Google Scholar
First citationJayaroopa, P., Vasanth Kumar, G., Renuka, N., Harish Nayaka, M. A. & Ajay Kumar, K. (2013). Int. J. PharmTech Res. 5, 264–270.  Google Scholar
First citationKalirajan, R., Leela, R., Jubie, S., Gowramma, B., Gomathi, S. & Sankar, S. (2013). Indian J. Chem. Sect. B, 50, 1794–1799.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMariappan, G., Saha, B. P., Sutharson, L. & Haldar, A. (2010). Indian J. Chem. Sect. B, 49, 1671–1674.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShyama, S., Robert, A., Ying, S., Sonoko, N., Brown, B., Jose, L. M., Eduard, S. & Nicholas, D. P. C. (2009). Bioorg. Med. Chem. Lett. 19, 222–225.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds