organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-N′-[(3Z)-2-oxo-2,3-di­hydro-1H-indol-3-yl­­idene]-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 March 2013; accepted 18 March 2013; online 23 March 2013)

In the title compound, C18H14N6O2, the benzene ring is slightly twisted out of the plane of the 1,2,3-triazole ring (r.m.s. deviation = 0.010 Å), forming a dihedral angle of 6.20 (13)°. The nine non-H ring atoms of the fused five- and six-membered ring system are almost coplanar (r.m.s. deviation = 0.032 Å). The near coplanarity in the central residue is consolidated by an intra­molecular bifurcated N—H⋯(O,N) hydrogen bond. The conformation about the N=C bond is Z. In the crystal, supra­molecular chains along [101] are sustained by N—H⋯O hydrogen bonds and C—H⋯O inter­actions. These are consolidated into a three-dimensional architecture by C—H⋯π and ππ inter­actions; the latter occur between centrosymmetrically related 1,2,3-triazole rings [centroid–centroid distance = 3.6056 (14) Å].

Related literature

For the biological activity of 1,2,3-triazoles, see: Abdel-Wahab et al. (2012[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.]); Jordão et al. (2011[Jordão, A. K., Ferreira, V. F., Souza, T. M., Faria, G. G., Machado, V., Abrantes, J. L., de Souza, M. C. & Cunha, A. C. (2011). Bioorg. Med. Chem. 19, 1860-1865.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N6O2

  • Mr = 346.35

  • Monoclinic, P 21 /n

  • a = 7.1835 (8) Å

  • b = 18.620 (2) Å

  • c = 12.2949 (11) Å

  • β = 101.676 (11)°

  • V = 1610.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.25 × 0.05 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.971, Tmax = 1.000

  • 8876 measured reflections

  • 3715 independent reflections

  • 2131 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.147

  • S = 1.03

  • 3715 reflections

  • 244 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O2 0.89 (1) 1.95 (2) 2.685 (2) 138 (2)
N4—H4⋯N3 0.89 (1) 2.34 (2) 2.715 (3) 105 (2)
N6—H6⋯O1i 0.88 (1) 1.95 (2) 2.783 (2) 157 (3)
C14—H14⋯O2ii 0.93 2.33 3.244 (3) 168
C9—H9CCg1iii 0.96 2.94 3.822 (2) 154
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) was investigated in relation to the established biological activities exhibited by 1,2,3-triazoles (Abdel-Wahab et al., 2012; Jordão et al., 2011).

With respect to the 1,2,3-triazole ring (r.m.s. deviation = 0.010 Å) in (I), Fig. 1, both the benzene [dihedral angle = 26.20 (13)°] and to a lesser extent the amide residues are twisted [C10—C7—C8—C9 torsion angle = -8.8 (4)°]. The nine non-hydrogen ring atoms of the 3-imino-1H-indol-2-one residue are co-planar, having a r.m.s. deviation of 0.032 Å. The formation of intramolecular N4—H···O2 and N4—H···N3 hydrogen bonds, Table 1, confers stability to the co-planar arrangement in the central region of the molecule, i.e. the N4—N5—C12—C11 and N3—C7—C10—N4 torsion angles are -0.9 (3) and -6.3 (3)°, respectively. Finally, the conformation about the N5C12 bond is Z.

Supramolecular chains propagating along [1 0 1] feature in the crystal packing. These are sustained by N6—H···O1 hydrogen bonds and supported by C14—H···O2 interactions, Table 1, and lead to 12-membered {···OCN2C3H···OCNH} synthons, Fig. 2. The chains assemble in layers parallel to (1 0 1) and are connected into the three-dimensional architecture by C—H···π interactions between a methyl-H and the C13–C18 benzene ring, Table 1, and ππ interactions between centrosymmetrically related 1,2,3-triazole rings [inter-centroid distance = 3.6056 (14) Å for symmetry operation 1 - x, 1 - y, 1 - z], Fig. 3.

Related literature top

For the biological activity of 1,2,3-triazoles, see: Abdel-Wahab et al. (2012); Jordão et al. (2011).

Experimental top

A mixture of 5-methyl-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide (0.22 g, 0.001 M) and indoline-2,3-dione (0.15 g, 0.001 M) in anhydrous ethanol (30 ml) in the presence of a catalytic amount of glacial acetic acid was heated under reflux for about 4 h. The resultant solid was filtered and dried. Re-crystallization was by slow evaporation of its DMF solution which yielded yellow prisms in 73% yield; M.pt: 562–564 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(C). Nitrogen-bond H-atoms were refined with the distance restraint N—H = 0.88±0.01 Å, and with unrestricted Uiso.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain along [1 0 1] sustained by N—H···O and C—H···O interactions, shown as blue and orange dashed lines, respectively.
[Figure 3] Fig. 3. A view of the crystal packing in projection down the b axis. The N—H···O, C—H···π and ππ interactions are shown as blue, brown and purple dashed lines, respectively.
5-Methyl-N'-[(3Z)-2-oxo-2,3-dihydro-1H-indol-3-ylidene]-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide top
Crystal data top
C18H14N6O2F(000) = 720
Mr = 346.35Dx = 1.428 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1697 reflections
a = 7.1835 (8) Åθ = 2.9–27.5°
b = 18.620 (2) ŵ = 0.10 mm1
c = 12.2949 (11) ÅT = 295 K
β = 101.676 (11)°Prism, yellow
V = 1610.5 (3) Å30.25 × 0.05 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3715 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2131 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.0°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2124
Tmin = 0.971, Tmax = 1.000l = 1516
8876 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.2228P]
where P = (Fo2 + 2Fc2)/3
3715 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.16 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H14N6O2V = 1610.5 (3) Å3
Mr = 346.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1835 (8) ŵ = 0.10 mm1
b = 18.620 (2) ÅT = 295 K
c = 12.2949 (11) Å0.25 × 0.05 × 0.05 mm
β = 101.676 (11)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3715 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2131 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 1.000Rint = 0.039
8876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0582 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
3715 reflectionsΔρmin = 0.20 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5195 (3)0.58729 (9)0.26022 (12)0.0597 (5)
O20.8162 (3)0.71122 (10)0.60828 (12)0.0613 (5)
N10.7254 (2)0.41347 (10)0.47664 (13)0.0418 (5)
N20.8247 (3)0.45889 (11)0.55553 (14)0.0485 (5)
N30.7912 (3)0.52406 (11)0.52030 (14)0.0461 (5)
N40.6750 (3)0.64843 (10)0.41239 (14)0.0446 (5)
N50.6338 (3)0.71428 (10)0.36535 (14)0.0429 (5)
N60.8130 (3)0.83398 (12)0.58399 (15)0.0517 (5)
C10.7454 (3)0.33768 (13)0.49580 (18)0.0430 (6)
C20.7219 (4)0.28982 (14)0.4094 (2)0.0553 (7)
H20.69310.30620.33650.066*
C30.7413 (4)0.21701 (15)0.4314 (2)0.0655 (8)
H30.72290.18440.37290.079*
C40.7873 (4)0.19263 (16)0.5383 (3)0.0670 (8)
H4A0.80080.14370.55270.080*
C50.8131 (4)0.24064 (16)0.6236 (2)0.0669 (8)
H50.84570.22400.69620.080*
C60.7917 (4)0.31390 (15)0.60440 (19)0.0558 (7)
H6A0.80810.34620.66320.067*
C70.6714 (3)0.52181 (12)0.41830 (16)0.0390 (5)
C80.6253 (3)0.45209 (13)0.39001 (16)0.0397 (5)
C90.4854 (3)0.42228 (13)0.29457 (18)0.0509 (6)
H9A0.39600.45900.26420.076*
H9B0.41900.38280.31950.076*
H9C0.55090.40590.23850.076*
C100.6140 (3)0.58757 (12)0.35507 (17)0.0416 (6)
C110.7793 (3)0.76558 (13)0.55151 (18)0.0466 (6)
C120.6838 (3)0.76850 (12)0.43033 (16)0.0395 (5)
C130.6616 (3)0.84409 (12)0.40176 (16)0.0392 (5)
C140.5752 (3)0.88056 (13)0.30717 (17)0.0464 (6)
H140.51440.85570.24430.056*
C150.5807 (3)0.95496 (14)0.30778 (19)0.0531 (7)
H150.52340.98040.24470.064*
C160.6707 (4)0.99165 (14)0.4013 (2)0.0595 (7)
H160.67481.04160.39970.071*
C170.7551 (4)0.95587 (14)0.49753 (19)0.0565 (7)
H170.81500.98090.56040.068*
C180.7469 (3)0.88237 (14)0.49662 (17)0.0438 (6)
H40.739 (3)0.6463 (14)0.4827 (10)0.063 (8)*
H60.876 (4)0.8480 (15)0.6497 (13)0.087 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0920 (12)0.0383 (11)0.0371 (8)0.0049 (9)0.0148 (8)0.0004 (7)
O20.0829 (12)0.0428 (11)0.0470 (9)0.0027 (10)0.0136 (8)0.0080 (8)
N10.0514 (11)0.0315 (11)0.0394 (9)0.0026 (9)0.0015 (8)0.0026 (8)
N20.0584 (12)0.0370 (12)0.0436 (10)0.0009 (10)0.0049 (9)0.0016 (9)
N30.0559 (11)0.0359 (12)0.0417 (10)0.0019 (10)0.0020 (9)0.0023 (8)
N40.0587 (11)0.0312 (12)0.0382 (10)0.0008 (10)0.0041 (9)0.0025 (8)
N50.0538 (11)0.0290 (11)0.0416 (10)0.0017 (9)0.0004 (8)0.0019 (8)
N60.0685 (13)0.0405 (13)0.0380 (10)0.0032 (11)0.0087 (9)0.0057 (9)
C10.0489 (12)0.0282 (13)0.0512 (13)0.0054 (11)0.0087 (10)0.0081 (10)
C20.0716 (16)0.0370 (16)0.0564 (14)0.0058 (14)0.0105 (12)0.0031 (12)
C30.0800 (19)0.0370 (16)0.0777 (18)0.0060 (15)0.0119 (15)0.0003 (14)
C40.0746 (18)0.0349 (16)0.090 (2)0.0088 (14)0.0119 (16)0.0152 (15)
C50.0797 (19)0.0528 (19)0.0660 (16)0.0160 (16)0.0095 (14)0.0251 (15)
C60.0688 (16)0.0438 (16)0.0517 (14)0.0122 (14)0.0051 (12)0.0096 (12)
C70.0468 (12)0.0318 (13)0.0350 (10)0.0039 (10)0.0005 (9)0.0010 (9)
C80.0458 (12)0.0350 (14)0.0364 (11)0.0028 (11)0.0041 (9)0.0036 (10)
C90.0614 (14)0.0355 (14)0.0495 (13)0.0020 (12)0.0038 (11)0.0025 (11)
C100.0505 (12)0.0317 (13)0.0395 (11)0.0029 (11)0.0018 (10)0.0014 (10)
C110.0546 (13)0.0393 (15)0.0399 (12)0.0006 (12)0.0047 (10)0.0005 (11)
C120.0438 (12)0.0315 (13)0.0387 (11)0.0017 (10)0.0021 (9)0.0024 (10)
C130.0440 (11)0.0333 (13)0.0379 (11)0.0030 (11)0.0026 (9)0.0032 (9)
C140.0548 (13)0.0380 (14)0.0422 (12)0.0026 (12)0.0003 (10)0.0018 (11)
C150.0683 (16)0.0372 (15)0.0491 (13)0.0008 (13)0.0003 (12)0.0063 (11)
C160.0813 (18)0.0311 (14)0.0621 (16)0.0035 (14)0.0051 (14)0.0005 (12)
C170.0749 (17)0.0382 (15)0.0510 (14)0.0083 (14)0.0004 (12)0.0101 (12)
C180.0532 (13)0.0348 (14)0.0402 (11)0.0026 (11)0.0022 (10)0.0019 (10)
Geometric parameters (Å, º) top
O1—C101.225 (2)C5—C61.388 (4)
O2—C111.228 (3)C5—H50.9300
N1—C81.363 (2)C6—H6A0.9300
N1—N21.373 (2)C7—C81.367 (3)
N1—C11.433 (3)C7—C101.464 (3)
N2—N31.294 (3)C8—C91.490 (3)
N3—C71.370 (2)C9—H9A0.9600
N4—C101.359 (3)C9—H9B0.9600
N4—N51.363 (2)C9—H9C0.9600
N4—H40.893 (10)C11—C121.510 (3)
N5—C121.292 (3)C12—C131.452 (3)
N6—C111.342 (3)C13—C141.381 (3)
N6—C181.409 (3)C13—C181.398 (3)
N6—H60.881 (10)C14—C151.386 (3)
C1—C21.370 (3)C14—H140.9300
C1—C61.382 (3)C15—C161.381 (3)
C2—C31.384 (3)C15—H150.9300
C2—H20.9300C16—C171.386 (3)
C3—C41.366 (4)C16—H160.9300
C3—H30.9300C17—C181.370 (4)
C4—C51.362 (4)C17—H170.9300
C4—H4A0.9300
C8—N1—N2110.09 (18)C7—C8—C9130.12 (19)
C8—N1—C1131.86 (18)C8—C9—H9A109.5
N2—N1—C1118.04 (16)C8—C9—H9B109.5
N3—N2—N1107.84 (15)H9A—C9—H9B109.5
N2—N3—C7108.50 (18)C8—C9—H9C109.5
C10—N4—N5120.71 (17)H9A—C9—H9C109.5
C10—N4—H4120.9 (17)H9B—C9—H9C109.5
N5—N4—H4118.4 (17)O1—C10—N4123.7 (2)
C12—N5—N4115.54 (17)O1—C10—C7123.0 (2)
C11—N6—C18111.56 (17)N4—C10—C7113.29 (17)
C11—N6—H6126 (2)O2—C11—N6127.5 (2)
C18—N6—H6123 (2)O2—C11—C12126.4 (2)
C2—C1—C6120.5 (2)N6—C11—C12106.15 (19)
C2—C1—N1121.36 (19)N5—C12—C13127.19 (18)
C6—C1—N1118.1 (2)N5—C12—C11126.6 (2)
C1—C2—C3119.6 (2)C13—C12—C11106.22 (18)
C1—C2—H2120.2C14—C13—C18119.9 (2)
C3—C2—H2120.2C14—C13—C12133.57 (19)
C4—C3—C2120.6 (3)C18—C13—C12106.52 (17)
C4—C3—H3119.7C13—C14—C15118.6 (2)
C2—C3—H3119.7C13—C14—H14120.7
C5—C4—C3119.4 (3)C15—C14—H14120.7
C5—C4—H4A120.3C16—C15—C14120.5 (2)
C3—C4—H4A120.3C16—C15—H15119.8
C4—C5—C6121.4 (2)C14—C15—H15119.8
C4—C5—H5119.3C15—C16—C17121.6 (2)
C6—C5—H5119.3C15—C16—H16119.2
C1—C6—C5118.4 (3)C17—C16—H16119.2
C1—C6—H6A120.8C18—C17—C16117.6 (2)
C5—C6—H6A120.8C18—C17—H17121.2
C8—C7—N3109.67 (19)C16—C17—H17121.2
C8—C7—C10129.15 (18)C17—C18—C13121.8 (2)
N3—C7—C10121.2 (2)C17—C18—N6128.7 (2)
N1—C8—C7103.88 (17)C13—C18—N6109.5 (2)
N1—C8—C9125.7 (2)
C8—N1—N2—N30.7 (3)N3—C7—C10—O1174.1 (2)
C1—N1—N2—N3178.00 (19)C8—C7—C10—N4175.3 (2)
N1—N2—N3—C70.4 (2)N3—C7—C10—N46.3 (3)
C10—N4—N5—C12174.1 (2)C18—N6—C11—O2178.5 (2)
C8—N1—C1—C225.8 (4)C18—N6—C11—C120.8 (3)
N2—N1—C1—C2152.5 (2)N4—N5—C12—C13178.4 (2)
C8—N1—C1—C6155.0 (2)N4—N5—C12—C110.9 (3)
N2—N1—C1—C626.7 (3)O2—C11—C12—N53.6 (4)
C6—C1—C2—C31.2 (4)N6—C11—C12—N5177.0 (2)
N1—C1—C2—C3179.6 (2)O2—C11—C12—C13176.9 (2)
C1—C2—C3—C41.3 (4)N6—C11—C12—C132.4 (3)
C2—C3—C4—C50.3 (4)N5—C12—C13—C145.4 (4)
C3—C4—C5—C60.7 (4)C11—C12—C13—C14175.2 (2)
C2—C1—C6—C50.2 (4)N5—C12—C13—C18176.4 (2)
N1—C1—C6—C5179.4 (2)C11—C12—C13—C183.1 (2)
C4—C5—C6—C10.8 (4)C18—C13—C14—C152.1 (3)
N2—N3—C7—C81.3 (3)C12—C13—C14—C15179.9 (2)
N2—N3—C7—C10177.4 (2)C13—C14—C15—C160.1 (4)
N2—N1—C8—C71.4 (2)C14—C15—C16—C171.1 (4)
C1—N1—C8—C7177.0 (2)C15—C16—C17—C180.3 (4)
N2—N1—C8—C9173.2 (2)C16—C17—C18—C131.7 (4)
C1—N1—C8—C98.4 (4)C16—C17—C18—N6176.8 (2)
N3—C7—C8—N11.6 (2)C14—C13—C18—C172.9 (4)
C10—C7—C8—N1176.9 (2)C12—C13—C18—C17178.5 (2)
N3—C7—C8—C9172.6 (2)C14—C13—C18—N6175.9 (2)
C10—C7—C8—C98.8 (4)C12—C13—C18—N62.7 (3)
N5—N4—C10—O10.5 (4)C11—N6—C18—C17179.9 (3)
N5—N4—C10—C7179.92 (19)C11—N6—C18—C131.2 (3)
C8—C7—C10—O14.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4···O20.89 (1)1.95 (2)2.685 (2)138 (2)
N4—H4···N30.89 (1)2.34 (2)2.715 (3)105 (2)
N6—H6···O1i0.88 (1)1.95 (2)2.783 (2)157 (3)
C14—H14···O2ii0.932.333.244 (3)168
C9—H9C···Cg1iii0.962.943.822 (2)154
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y+3/2, z1/2; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H14N6O2
Mr346.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.1835 (8), 18.620 (2), 12.2949 (11)
β (°) 101.676 (11)
V3)1610.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.05 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.971, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8876, 3715, 2131
Rint0.039
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.147, 1.03
No. of reflections3715
No. of parameters244
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4···O20.893 (10)1.951 (18)2.685 (2)138 (2)
N4—H4···N30.893 (10)2.34 (2)2.715 (3)105.4 (18)
N6—H6···O1i0.881 (10)1.949 (15)2.783 (2)157 (3)
C14—H14···O2ii0.932.333.244 (3)168
C9—H9C···Cg1iii0.962.943.822 (2)154
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y+3/2, z1/2; (iii) x+3/2, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAbdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263–268.  Web of Science CAS PubMed Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJordão, A. K., Ferreira, V. F., Souza, T. M., Faria, G. G., Machado, V., Abrantes, J. L., de Souza, M. C. & Cunha, A. C. (2011). Bioorg. Med. Chem. 19, 1860–1865.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds