organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3-(4-Chloro­phen­yl)-5-(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thia­zole

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 March 2013; accepted 18 March 2013; online 23 March 2013)

In the title compound, C24H17ClFN3S, the pyrazole ring is almost planar (r.m.s. deviation = 0.030 Å). With the exception of the methine-bound benzene ring, which forms a dihedral angle of 85.77 (13)° with the pyrazole ring, the remaining non-C atoms lie in an approximate plane (r.m.s. deviation = 0.084 Å) so that overall the mol­ecule has a T-shape. In the crystal, centrosymmetrically related mol­ecules are connected via ππ inter­actions between pyrazole rings [centroid–centroid distance = 3.5370 (15) Å] and these stack along the a axis with no specific inter­actions between them.

Related literature

For the biological activity of pyrazolin-1-carbothio­amides, see: Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632-2635.], 2012[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.]); Lv et al. (2011[Lv, P.-C., Li, D.-D., Li, Q.-S., Lu, X., Xiao, Z.-P. & Zhu, H.-L. (2011). Bioorg. Med. Chem. Lett. 21, 5374-5377.]); Chimenti et al. (2010[Chimenti, F., Carradori, S., Secci, D., Bolasco, A., Bizzarri, B., Chimenti, P., Granese, A., Yáñez, M. & Orallo, F. (2010). Eur. J. Med. Chem. 45, 800-804.]). For a related structure, see: Abdel-Wahab et al. (2013[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o392-o393.]).

[Scheme 1]

Experimental

Crystal data
  • C24H17ClFN3S

  • Mr = 433.92

  • Monoclinic, P 21 /c

  • a = 11.1360 (9) Å

  • b = 16.4129 (16) Å

  • c = 11.6066 (7) Å

  • β = 98.170 (7)°

  • V = 2099.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 K

  • 0.25 × 0.25 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.956, Tmax = 1.000

  • 11642 measured reflections

  • 4850 independent reflections

  • 2627 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.140

  • S = 1.03

  • 4850 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) was investigated owing to the established biological activities exhibited by related pyrazolin-1-carbothioamides (Abdel-Wahab et al. 2012; Lv et al., 2011; Chimenti et al., 2010; Abdel-Wahab et al. 2009). Herein, the crystal and molecular structure of (I) is described.

In (I), Fig. 1, the pyrazolyl ring is quite planar with a r.m.s. deviation of the five atoms being 0.030 Å. This is in contrast to the situation observed in the recently described derivative with a methyl rather than a chloride (Abdel-Wahab et al. 2013) whereby an envelope conformation was found for each of the two independent molecules; the methine-C atom was the flap atom in each case. In (I), the dihedral angle between the pyrazolyl and thiazole (r.m.s. deviation = 0.002 Å) rings is 2.83 (13)°. The thiazole-bound benzene ring is co-planar; dihedral angle = 4.34 (13)° with the thiazole. About the pyrazolyl ring, the chlorobenzene ring is co-planar, dihedral angle = 6.92 (14)°, but the benzene ring bound at C11 is perpendicular, dihedral angle = 85.77 (13)°. Thus, there are two planar, mutually perpendicular domains in the molecule which adopts a T-shape, as was the case for the aforementioned literature structure but which exhibited some twists, e.g. between the five-membered rings (Abdel-Wahab et al. 2013).

The most prominent feature of the crystal packing is the formation of dimeric aggregates between centrosymmetrically related molecules via ππ interactions between pyrazolyl rings [inter-centroid distance = 3.5370 (15) Å for symmetry operation: 1 - x, 1 - y, 1 - z], Fig. 2. Dimeric units stack along the a axis with no specific interactions between them, Fig. 3.

Related literature top

For the biological activity of pyrazolin-1-carbothioamides, see: Abdel-Wahab et al. (2009, 2012); Lv et al. (2011); Chimenti et al. (2010). For a related structure, see: Abdel-Wahab et al. (2013).

Experimental top

A mixture of 3-(4-chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (0.333 g, 0.001 M) and phenacyl bromide (0.2 g, 0.001 M) in anhydrous ethanol (30 ml) was heated under reflux for about 4 h. The resultant solid was filtered and dried. Recrystallization was by slow evaporation of an ethanol solution of (I) to yield yellow cubes in 55% yield; M.pt: 418–419 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Uequiv(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the dimeric aggregate in (I) sustained by ππ interactions, shown as purple dashed lines.
[Figure 3] Fig. 3. A view of the crystal packing in projection down the a axis. The ππ interactions are shown as purple dashed lines.
2-[3-(4-Chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]-4-phenyl-1,3-thiazole top
Crystal data top
C24H17ClFN3SF(000) = 896
Mr = 433.92Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2134 reflections
a = 11.1360 (9) Åθ = 3.0–27.5°
b = 16.4129 (16) ŵ = 0.31 mm1
c = 11.6066 (7) ÅT = 295 K
β = 98.170 (7)°Cube, yellow
V = 2099.9 (3) Å30.25 × 0.25 × 0.25 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4850 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2627 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.043
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.0°
ω scanh = 1413
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2121
Tmin = 0.956, Tmax = 1.000l = 1514
11642 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.1993P]
where P = (Fo2 + 2Fc2)/3
4850 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C24H17ClFN3SV = 2099.9 (3) Å3
Mr = 433.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1360 (9) ŵ = 0.31 mm1
b = 16.4129 (16) ÅT = 295 K
c = 11.6066 (7) Å0.25 × 0.25 × 0.25 mm
β = 98.170 (7)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4850 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2627 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 1.000Rint = 0.043
11642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
4850 reflectionsΔρmin = 0.28 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.78673 (9)0.63985 (7)1.06121 (7)0.1183 (4)
S10.51447 (6)0.68324 (4)0.29541 (5)0.0663 (2)
N10.30894 (17)0.61006 (12)0.23548 (15)0.0540 (5)
N20.38567 (17)0.59931 (14)0.43352 (16)0.0635 (6)
N30.48128 (17)0.61670 (12)0.51903 (16)0.0576 (5)
C10.2574 (2)0.64048 (14)0.02591 (19)0.0550 (6)
C20.1497 (3)0.59731 (18)0.0197 (2)0.0774 (8)
H20.13090.57030.08520.093*
C30.0700 (3)0.5940 (2)0.0830 (2)0.0925 (10)
H30.00150.56430.08630.111*
C40.0959 (3)0.63419 (19)0.1797 (2)0.0851 (9)
H40.04210.63180.24870.102*
C50.2002 (3)0.67765 (18)0.1749 (2)0.0817 (9)
H50.21730.70570.24030.098*
C60.2807 (3)0.68030 (16)0.0734 (2)0.0708 (8)
H60.35250.70960.07160.085*
