organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o482-o483

N′-[3-Cyano-4-(4-fluoro­phen­yl)-6-meth­­oxy-4H-benzo[h]chromen-2-yl]-N,N-di­methyl­methanimidamide

aChemistry Department, Faculty of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia, bPharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, dApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and fChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 February 2013; accepted 26 February 2013; online 2 March 2013)

In the title compound, C24H20FN3O2, despite the 4H-pyran ring having a flattened half-chair conformation [the methine C atom lies 0.257 (3) Å above the plane of the remaining atoms with an r.m.s. deviation of 0.0295 Å], the 14 non-H atoms of the 4H-benzo[h]chromene residue are approximately coplanar (r.m.s. deviation = 0.081 Å). The benzene ring is nearly perpendicular to this plane [dihedral angle = 76.18 (10)°], but the planar (r.m.s. deviation = 0.033 Å) dimethyl­methanimidamide substituent is coplanar [dihedral angle = 1.96 (12)°]. In the crystal, centrosymmetric dimeric aggregates arise from C—H⋯N inter­actions, and these are connected into supra­molecular layers in the ab plane by C—H⋯π and ππ [inter­centroid (central C6 ring)⋯(outer C6 ring)i distance = 3.8564 (14) Å] inter­actions.

Related literature

For background to synthetic aspects of benzochromene derivatives, see: El-Agrody et al. (2011[El-Agrody, A. M., Sabry, N. M. & Motlaq, S. S. (2011). J. Chem. Res. 35, 77-83.]); Sabry et al. (2011[Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.]). For biological inter­est in these derivatives, see: Kidwai et al. (2010[Kidwai, M., Poddar, R., Bhardwaj, S., Singh, S. & Mehta Luthra, P. (2010). Eur. J. Med. Chem. 45, 5031-5038.]); Singh et al. (2010[Singh, O. M., Devi, N. S., Thokchom, D. S. & Sharma, G. J. (2010). Eur. J. Med. Chem. 45, 2250-2257.]); Vukovic et al. (2010[Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Food Chem. 120, 1011-1018.]); Abd-El-Aziz et al. (2007[Abd-El-Aziz, A. S., Mohamed, H. M., Mohammed, S., Zahid, S., Ata, A., Bedair, A. H., El-Agrody, A. M. & Harvey, P. D. (2007). J. Heterocycl. Chem. 44, 1287-1301.]). For a closely related structure, see: Al-Dies et al. (2012[Al-Dies, A.-A. M., Amr, A.-G. E., El-Agrody, A. M., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1934-o1935.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20FN3O2

  • Mr = 401.43

  • Triclinic, [P \overline 1]

  • a = 8.8438 (8) Å

  • b = 11.0887 (12) Å

  • c = 11.8001 (13) Å

  • α = 66.054 (10)°

  • β = 83.684 (8)°

  • γ = 75.946 (9)°

  • V = 1025.85 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.982, Tmax = 1.000

  • 9814 measured reflections

  • 4745 independent reflections

  • 2729 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.179

  • S = 1.04

  • 4745 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C18–C23, C2–C7 and C1,C2,C7–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯N3i 0.93 2.62 3.542 (3) 171
C5—H5⋯Cg1ii 0.93 2.79 3.670 (3) 159
C15—H15BCg2iii 0.96 2.93 3.732 (3) 142
C16—H16CCg3iii 0.96 2.91 3.589 (3) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzochromene derivatives have recently received intensified interest due to their synthetic (El-Agrody et al., 2011; Sabry et al., 2011) and pharmaceutical importance (Kidwai et al., 2010; Singh et al., 2010; Vukovic et al., 2010). In continuation of our interest in the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives (Abd-El-Aziz et al., 2007), the X-ray crystal structure of the title compound, (I), was determined.

In (I), Fig. 1, the 4H-pyran ring approximates a half-chair conformation with the methine-C11 atom lying 0.257 (3) Å out of the least-squares plane defined by the remaining atoms (O1,C1,C10,C12 and C13) which have a r.m.s. deviation of 0.0295 Å. Despite this, the 14 non-hydrogen atoms comprising the 4H-benzo[h]chromene fused ring system approximate a plane with a r.m.s. deviation of 0.081 Å. The benzene ring is approximately perpendicular to this plane, forming a dihedral angle of 76.18 (10)°. The atoms (N1,N2,C14–C16) comprising the dimethylmethanimidamide residue are planar (r.m.s. deviation = 0.033 Å) and this is co-planar with the 4H-benzo[h]chromene residue; dihedral angle = 1.96 (12)°. Finally, the methoxy group is co-planar with the ring to which it is connected as manifested in the C24—O2—C8—C9 torsion angle of 3.7 (3)°. The overall structure resembles closely that reported recently for the parent amine (Al-Dies et al., 2012).

In the crystal packing, C—H···N interactions, Table 1, lead to centrosymmetric dimeric aggregates. These are linked into layers in the ab plane by C—H···π, Table 1, and ππ [inter-centroid (C1,C2,C7–C10)···(C2—C7)i distance = 3.8564 (14) Å, angle of inclination = 0.07 (11)° for i: 1 - x, -y, 1 - z] interactions, Fig. 2.

Related literature top

For background to synthetic aspects of benzochromene derivatives, see: El-Agrody et al. (2011); Sabry et al. (2011). For biological interest in these derivatives, see: Kidwai et al. (2010); Singh et al. (2010); Vukovic et al. (2010); Abd-El-Aziz et al. (2007). For a closely related structure, see: Al-Dies et al. (2012).

Experimental top

A mixture of 2-amino-4-(4-fluorophenyl)-6-methoxy-4H-benzo[h]chromene-3-carbonitrile (0.01 mol), dimethylformamide-dipentylacetal (DMF-DPA) (0.01 mol) and benzene (30 ml) was refluxed for 3 h. The solvent was removed under reduced pressure and the resulting solid was recrystallized from benzene to give the title compound; M.pt: 513–514 K.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. View in projection down the b axis of the crystal packing in (I). The C—H···N, C—H···π and ππ interactions are shown as blue, orange and purple dashed lines, respectively.
N'-[3-Cyano-4-(4-fluorophenyl)-6-methoxy-4H-benzo[h]chromen-2-yl]-N,N-dimethylmethanimidamide top
Crystal data top
C24H20FN3O2Z = 2
Mr = 401.43F(000) = 420
Triclinic, P1Dx = 1.300 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8438 (8) ÅCell parameters from 2074 reflections
b = 11.0887 (12) Åθ = 2.9–27.5°
c = 11.8001 (13) ŵ = 0.09 mm1
α = 66.054 (10)°T = 295 K
β = 83.684 (8)°Prism, light-brown
γ = 75.946 (9)°0.30 × 0.20 × 0.10 mm
V = 1025.85 (18) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4745 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2729 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1410
Tmin = 0.982, Tmax = 1.000l = 1515
9814 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.1794P]
where P = (Fo2 + 2Fc2)/3
4745 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C24H20FN3O2γ = 75.946 (9)°
Mr = 401.43V = 1025.85 (18) Å3
Triclinic, P1Z = 2
a = 8.8438 (8) ÅMo Kα radiation
b = 11.0887 (12) ŵ = 0.09 mm1
c = 11.8001 (13) ÅT = 295 K
α = 66.054 (10)°0.30 × 0.20 × 0.10 mm
β = 83.684 (8)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4745 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2729 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 1.000Rint = 0.034
9814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
4745 reflectionsΔρmin = 0.24 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.10342 (19)0.85738 (18)0.04207 (18)0.1067 (7)
O10.71783 (15)0.23009 (15)0.24647 (13)0.0480 (4)
O20.17217 (17)0.07626 (18)0.46549 (17)0.0682 (5)
N10.91690 (18)0.34311 (18)0.21651 (16)0.0462 (4)
N21.1331 (2)0.2837 (2)0.10802 (18)0.0584 (5)
N30.8000 (2)0.5769 (2)0.3565 (2)0.0720 (6)
C10.5773 (2)0.1989 (2)0.30364 (19)0.0406 (5)
C20.5430 (2)0.0847 (2)0.29533 (19)0.0429 (5)
C30.6411 (3)0.0088 (2)0.2340 (2)0.0520 (6)
H30.73310.03370.19650.062*
C40.6024 (3)0.1006 (3)0.2292 (2)0.0659 (7)
H40.66840.14990.18870.079*
C50.4646 (3)0.1394 (3)0.2847 (3)0.0698 (7)
H50.43930.21420.28060.084*
C60.3676 (3)0.0688 (3)0.3445 (2)0.0617 (7)
H60.27660.09620.38150.074*
C70.4025 (2)0.0459 (2)0.3515 (2)0.0476 (5)
C80.3038 (2)0.1228 (2)0.4135 (2)0.0484 (5)
C90.3424 (2)0.2318 (2)0.4185 (2)0.0463 (5)
H90.27690.28030.45990.056*
C100.4819 (2)0.2725 (2)0.36114 (18)0.0407 (5)
C110.5173 (2)0.3992 (2)0.36151 (18)0.0408 (5)
H110.50200.39620.44610.049*
C120.6864 (2)0.4009 (2)0.32420 (19)0.0418 (5)
C130.7733 (2)0.3255 (2)0.26505 (19)0.0421 (5)
C140.9972 (2)0.2654 (2)0.1639 (2)0.0515 (6)
H140.95820.19410.16540.062*
C151.2168 (3)0.2017 (4)0.0420 (3)0.0856 (9)
H15A1.16580.12960.05590.128*
H15B1.32180.16440.07140.128*
H15C1.21830.25680.04520.128*
C161.1981 (3)0.3944 (3)0.1012 (3)0.0690 (7)
H16A1.14160.43340.15690.103*
H16B1.18990.46180.01810.103*
H16C1.30570.36120.12430.103*
C170.7526 (2)0.4977 (2)0.3405 (2)0.0510 (6)
C180.4058 (2)0.5249 (2)0.27590 (19)0.0415 (5)
C190.4420 (3)0.5885 (2)0.1521 (2)0.0554 (6)
H190.53690.55540.12110.066*
C200.3412 (3)0.6998 (3)0.0731 (3)0.0704 (7)
H200.36750.74210.01000.084*
C210.2032 (3)0.7458 (3)0.1193 (3)0.0668 (7)
C220.1591 (3)0.6859 (3)0.2398 (3)0.0699 (8)
H220.06210.71860.26840.084*
C230.2623 (2)0.5750 (2)0.3191 (2)0.0582 (6)
H230.23490.53380.40210.070*
C240.0645 (3)0.1533 (3)0.5229 (3)0.0758 (8)
H24A0.02300.11170.55520.114*
H24B0.02910.24340.46280.114*
H24C0.11470.15660.58930.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0857 (11)0.0803 (13)0.1207 (16)0.0159 (9)0.0371 (10)0.0162 (11)
O10.0466 (8)0.0539 (10)0.0540 (9)0.0222 (7)0.0144 (6)0.0293 (8)
O20.0510 (9)0.0675 (12)0.0898 (13)0.0299 (8)0.0205 (8)0.0305 (10)
N10.0380 (9)0.0529 (11)0.0474 (11)0.0126 (8)0.0044 (7)0.0191 (9)
N20.0426 (10)0.0811 (15)0.0584 (13)0.0176 (10)0.0095 (8)0.0347 (11)
N30.0654 (13)0.0720 (16)0.0951 (18)0.0265 (12)0.0034 (11)0.0440 (14)
C10.0399 (10)0.0404 (12)0.0400 (11)0.0130 (9)0.0035 (8)0.0129 (9)
C20.0453 (11)0.0383 (12)0.0425 (12)0.0096 (9)0.0024 (9)0.0127 (9)
C30.0568 (13)0.0457 (13)0.0532 (14)0.0128 (10)0.0043 (10)0.0195 (11)
C40.0809 (17)0.0533 (16)0.0714 (18)0.0162 (13)0.0074 (13)0.0337 (14)
C50.0837 (18)0.0531 (16)0.088 (2)0.0263 (14)0.0006 (15)0.0366 (15)
C60.0595 (14)0.0521 (15)0.0765 (18)0.0246 (12)0.0003 (12)0.0214 (13)
C70.0485 (11)0.0408 (12)0.0518 (13)0.0144 (9)0.0039 (9)0.0131 (10)
C80.0395 (11)0.0485 (13)0.0529 (14)0.0165 (10)0.0048 (9)0.0129 (11)
C90.0431 (11)0.0435 (12)0.0502 (13)0.0122 (9)0.0076 (9)0.0170 (10)
C100.0413 (10)0.0396 (12)0.0387 (11)0.0126 (9)0.0038 (8)0.0118 (9)
C110.0445 (10)0.0427 (12)0.0382 (11)0.0139 (9)0.0063 (8)0.0181 (10)
C120.0420 (10)0.0402 (12)0.0466 (12)0.0128 (9)0.0008 (9)0.0187 (10)
C130.0406 (10)0.0442 (12)0.0412 (12)0.0156 (9)0.0003 (8)0.0130 (10)
C140.0428 (11)0.0607 (15)0.0544 (14)0.0161 (10)0.0038 (10)0.0246 (12)
C150.0602 (15)0.122 (3)0.096 (2)0.0189 (16)0.0195 (14)0.071 (2)
C160.0544 (14)0.083 (2)0.0708 (18)0.0321 (13)0.0091 (12)0.0245 (15)
C170.0471 (12)0.0516 (14)0.0571 (14)0.0153 (10)0.0027 (10)0.0225 (12)
C180.0415 (10)0.0388 (11)0.0484 (13)0.0139 (9)0.0070 (9)0.0204 (10)
C190.0500 (12)0.0555 (15)0.0540 (15)0.0084 (11)0.0060 (10)0.0182 (12)
C200.0670 (16)0.0658 (18)0.0583 (16)0.0065 (13)0.0052 (12)0.0077 (14)
C210.0595 (15)0.0540 (16)0.0779 (19)0.0032 (12)0.0184 (13)0.0176 (14)
C220.0443 (13)0.0620 (17)0.100 (2)0.0003 (12)0.0017 (13)0.0358 (16)
C230.0546 (13)0.0544 (15)0.0657 (16)0.0128 (11)0.0142 (11)0.0268 (13)
C240.0433 (13)0.091 (2)0.094 (2)0.0241 (13)0.0203 (13)0.0373 (18)
Geometric parameters (Å, º) top
F1—C211.368 (3)C10—C111.514 (3)
O1—C131.368 (2)C11—C121.514 (3)
O1—C11.398 (2)C11—C181.531 (3)
O2—C81.369 (2)C11—H110.9800
O2—C241.424 (3)C12—C131.350 (3)
N1—C141.293 (3)C12—C171.425 (3)
N1—C131.359 (2)C14—H140.9300
N2—C141.325 (3)C15—H15A0.9600
N2—C161.448 (3)C15—H15B0.9600
N2—C151.450 (3)C15—H15C0.9600
N3—C171.146 (3)C16—H16A0.9600
C1—C101.352 (3)C16—H16B0.9600
C1—C21.414 (3)C16—H16C0.9600
C2—C31.409 (3)C18—C191.380 (3)
C2—C71.420 (3)C18—C231.387 (3)
C3—C41.361 (3)C19—C201.379 (3)
C3—H30.9300C19—H190.9300
C4—C51.396 (3)C20—C211.350 (4)
C4—H40.9300C20—H200.9300
C5—C61.355 (3)C21—C221.361 (4)
C5—H50.9300C22—C231.390 (3)
C6—C71.415 (3)C22—H220.9300
C6—H60.9300C23—H230.9300
C7—C81.424 (3)C24—H24A0.9600
C8—C91.358 (3)C24—H24B0.9600
C9—C101.422 (3)C24—H24C0.9600
C9—H90.9300
C13—O1—C1118.87 (16)C17—C12—C11118.11 (18)
C8—O2—C24116.89 (18)C12—C13—N1122.48 (19)
C14—N1—C13119.91 (19)C12—C13—O1121.15 (17)
C14—N2—C16121.1 (2)N1—C13—O1116.32 (18)
C14—N2—C15121.8 (2)N1—C14—N2122.4 (2)
C16—N2—C15116.9 (2)N1—C14—H14118.8
C10—C1—O1122.70 (18)N2—C14—H14118.8
C10—C1—C2122.93 (18)N2—C15—H15A109.5
O1—C1—C2114.36 (18)N2—C15—H15B109.5
C3—C2—C1123.11 (18)H15A—C15—H15B109.5
C3—C2—C7119.0 (2)N2—C15—H15C109.5
C1—C2—C7117.87 (19)H15A—C15—H15C109.5
C4—C3—C2120.6 (2)H15B—C15—H15C109.5
C4—C3—H3119.7N2—C16—H16A109.5
C2—C3—H3119.7N2—C16—H16B109.5
C3—C4—C5120.6 (2)H16A—C16—H16B109.5
C3—C4—H4119.7N2—C16—H16C109.5
C5—C4—H4119.7H16A—C16—H16C109.5
C6—C5—C4120.4 (2)H16B—C16—H16C109.5
C6—C5—H5119.8N3—C17—C12177.0 (2)
C4—C5—H5119.8C19—C18—C23117.9 (2)
C5—C6—C7121.1 (2)C19—C18—C11121.06 (18)
C5—C6—H6119.4C23—C18—C11121.02 (19)
C7—C6—H6119.4C18—C19—C20121.8 (2)
C6—C7—C2118.3 (2)C18—C19—H19119.1
C6—C7—C8122.9 (2)C20—C19—H19119.1
C2—C7—C8118.84 (19)C21—C20—C19118.4 (3)
C9—C8—O2124.9 (2)C21—C20—H20120.8
C9—C8—C7120.82 (18)C19—C20—H20120.8
O2—C8—C7114.24 (19)C20—C21—C22122.8 (2)
C8—C9—C10120.8 (2)C20—C21—F1118.8 (3)
C8—C9—H9119.6C22—C21—F1118.4 (2)
C10—C9—H9119.6C21—C22—C23118.4 (2)
C1—C10—C9118.72 (19)C21—C22—H22120.8
C1—C10—C11121.56 (17)C23—C22—H22120.8
C9—C10—C11119.67 (18)C18—C23—C22120.8 (2)
C10—C11—C12108.81 (16)C18—C23—H23119.6
C10—C11—C18110.34 (16)C22—C23—H23119.6
C12—C11—C18112.23 (16)O2—C24—H24A109.5
C10—C11—H11108.5O2—C24—H24B109.5
C12—C11—H11108.5H24A—C24—H24B109.5
C18—C11—H11108.5O2—C24—H24C109.5
C13—C12—C17117.84 (18)H24A—C24—H24C109.5
C13—C12—C11123.71 (18)H24B—C24—H24C109.5
C13—O1—C1—C1010.3 (3)C9—C10—C11—C12166.21 (18)
C13—O1—C1—C2170.25 (17)C1—C10—C11—C18107.5 (2)
C10—C1—C2—C3179.1 (2)C9—C10—C11—C1870.2 (2)
O1—C1—C2—C30.4 (3)C10—C11—C12—C1318.4 (3)
C10—C1—C2—C70.7 (3)C18—C11—C12—C13104.0 (2)
O1—C1—C2—C7179.76 (17)C10—C11—C12—C17168.54 (18)
C1—C2—C3—C4179.8 (2)C18—C11—C12—C1769.1 (2)
C7—C2—C3—C40.4 (3)C17—C12—C13—N13.0 (3)
C2—C3—C4—C50.2 (4)C11—C12—C13—N1170.10 (18)
C3—C4—C5—C60.2 (4)C17—C12—C13—O1179.69 (18)
C4—C5—C6—C70.4 (4)C11—C12—C13—O17.2 (3)
C5—C6—C7—C20.6 (4)C14—N1—C13—C12178.0 (2)
C5—C6—C7—C8179.9 (2)C14—N1—C13—O14.6 (3)
C3—C2—C7—C60.6 (3)C1—O1—C13—C128.2 (3)
C1—C2—C7—C6179.56 (19)C1—O1—C13—N1174.29 (17)
C3—C2—C7—C8179.9 (2)C13—N1—C14—N2175.5 (2)
C1—C2—C7—C80.2 (3)C16—N2—C14—N11.0 (4)
C24—O2—C8—C93.7 (3)C15—N2—C14—N1175.6 (2)
C24—O2—C8—C7176.6 (2)C10—C11—C18—C1989.7 (2)
C6—C7—C8—C9179.6 (2)C12—C11—C18—C1931.8 (3)
C2—C7—C8—C90.3 (3)C10—C11—C18—C2387.5 (2)
C6—C7—C8—O20.1 (3)C12—C11—C18—C23151.0 (2)
C2—C7—C8—O2179.39 (18)C23—C18—C19—C201.1 (4)
O2—C8—C9—C10179.8 (2)C11—C18—C19—C20178.4 (2)
C7—C8—C9—C100.5 (3)C18—C19—C20—C210.6 (4)
O1—C1—C10—C9178.99 (17)C19—C20—C21—C220.8 (4)
C2—C1—C10—C91.6 (3)C19—C20—C21—F1179.0 (2)
O1—C1—C10—C113.3 (3)C20—C21—C22—C231.7 (4)
C2—C1—C10—C11176.16 (18)F1—C21—C22—C23178.2 (2)
C8—C9—C10—C11.4 (3)C19—C18—C23—C220.2 (3)
C8—C9—C10—C11176.33 (19)C11—C18—C23—C22177.5 (2)
C1—C10—C11—C1216.1 (3)C21—C22—C23—C181.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C18–C23, C2–C7 and C1,C2,C7–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C23—H23···N3i0.932.623.542 (3)171
C5—H5···Cg1ii0.932.793.670 (3)159
C15—H15B···Cg2iii0.962.933.732 (3)142
C16—H16C···Cg3iii0.962.913.589 (3)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H20FN3O2
Mr401.43
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.8438 (8), 11.0887 (12), 11.8001 (13)
α, β, γ (°)66.054 (10), 83.684 (8), 75.946 (9)
V3)1025.85 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.982, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9814, 4745, 2729
Rint0.034
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.179, 1.04
No. of reflections4745
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C18–C23, C2–C7 and C1,C2,C7–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C23—H23···N3i0.932.623.542 (3)171
C5—H5···Cg1ii0.932.793.670 (3)159
C15—H15B···Cg2iii0.962.933.732 (3)142
C16—H16C···Cg3iii0.962.913.589 (3)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: aamr1963@yahoo.com.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project No. RGP-VPP-099. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAbd-El-Aziz, A. S., Mohamed, H. M., Mohammed, S., Zahid, S., Ata, A., Bedair, A. H., El-Agrody, A. M. & Harvey, P. D. (2007). J. Heterocycl. Chem. 44, 1287–1301.  CAS Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Dies, A.-A. M., Amr, A.-G. E., El-Agrody, A. M., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1934–o1935.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Agrody, A. M., Sabry, N. M. & Motlaq, S. S. (2011). J. Chem. Res. 35, 77–83.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKidwai, M., Poddar, R., Bhardwaj, S., Singh, S. & Mehta Luthra, P. (2010). Eur. J. Med. Chem. 45, 5031–5038.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, O. M., Devi, N. S., Thokchom, D. S. & Sharma, G. J. (2010). Eur. J. Med. Chem. 45, 2250–2257.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Food Chem. 120, 1011–1018.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o482-o483
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds