organic compounds
2-(2,6-Dichlorophenyl)-N-(1,3-thiazol-2-yl)acetamide
aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C11H8Cl2N2OS, the mean plane of the dichlorophenyl ring is twisted by 79.7 (7)° from that of the thiazole ring. In the crystal, molecules are linked via pairs of N—H⋯N hydrogen bonds, forming inversion dimers which stack along the a-axis direction.
Related literature
For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of see: Wu et al. (2008, 2010). For related structures, see: Fun et al. (2012a,b,c,d,e); Butcher et al. (2013a,b). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813006260/hg5297sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813006260/hg5297Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813006260/hg5297Isup3.cml
2,6-Dichlorophenylacetic acid (0.240 g, 1 mmol) and 2-aminothiazole (0.1 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane (Fig. 3). The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methanol and acetone mixture (1:1) by the slow evaporation method (M.P.: 489–491K).
All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH) or 0.99Å (CH2). Isotropic displacement parameters for these atoms were set to 1.18-1.23 (CH, CH2) times Ueq of the parent atom.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C11H8Cl2N2OS | Z = 2 |
Mr = 287.15 | F(000) = 292 |
Triclinic, P1 | Dx = 1.617 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1278 (4) Å | Cell parameters from 3814 reflections |
b = 8.4434 (4) Å | θ = 3.1–37.5° |
c = 10.3637 (6) Å | µ = 0.71 mm−1 |
α = 95.341 (4)° | T = 123 K |
β = 106.140 (5)° | Prism, colorless |
γ = 96.745 (4)° | 0.3 × 0.2 × 0.1 mm |
V = 589.80 (6) Å3 |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 5881 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4481 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 37.6°, θmin = 3.1° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) | k = −13→14 |
Tmin = 0.909, Tmax = 1.000 | l = −17→8 |
10674 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0399P)2 + 0.0356P] where P = (Fo2 + 2Fc2)/3 |
5881 reflections | (Δ/σ)max = 0.001 |
159 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C11H8Cl2N2OS | γ = 96.745 (4)° |
Mr = 287.15 | V = 589.80 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1278 (4) Å | Mo Kα radiation |
b = 8.4434 (4) Å | µ = 0.71 mm−1 |
c = 10.3637 (6) Å | T = 123 K |
α = 95.341 (4)° | 0.3 × 0.2 × 0.1 mm |
β = 106.140 (5)° |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 5881 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) | 4481 reflections with I > 2σ(I) |
Tmin = 0.909, Tmax = 1.000 | Rint = 0.025 |
10674 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.63 e Å−3 |
5881 reflections | Δρmin = −0.30 e Å−3 |
159 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.07341 (5) | 0.70227 (3) | 0.53736 (3) | 0.01622 (7) | |
Cl1 | 0.33730 (6) | 0.82751 (4) | 0.07966 (4) | 0.02553 (8) | |
Cl2 | 0.41255 (5) | 0.22491 (3) | 0.21194 (3) | 0.02086 (7) | |
O1 | 0.23281 (15) | 0.51841 (10) | 0.38090 (10) | 0.02131 (19) | |
N1 | 0.38161 (16) | 0.77833 (11) | 0.43229 (10) | 0.01460 (18) | |
H1N | 0.472 (3) | 0.854 (2) | 0.4214 (18) | 0.033 (5)* | |
N2 | 0.30837 (16) | 0.97170 (11) | 0.58210 (10) | 0.01568 (18) | |
C1 | 0.36862 (17) | 0.52292 (13) | 0.13841 (11) | 0.01338 (19) | |
C2 | 0.29093 (19) | 0.61876 (14) | 0.03922 (13) | 0.0166 (2) | |
C3 | 0.1754 (2) | 0.55517 (16) | −0.09107 (13) | 0.0203 (2) | |
H3A | 0.1266 | 0.6242 | −0.1559 | 0.024* | |
C4 | 0.1326 (2) | 0.38945 (16) | −0.12497 (13) | 0.0203 (2) | |
H4A | 0.0532 | 0.3444 | −0.2135 | 0.024* | |
C5 | 0.20517 (19) | 0.28927 (14) | −0.03037 (13) | 0.0183 (2) | |
H5A | 0.1757 | 0.1757 | −0.0536 | 0.022* | |
C6 | 0.32131 (18) | 0.35632 (13) | 0.09860 (12) | 0.0146 (2) | |
C7 | 0.49054 (18) | 0.59521 (14) | 0.28024 (12) | 0.0154 (2) | |
H7A | 0.5705 | 0.6980 | 0.2768 | 0.019* | |
H7B | 0.5820 | 0.5211 | 0.3199 | 0.019* | |
C8 | 0.35693 (18) | 0.62512 (13) | 0.36893 (12) | 0.0147 (2) | |
C9 | 0.26992 (17) | 0.82641 (13) | 0.51500 (11) | 0.01340 (19) | |
C10 | 0.1753 (2) | 0.98851 (14) | 0.65603 (13) | 0.0184 (2) | |
H10A | 0.1797 | 1.0856 | 0.7118 | 0.022* | |
C11 | 0.0385 (2) | 0.85772 (14) | 0.64385 (13) | 0.0184 (2) | |
H11B | −0.0622 | 0.8526 | 0.6878 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01826 (14) | 0.01396 (12) | 0.01733 (13) | −0.00207 (9) | 0.00928 (11) | −0.00039 (10) |
Cl1 | 0.03479 (19) | 0.01430 (12) | 0.03140 (17) | 0.00564 (11) | 0.01460 (14) | 0.00504 (11) |
Cl2 | 0.02711 (16) | 0.01518 (12) | 0.02042 (14) | 0.00524 (10) | 0.00606 (12) | 0.00315 (10) |
O1 | 0.0265 (5) | 0.0151 (4) | 0.0240 (5) | −0.0047 (3) | 0.0152 (4) | −0.0035 (3) |
N1 | 0.0184 (5) | 0.0107 (4) | 0.0159 (4) | −0.0013 (3) | 0.0095 (4) | −0.0019 (3) |
N2 | 0.0189 (5) | 0.0130 (4) | 0.0161 (4) | 0.0000 (3) | 0.0088 (4) | −0.0014 (3) |
C1 | 0.0147 (5) | 0.0136 (4) | 0.0131 (5) | 0.0019 (4) | 0.0070 (4) | −0.0008 (4) |
C2 | 0.0195 (5) | 0.0148 (5) | 0.0193 (5) | 0.0043 (4) | 0.0108 (4) | 0.0030 (4) |
C3 | 0.0222 (6) | 0.0264 (6) | 0.0160 (5) | 0.0085 (5) | 0.0089 (5) | 0.0054 (5) |
C4 | 0.0175 (6) | 0.0291 (6) | 0.0136 (5) | 0.0053 (5) | 0.0045 (4) | −0.0025 (4) |
C5 | 0.0182 (5) | 0.0178 (5) | 0.0176 (5) | 0.0020 (4) | 0.0055 (4) | −0.0044 (4) |
C6 | 0.0157 (5) | 0.0141 (4) | 0.0145 (5) | 0.0027 (4) | 0.0058 (4) | −0.0002 (4) |
C7 | 0.0160 (5) | 0.0153 (5) | 0.0148 (5) | −0.0007 (4) | 0.0068 (4) | −0.0029 (4) |
C8 | 0.0171 (5) | 0.0136 (4) | 0.0132 (5) | 0.0005 (4) | 0.0057 (4) | −0.0014 (4) |
C9 | 0.0157 (5) | 0.0124 (4) | 0.0127 (4) | 0.0008 (4) | 0.0060 (4) | 0.0007 (4) |
C10 | 0.0230 (6) | 0.0153 (5) | 0.0196 (5) | 0.0024 (4) | 0.0117 (5) | −0.0009 (4) |
C11 | 0.0200 (6) | 0.0192 (5) | 0.0190 (5) | 0.0018 (4) | 0.0119 (5) | 0.0001 (4) |
S1—C11 | 1.7212 (13) | C2—C3 | 1.3901 (18) |
S1—C9 | 1.7306 (11) | C3—C4 | 1.3867 (19) |
Cl1—C2 | 1.7436 (12) | C3—H3A | 0.9500 |
Cl2—C6 | 1.7382 (12) | C4—C5 | 1.3854 (18) |
O1—C8 | 1.2266 (14) | C4—H4A | 0.9500 |
N1—C8 | 1.3637 (14) | C5—C6 | 1.3879 (17) |
N1—C9 | 1.3870 (15) | C5—H5A | 0.9500 |
N1—H1N | 0.890 (19) | C7—C8 | 1.5217 (17) |
N2—C9 | 1.3114 (14) | C7—H7A | 0.9900 |
N2—C10 | 1.3863 (16) | C7—H7B | 0.9900 |
C1—C2 | 1.4006 (16) | C10—C11 | 1.3562 (17) |
C1—C6 | 1.4021 (15) | C10—H10A | 0.9500 |
C1—C7 | 1.5121 (16) | C11—H11B | 0.9500 |
C11—S1—C9 | 88.83 (6) | C5—C6—Cl2 | 117.37 (9) |
C8—N1—C9 | 123.21 (10) | C1—C6—Cl2 | 119.94 (9) |
C8—N1—H1N | 120.7 (12) | C1—C7—C8 | 110.36 (10) |
C9—N1—H1N | 116.1 (12) | C1—C7—H7A | 109.6 |
C9—N2—C10 | 109.52 (10) | C8—C7—H7A | 109.6 |
C2—C1—C6 | 115.65 (11) | C1—C7—H7B | 109.6 |
C2—C1—C7 | 121.89 (10) | C8—C7—H7B | 109.6 |
C6—C1—C7 | 122.43 (10) | H7A—C7—H7B | 108.1 |
C3—C2—C1 | 122.99 (11) | O1—C8—N1 | 122.19 (11) |
C3—C2—Cl1 | 117.80 (9) | O1—C8—C7 | 121.94 (10) |
C1—C2—Cl1 | 119.20 (9) | N1—C8—C7 | 115.86 (10) |
C4—C3—C2 | 118.98 (11) | N2—C9—N1 | 121.19 (10) |
C4—C3—H3A | 120.5 | N2—C9—S1 | 115.54 (9) |
C2—C3—H3A | 120.5 | N1—C9—S1 | 123.27 (8) |
C5—C4—C3 | 120.31 (12) | C11—C10—N2 | 115.85 (11) |
C5—C4—H4A | 119.8 | C11—C10—H10A | 122.1 |
C3—C4—H4A | 119.8 | N2—C10—H10A | 122.1 |
C4—C5—C6 | 119.38 (11) | C10—C11—S1 | 110.26 (9) |
C4—C5—H5A | 120.3 | C10—C11—H11B | 124.9 |
C6—C5—H5A | 120.3 | S1—C11—H11B | 124.9 |
C5—C6—C1 | 122.69 (11) | ||
C6—C1—C2—C3 | −0.48 (18) | C6—C1—C7—C8 | −91.89 (13) |
C7—C1—C2—C3 | −178.78 (11) | C9—N1—C8—O1 | 0.06 (19) |
C6—C1—C2—Cl1 | 178.78 (9) | C9—N1—C8—C7 | 179.00 (10) |
C7—C1—C2—Cl1 | 0.48 (16) | C1—C7—C8—O1 | 53.64 (15) |
C1—C2—C3—C4 | 0.69 (19) | C1—C7—C8—N1 | −125.30 (11) |
Cl1—C2—C3—C4 | −178.58 (10) | C10—N2—C9—N1 | 179.79 (11) |
C2—C3—C4—C5 | −0.38 (19) | C10—N2—C9—S1 | −0.23 (13) |
C3—C4—C5—C6 | −0.09 (19) | C8—N1—C9—N2 | 174.79 (11) |
C4—C5—C6—C1 | 0.30 (19) | C8—N1—C9—S1 | −5.18 (17) |
C4—C5—C6—Cl2 | −178.67 (10) | C11—S1—C9—N2 | 0.53 (10) |
C2—C1—C6—C5 | −0.02 (17) | C11—S1—C9—N1 | −179.49 (10) |
C7—C1—C6—C5 | 178.27 (11) | C9—N2—C10—C11 | −0.31 (16) |
C2—C1—C6—Cl2 | 178.92 (9) | N2—C10—C11—S1 | 0.70 (15) |
C7—C1—C6—Cl2 | −2.79 (16) | C9—S1—C11—C10 | −0.66 (10) |
C2—C1—C7—C8 | 86.29 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N2i | 0.890 (19) | 2.030 (19) | 2.9165 (14) | 173.9 (17) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C11H8Cl2N2OS |
Mr | 287.15 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 123 |
a, b, c (Å) | 7.1278 (4), 8.4434 (4), 10.3637 (6) |
α, β, γ (°) | 95.341 (4), 106.140 (5), 96.745 (4) |
V (Å3) | 589.80 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.71 |
Crystal size (mm) | 0.3 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Agilent Xcalibur (Ruby, Gemini) diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Agilent, 2012) |
Tmin, Tmax | 0.909, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10674, 5881, 4481 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.859 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.096, 1.05 |
No. of reflections | 5881 |
No. of parameters | 159 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.63, −0.30 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N2i | 0.890 (19) | 2.030 (19) | 2.9165 (14) | 173.9 (17) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Acknowledgements
BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and the DST–PURSE financial assistance. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013a). Acta Cryst. E69, o46–o47. CSD CrossRef CAS IUCr Journals Google Scholar
Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013b). Acta Cryst. E69, o39. CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Ooi, C. W., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1312–o1313. CSD CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2679. CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012c). Acta Cryst. E68, o2464. CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012d). Acta Cryst. E68, o2461. CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012e). Acta Cryst. E68, o2565. CSD CrossRef IUCr Journals Google Scholar
Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198. Web of Science CrossRef CAS Google Scholar
Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215. Web of Science CrossRef CAS Google Scholar
Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives viz., (2,2-diphenyl-N-(1,3-thiazol-2-yl)acetamide, 2-(4-chlorophenyl)-N-(1,3-thiazol-2-yl)acetamide, 2-(naphthalen-1-yl)-N-(1,3-thiazol-2-yl)acetamide, N-(1,3-thiazol-2-yl)-2-(2,4,6-trimethyl phenyl)acetamide, 2-(2-fluorophenyl)-N-(1,3-thiazol-2-yl)acetamide (Fun et al., 2012a,b,c,d,e), 2-(2,6-dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro- 1H-pyrazol-4-yl)acetamide, 2-(2,4-Dichlorophenyl)-N-(1,5-dimethyl-3-oxo- 2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide (Butcher et al., 2013a,b) have been reported. In view of the importance of amides, we report herein the crystal structure of the title compound, C11H8Cl2N2OS, (I).
In (I), the mean plane of the dichlorophenyl ring is twisted by 79.7 (7)° from that of the thiazol ring (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987) In the crystal, intermolecular N—H···N hydrogen bonds forming a R2,2(8) graph-set orientation are observed (Table 1) which form infinite 1-D chains along [100] and add to packing stability (Fig. 2).