C80.4471 (2)0.68840 (16)0.1533 (2)0.0649 (7)
H80.47960.71620.09510.078*
C90.3406 (2)0.64703 (14)0.13609 (19)0.0544 (6)
C100.3922 (2)0.62494 (14)0.32298 (19)0.0528 (6)
C110.2942 (2)0.54327 (15)0.47086 (19)0.0555 (6)
H110.29850.49070.43170.067*
C120.3456 (2)0.53387 (16)0.60180 (19)0.0600 (7)
H12A0.29010.55620.65090.072*
H12B0.36090.47710.62200.072*
C130.4618 (2)0.58159 (15)0.6141 (2)0.0537 (6)
C140.5449 (2)0.59300 (15)0.72236 (19)0.0544 (6)
C150.5162 (2)0.56281 (17)0.8256 (2)0.0708 (7)
H150.44550.53280.82580.085*
C160.5917 (3)0.5766 (2)0.9296 (2)0.0829 (9)
H160.57130.55630.99910.099*
C170.6964 (3)0.62029 (19)0.9294 (2)0.0748 (8)
C180.7284 (2)0.64998 (17)0.8275 (2)0.0719 (8)
H180.80030.67880.82790.086*
C190.6529 (2)0.63669 (16)0.7247 (2)0.0624 (7)
H190.67420.65710.65560.075*
C200.1672 (2)0.57571 (15)0.44605 (17)0.0513 (6)
C210.0808 (2)0.53493 (17)0.3704 (2)0.0658 (7)
H210.10300.48820.33330.079*
C220.0367 (3)0.5615 (2)0.3486 (2)0.0814 (9)
H220.09420.53340.29750.098*
C230.0668 (2)0.6295 (2)0.4033 (3)0.0812 (9)
C240.0139 (3)0.67373 (18)0.4776 (2)0.0763 (8)
H240.00960.72080.51300.092*
C250.1323 (2)0.64571 (16)0.4982 (2)0.0626 (7)
H250.18950.67470.54820.075*
F10.18491 (17)0.65571 (14)0.3846 (2)0.1352 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1101 (7)0.1603 (10)0.0746 (5)0.0153 (6)0.0217 (5)0.0053 (5)
S10.0548 (4)0.0757 (5)0.0696 (4)0.0128 (3)0.0131 (3)0.0027 (3)
N10.0499 (12)0.0621 (13)0.0519 (11)0.0029 (9)0.0140 (9)0.0029 (9)
N20.0474 (12)0.0907 (16)0.0525 (11)0.0160 (11)0.0075 (9)0.0026 (10)
N30.0467 (12)0.0678 (14)0.0590 (11)0.0024 (10)0.0097 (9)0.0021 (10)
C10.0615 (16)0.0520 (15)0.0537 (13)0.0006 (12)0.0155 (11)0.0003 (11)
C20.082 (2)0.086 (2)0.0635 (16)0.0220 (17)0.0072 (14)0.0121 (14)
C30.090 (2)0.108 (3)0.0753 (19)0.0319 (19)0.0035 (17)0.0120 (17)
C40.103 (3)0.089 (2)0.0588 (16)0.0135 (19)0.0031 (16)0.0019 (15)
C50.114 (3)0.081 (2)0.0521 (15)0.0105 (19)0.0169 (16)0.0027 (14)
C60.085 (2)0.0721 (19)0.0583 (15)0.0137 (15)0.0200 (14)0.0003 (13)
C80.0638 (17)0.0667 (18)0.0669 (15)0.0105 (13)0.0190 (13)0.0060 (13)
C90.0568 (15)0.0511 (15)0.0579 (13)0.0013 (12)0.0172 (12)0.0001 (11)
C100.0464 (14)0.0572 (15)0.0575 (13)0.0015 (11)0.0170 (11)0.0014 (11)
C110.0488 (14)0.0612 (16)0.0580 (13)0.0038 (11)0.0133 (11)0.0046 (11)
C120.0509 (15)0.0692 (18)0.0602 (14)0.0021 (12)0.0083 (11)0.0079 (12)
C130.0457 (14)0.0577 (15)0.0582 (13)0.0046 (11)0.0090 (11)0.0011 (12)
C140.0530 (15)0.0545 (15)0.0559 (13)0.0088 (12)0.0080 (11)0.0006 (11)
C150.0639 (17)0.084 (2)0.0639 (15)0.0053 (14)0.0065 (13)0.0087 (14)
C160.086 (2)0.102 (3)0.0598 (16)0.0041 (18)0.0054 (15)0.0133 (15)
C170.0692 (19)0.083 (2)0.0674 (17)0.0049 (16)0.0061 (14)0.0028 (15)
C180.0583 (17)0.076 (2)0.0782 (18)0.0008 (14)0.0007 (14)0.0073 (15)
C190.0575 (16)0.0656 (17)0.0639 (14)0.0014 (13)0.0078 (12)0.0024 (12)
C200.0474 (14)0.0630 (16)0.0448 (11)0.0062 (11)0.0110 (10)0.0028 (11)
C210.0568 (16)0.0739 (19)0.0666 (15)0.0072 (13)0.0078 (12)0.0090 (13)
C220.0596 (19)0.097 (3)0.0828 (19)0.0129 (16)0.0055 (15)0.0028 (17)
C230.0462 (17)0.096 (2)0.100 (2)0.0062 (16)0.0039 (16)0.0247 (19)
C240.073 (2)0.0684 (19)0.0896 (19)0.0136 (15)0.0176 (16)0.0093 (15)
C250.0616 (17)0.0636 (18)0.0627 (14)0.0039 (13)0.0087 (13)0.0018 (13)
F10.0629 (12)0.1386 (19)0.197 (2)0.0270 (11)0.0043 (13)0.0207 (15)
Geometric parameters (Å, º) top
Cl1—C171.737 (2)C12—C131.501 (3)
S1—C81.714 (2)C12—H12A0.9700
S1—C101.731 (2)C12—H12B0.9700
N1—C101.297 (3)C13—C141.463 (3)
N1—C91.392 (3)C14—C151.376 (3)
N2—C101.362 (3)C14—C191.398 (3)
N2—N31.378 (2)C15—C161.388 (3)
N2—C111.482 (3)C15—H150.9300
N3—C131.290 (3)C16—C171.369 (4)
C1—C61.381 (3)C16—H160.9300
C1—C21.386 (3)C17—C181.373 (4)
C1—C91.472 (3)C18—C191.375 (3)
C2—C31.382 (3)C18—H180.9300
C2—H20.9300C19—H190.9300
C3—C41.368 (4)C20—C211.380 (3)
C3—H30.9300C20—C251.380 (3)
C4—C51.358 (4)C21—C221.368 (4)
C4—H40.9300C21—H210.9300
C5—C61.376 (3)C22—C231.350 (4)
C5—H50.9300C22—H220.9300
C6—H60.9300C23—C241.363 (4)
C8—C91.357 (3)C23—F11.371 (3)
C8—H80.9300C24—C251.384 (4)
C11—C201.500 (3)C24—H240.9300
C11—C121.554 (3)C25—H250.9300
C11—H110.9800
C8—S1—C1087.52 (12)C13—C12—H12B111.1
C10—N1—C9109.26 (19)C11—C12—H12B111.1
C10—N2—N3118.38 (19)H12A—C12—H12B109.0
C10—N2—C11126.72 (18)N3—C13—C14121.0 (2)
N3—N2—C11114.24 (17)N3—C13—C12113.54 (19)
C13—N3—N2108.45 (19)C14—C13—C12125.4 (2)
C6—C1—C2117.5 (2)C15—C14—C19118.2 (2)
C6—C1—C9121.4 (2)C15—C14—C13120.4 (2)
C2—C1—C9121.0 (2)C19—C14—C13121.3 (2)
C3—C2—C1120.7 (3)C14—C15—C16120.8 (3)
C3—C2—H2119.7C14—C15—H15119.6
C1—C2—H2119.7C16—C15—H15119.6
C4—C3—C2120.3 (3)C17—C16—C15119.6 (3)
C4—C3—H3119.9C17—C16—H16120.2
C2—C3—H3119.9C15—C16—H16120.2
C5—C4—C3119.9 (3)C16—C17—C18120.8 (2)
C5—C4—H4120.0C16—C17—Cl1118.8 (2)
C3—C4—H4120.0C18—C17—Cl1120.3 (2)
C4—C5—C6120.1 (3)C17—C18—C19119.3 (3)
C4—C5—H5120.0C17—C18—H18120.3
C6—C5—H5120.0C19—C18—H18120.3
C5—C6—C1121.5 (3)C18—C19—C14121.1 (3)
C5—C6—H6119.2C18—C19—H19119.5
C1—C6—H6119.2C14—C19—H19119.5
C9—C8—S1111.78 (19)C21—C20—C25117.9 (2)
C9—C8—H8124.1C21—C20—C11120.2 (2)
S1—C8—H8124.1C25—C20—C11121.9 (2)
C8—C9—N1114.5 (2)C22—C21—C20121.7 (3)
C8—C9—C1126.4 (2)C22—C21—H21119.2
N1—C9—C1119.1 (2)C20—C21—H21119.2
N1—C10—N2123.5 (2)C23—C22—C21118.1 (3)
N1—C10—S1116.92 (17)C23—C22—H22121.0
N2—C10—S1119.57 (17)C21—C22—H22121.0
N2—C11—C20113.08 (19)C22—C23—C24123.5 (3)
N2—C11—C12100.03 (17)C22—C23—F1118.8 (3)
C20—C11—C12115.44 (19)C24—C23—F1117.6 (3)
N2—C11—H11109.3C23—C24—C25117.3 (3)
C20—C11—H11109.3C23—C24—H24121.4
C12—C11—H11109.3C25—C24—H24121.4
C13—C12—C11103.54 (19)C20—C25—C24121.4 (2)
C13—C12—H12A111.1C20—C25—H25119.3
C11—C12—H12A111.1C24—C25—H25119.3
C10—N2—N3—C13174.7 (2)N2—N3—C13—C14176.4 (2)
C11—N2—N3—C133.4 (3)N2—N3—C13—C120.5 (3)
C6—C1—C2—C30.7 (4)C11—C12—C13—N32.3 (3)
C9—C1—C2—C3177.6 (3)C11—C12—C13—C14179.0 (2)
C1—C2—C3—C40.8 (5)N3—C13—C14—C15172.7 (2)
C2—C3—C4—C50.1 (5)C12—C13—C14—C153.8 (4)
C3—C4—C5—C60.9 (5)N3—C13—C14—C195.3 (4)
C4—C5—C6—C11.0 (4)C12—C13—C14—C19178.2 (2)
C2—C1—C6—C50.2 (4)C19—C14—C15—C161.1 (4)
C9—C1—C6—C5176.7 (2)C13—C14—C15—C16176.9 (2)
C10—S1—C8—C90.2 (2)C14—C15—C16—C170.5 (5)
S1—C8—C9—N10.2 (3)C15—C16—C17—C180.6 (5)
S1—C8—C9—C1178.26 (19)C15—C16—C17—Cl1177.8 (2)
C10—N1—C9—C80.0 (3)C16—C17—C18—C191.1 (4)
C10—N1—C9—C1178.2 (2)Cl1—C17—C18—C19177.3 (2)
C6—C1—C9—C82.2 (4)C17—C18—C19—C140.5 (4)
C2—C1—C9—C8178.9 (3)C15—C14—C19—C180.6 (4)
C6—C1—C9—N1175.8 (2)C13—C14—C19—C18177.4 (2)
C2—C1—C9—N10.9 (4)N2—C11—C20—C21117.2 (2)
C9—N1—C10—N2177.8 (2)C12—C11—C20—C21128.4 (2)
C9—N1—C10—S10.2 (3)N2—C11—C20—C2563.6 (3)
N3—N2—C10—N1178.1 (2)C12—C11—C20—C2550.8 (3)
C11—N2—C10—N18.0 (4)C25—C20—C21—C221.2 (4)
N3—N2—C10—S13.9 (3)C11—C20—C21—C22178.0 (2)
C11—N2—C10—S1174.08 (19)C20—C21—C22—C230.1 (4)
C8—S1—C10—N10.3 (2)C21—C22—C23—C241.0 (5)
C8—S1—C10—N2177.8 (2)C21—C22—C23—F1178.4 (3)
C10—N2—C11—C2061.7 (3)C22—C23—C24—C251.0 (5)
N3—N2—C11—C20127.8 (2)F1—C23—C24—C25178.4 (2)
C10—N2—C11—C12175.0 (2)C21—C20—C25—C241.3 (4)
N3—N2—C11—C124.5 (3)C11—C20—C25—C24177.9 (2)
N2—C11—C12—C133.7 (2)C23—C24—C25—C200.2 (4)
C20—C11—C12—C13125.4 (2)

Experimental details

Crystal data
Chemical formulaC24H17ClFN3S
Mr433.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.1360 (9), 16.4129 (16), 11.6066 (7)
β (°) 98.170 (7)
V3)2099.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.25 × 0.25 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.956, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11642, 4850, 2627
Rint0.043
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.140, 1.03
No. of reflections4850
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.28

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632–2635.  Web of Science PubMed CAS Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263–268.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o392–o393.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChimenti, F., Carradori, S., Secci, D., Bolasco, A., Bizzarri, B., Chimenti, P., Granese, A., Yáñez, M. & Orallo, F. (2010). Eur. J. Med. Chem. 45, 800–804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLv, P.-C., Li, D.-D., Li, Q.-S., Lu, X., Xiao, Z.-P. & Zhu, H.-L. (2011). Bioorg. Med. Chem. Lett. 21, 5374–5377.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds