organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3-Bis(4-bromo­phenyl­sulfan­yl)-1-methyl­piperidin-2-one

aDepartmento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil, bChemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: julio@power.ufscar.br

(Received 12 March 2013; accepted 13 March 2013; online 20 March 2013)

In the title compound, C18H17Br2NOS2, the conformation of the piperidin-2-one ring is based on a half-chair with the methyl­ene C atom diagonally opposite the N atom being 0.649 (3) Å above the plane of the remaining five atoms (r.m.s. deviation = 0.1205 Å). The S atoms occupy axial and bis­ectional positions, and the dihedral angle between the benzene rings of 59.95 (11)° indicates a splayed disposition. Helical supra­molecular chains along the b axis sustained by C—H⋯O inter­actions is the major feature of the crystal packing. The chains are connected into a three-dimensional architecture by C—H⋯Br and C—H⋯π inter­actions.

Related literature

For background to the chemistry and structures of β-thio-carbonyl compounds, see: Zukerman-Schpector et al. (2009[Zukerman-Schpector, J., Vinhato, E., Olivato, P. R., Rodrigues, A., Dal Colle, M., Cerqueira, C. R. Jr, Aman, H. D. & Tiekink, E. R. T. (2009). Z. Kristallogr. New Cryst. Struct. 214, 563-564.]); Vinhato (2007[Vinhato, E. (2007). PhD thesis, University of São Paulo, Brazil.]); Vinhato et al. (2011[Vinhato, E., Olivato, P. R., Rodrigues, A., Zukerman-Schpector, J. & Dal Colle, M. (2011). J. Mol. Struct. 1002, 97-106.]); Olivato et al. (2012[Olivato, P. R., Santos, J. M. M., Cerqueira, C. R. Jr, Vinhato, E., Zukerman-Schpector, J., Ng, S. W., Tiekink, E. R. T. & Dal Colle, M. (2012). J. Mol. Struct. 1028, 97-106.], 2013[Olivato, P. R., Cerqueira, C. R. Jr, Contieri, B., Santos, J. M. M. & Zukerman-Schpector, J. (2013). J. Sulfur Chem. doi:10.1080/17415993.2013.771359).]). For the synthesis, see: Olivato et al. (2013[Olivato, P. R., Cerqueira, C. R. Jr, Contieri, B., Santos, J. M. M. & Zukerman-Schpector, J. (2013). J. Sulfur Chem. doi:10.1080/17415993.2013.771359).]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17Br2NOS2

  • Mr = 487.27

  • Monoclinic, P 21 /n

  • a = 7.8777 (1) Å

  • b = 9.6481 (1) Å

  • c = 24.6757 (3) Å

  • β = 93.190 (1)°

  • V = 1872.57 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 7.61 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.05 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.298, Tmax = 1.000

  • 18656 measured reflections

  • 3916 independent reflections

  • 3715 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.10

  • 3916 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Br2i 0.95 2.87 3.744 (2) 154
C11—H11⋯O1ii 0.95 2.27 3.195 (3) 163
C1—H1BCg1i 0.98 2.86 3.660 (3) 139
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I), Fig. 1, was studied as a part of an on-going investigation of conformational and electronic interactions in β-thio-carbonyl compounds, e.g. N,N-diethyl-2-[(4'-substituted) phenylthio]acetamides, N,N-diethyl-2-[(4'-substituted) phenylsulfonyl]acetamides and 3,3-bis[(4'-substituted phenylsulfany)]-1-methyl-2-piperidinones using spectroscopic, theoretical and X-ray diffraction methods (Vinhato, 2007; Zukerman-Schpector et al., 2009; Vinhato et al., 2011; Olivato et al., 2012; Olivato et al., 2013).

In (I), the conformation of the six-membered piperidin-2-one ring is highly distorted with the best description being one based on a half-chair with the C4 atom lying 0.649 (3) Å above the plane of the remaining five atoms (r.m.s. deviation = 0.1205 Å), with puckering parameters: q2 = 0.463 (2) Å and q3 = 0.275 (2) Å, and amplitudes: Q = 0.539 (2) Å, θ = 59.4 (2)° and ϕ2 = 214.7 (3)° (Cremer & Pople, 1975). The carbonyl-O1 and methyl-C1 atom occupy equatorial positions with respect to the piperidinyl ring while the S1 and S2 atoms are axial and bisectional, respectively. The dihedral angle between the benzene rings is 59.95 (11)°, indicating a splayed disposition.

The crystal packing features helical supramolecular chains along the b axis sustained by rather strong C—H···O interactions, Fig. 2 and Table 1. These are consolidated into a three-dimensional architecture by C—H···Br and C—H···π interactions, Fig. 3 and Table 1.

Related literature top

For background to the chemistry and structures of β-thio-carbonyl compounds, see: Zukerman-Schpector et al. (2009); Vinhato (2007); Vinhato et al. (2011); Olivato et al. (2012, 2013). For the synthesis, see: Olivato et al. (2013). For ring conformational analysis, see: Cremer & Pople (1975).

Experimental top

The preparation of the title compound was recently described (Olivato et al., 2013). Suitable crystals were obtained by vapour diffusion of n-hexane into a chloroform solution at 283 K.; M.pt: 383–385 K.

Refinement top

All H atoms were included in the riding-model approximation with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.5Ueq(methyl-C) and 1.2Ueq(remaining-C). The maximum and minimum residual electron density peaks of 0.71 and -1.26 e Å-3, respectively, were located 0.77 and 0.72 Å from the Br2 atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom labelling and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Helical supramolecular chain along the b axis sustained by C—H···.O interactions (blue dashed lines).
[Figure 3] Fig. 3. View in projection down the b axis of the unit-cell contents. The C—H···O, C—H···Br and C—H···π interactions are shown as blue, orange and purple dashed lines, respectively.
3,3-Bis(4-bromophenylsulfanyl)-1-methylpiperidin-2-one top
Crystal data top
C18H17Br2NOS2F(000) = 968
Mr = 487.27Dx = 1.728 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 10597 reflections
a = 7.8777 (1) Åθ = 3.6–76.5°
b = 9.6481 (1) ŵ = 7.61 mm1
c = 24.6757 (3) ÅT = 100 K
β = 93.190 (1)°Prism, colourless
V = 1872.57 (4) Å30.25 × 0.25 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3916 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3715 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4041 pixels mm-1θmax = 76.7°, θmin = 3.6°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1112
Tmin = 0.298, Tmax = 1.000l = 3130
18656 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0402P)2 + 1.5955P]
where P = (Fo2 + 2Fc2)/3
3916 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
C18H17Br2NOS2V = 1872.57 (4) Å3
Mr = 487.27Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.8777 (1) ŵ = 7.61 mm1
b = 9.6481 (1) ÅT = 100 K
c = 24.6757 (3) Å0.25 × 0.25 × 0.05 mm
β = 93.190 (1)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3916 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3715 reflections with I > 2σ(I)
Tmin = 0.298, Tmax = 1.000Rint = 0.038
18656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.10Δρmax = 0.71 e Å3
3916 reflectionsΔρmin = 1.26 e Å3
218 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.20835 (4)0.58290 (3)0.025429 (10)0.02829 (9)
Br20.82389 (3)0.31232 (3)0.521415 (11)0.03241 (9)
S10.43546 (6)0.86583 (5)0.25378 (2)0.01528 (11)
S20.39439 (6)0.64897 (5)0.33476 (2)0.01610 (11)
O10.6089 (2)0.90775 (16)0.36438 (6)0.0190 (3)
N10.8407 (2)0.81429 (19)0.32947 (7)0.0166 (4)
C10.9475 (3)0.8914 (3)0.36927 (10)0.0229 (5)
H1A0.90520.87810.40550.034*
H1B0.94430.99030.36010.034*
H1C1.06480.85770.36890.034*
C20.6716 (3)0.8271 (2)0.33253 (8)0.0144 (4)
C30.5560 (3)0.7345 (2)0.29522 (8)0.0132 (4)
C40.6530 (3)0.6307 (2)0.26235 (8)0.0143 (4)
H4A0.57780.59470.23210.017*
H4B0.68970.55160.28570.017*
C50.8078 (3)0.6999 (2)0.23983 (9)0.0168 (4)
H5A0.86520.63470.21590.020*
H5B0.77220.78250.21820.020*
C60.9284 (3)0.7424 (2)0.28685 (9)0.0195 (4)
H6A0.98530.65880.30240.023*
H6B1.01720.80400.27330.023*
C70.3782 (3)0.7802 (2)0.19177 (8)0.0138 (4)
C80.4438 (3)0.8300 (2)0.14454 (9)0.0183 (4)
H80.52350.90400.14630.022*
C90.3934 (3)0.7720 (2)0.09462 (9)0.0208 (4)
H90.43720.80610.06210.025*
C100.2776 (3)0.6631 (2)0.09327 (9)0.0171 (4)
C110.2116 (3)0.6111 (2)0.13980 (9)0.0167 (4)
H110.13330.53610.13790.020*
C120.2618 (3)0.6707 (2)0.18945 (9)0.0154 (4)
H120.21680.63690.22190.018*
C130.5212 (3)0.5553 (2)0.38409 (9)0.0163 (4)
C140.5898 (3)0.6240 (2)0.42994 (9)0.0208 (4)
H140.57350.72110.43360.025*
C150.6815 (3)0.5517 (3)0.47026 (9)0.0239 (5)
H150.72900.59860.50140.029*
C160.7031 (3)0.4095 (3)0.46455 (10)0.0222 (5)
C170.6353 (3)0.3388 (2)0.41976 (10)0.0228 (5)
H170.65040.24150.41660.027*
C180.5445 (3)0.4126 (2)0.37925 (9)0.0193 (4)
H180.49800.36540.34810.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04084 (17)0.02690 (14)0.01606 (13)0.00348 (10)0.00800 (10)0.00344 (9)
Br20.03033 (15)0.04426 (17)0.02278 (14)0.01094 (11)0.00269 (10)0.01732 (11)
S10.0192 (2)0.0127 (2)0.0134 (2)0.00287 (17)0.00357 (18)0.00037 (17)
S20.0128 (2)0.0221 (2)0.0133 (2)0.00130 (18)0.00071 (17)0.00314 (18)
O10.0211 (7)0.0191 (7)0.0165 (8)0.0035 (6)0.0020 (6)0.0051 (6)
N10.0158 (9)0.0185 (9)0.0153 (9)0.0012 (7)0.0013 (7)0.0003 (7)
C10.0186 (10)0.0263 (11)0.0230 (11)0.0046 (9)0.0066 (8)0.0012 (9)
C20.0170 (10)0.0129 (9)0.0131 (9)0.0011 (7)0.0013 (7)0.0025 (7)
C30.0143 (9)0.0127 (9)0.0123 (9)0.0005 (7)0.0006 (7)0.0004 (7)
C40.0176 (9)0.0122 (9)0.0130 (9)0.0014 (7)0.0004 (7)0.0002 (7)
C50.0198 (10)0.0161 (9)0.0149 (10)0.0028 (8)0.0048 (8)0.0016 (7)
C60.0141 (10)0.0211 (10)0.0235 (11)0.0013 (8)0.0032 (8)0.0003 (8)
C70.0141 (9)0.0141 (9)0.0128 (9)0.0018 (7)0.0033 (7)0.0002 (7)
C80.0177 (10)0.0196 (10)0.0170 (10)0.0052 (8)0.0032 (8)0.0050 (8)
C90.0226 (11)0.0263 (11)0.0134 (10)0.0029 (9)0.0008 (8)0.0051 (8)
C100.0189 (10)0.0178 (10)0.0140 (10)0.0020 (8)0.0054 (8)0.0007 (8)
C110.0150 (9)0.0152 (9)0.0193 (10)0.0001 (8)0.0035 (8)0.0008 (8)
C120.0151 (9)0.0159 (9)0.0152 (10)0.0015 (7)0.0010 (7)0.0035 (7)
C130.0135 (9)0.0214 (10)0.0139 (10)0.0015 (8)0.0006 (7)0.0039 (8)
C140.0242 (11)0.0221 (11)0.0158 (10)0.0019 (9)0.0014 (8)0.0017 (8)
C150.0281 (12)0.0282 (12)0.0150 (10)0.0042 (9)0.0031 (9)0.0023 (9)
C160.0181 (10)0.0298 (12)0.0187 (11)0.0019 (8)0.0005 (8)0.0119 (9)
C170.0227 (11)0.0215 (11)0.0247 (12)0.0012 (9)0.0052 (9)0.0060 (9)
C180.0192 (10)0.0203 (10)0.0183 (10)0.0035 (8)0.0018 (8)0.0007 (8)
Geometric parameters (Å, º) top
Br1—C101.897 (2)C6—H6B0.9900
Br2—C161.899 (2)C7—C81.387 (3)
S1—C71.775 (2)C7—C121.398 (3)
S1—C31.856 (2)C8—C91.391 (3)
S2—C131.778 (2)C8—H80.9500
S2—C31.842 (2)C9—C101.390 (3)
O1—C21.229 (3)C9—H90.9500
N1—C21.344 (3)C10—C111.381 (3)
N1—C11.461 (3)C11—C121.391 (3)
N1—C61.465 (3)C11—H110.9500
C1—H1A0.9800C12—H120.9500
C1—H1B0.9800C13—C141.394 (3)
C1—H1C0.9800C13—C181.396 (3)
C2—C31.543 (3)C14—C151.385 (3)
C3—C41.521 (3)C14—H140.9500
C4—C51.522 (3)C15—C161.391 (3)
C4—H4A0.9900C15—H150.9500
C4—H4B0.9900C16—C171.380 (4)
C5—C61.515 (3)C17—C181.392 (3)
C5—H5A0.9900C17—H170.9500
C5—H5B0.9900C18—H180.9500
C6—H6A0.9900
C7—S1—C3104.77 (9)H6A—C6—H6B107.9
C13—S2—C3102.22 (9)C8—C7—C12120.11 (19)
C2—N1—C1116.82 (18)C8—C7—S1118.33 (16)
C2—N1—C6126.33 (18)C12—C7—S1121.44 (16)
C1—N1—C6116.53 (18)C7—C8—C9120.2 (2)
N1—C1—H1A109.5C7—C8—H8119.9
N1—C1—H1B109.5C9—C8—H8119.9
H1A—C1—H1B109.5C10—C9—C8118.7 (2)
N1—C1—H1C109.5C10—C9—H9120.7
H1A—C1—H1C109.5C8—C9—H9120.7
H1B—C1—H1C109.5C11—C10—C9122.1 (2)
O1—C2—N1121.9 (2)C11—C10—Br1118.85 (16)
O1—C2—C3120.20 (18)C9—C10—Br1119.05 (17)
N1—C2—C3117.86 (18)C10—C11—C12118.72 (19)
C4—C3—C2113.70 (17)C10—C11—H11120.6
C4—C3—S2111.69 (14)C12—C11—H11120.6
C2—C3—S2110.22 (14)C11—C12—C7120.1 (2)
C4—C3—S1114.37 (14)C11—C12—H12119.9
C2—C3—S1101.59 (13)C7—C12—H12119.9
S2—C3—S1104.48 (10)C14—C13—C18119.5 (2)
C3—C4—C5109.99 (17)C14—C13—S2119.46 (17)
C3—C4—H4A109.7C18—C13—S2120.96 (17)
C5—C4—H4A109.7C15—C14—C13120.4 (2)
C3—C4—H4B109.7C15—C14—H14119.8
C5—C4—H4B109.7C13—C14—H14119.8
H4A—C4—H4B108.2C14—C15—C16119.1 (2)
C6—C5—C4108.68 (17)C14—C15—H15120.5
C6—C5—H5A110.0C16—C15—H15120.5
C4—C5—H5A110.0C17—C16—C15121.6 (2)
C6—C5—H5B110.0C17—C16—Br2120.25 (18)
C4—C5—H5B110.0C15—C16—Br2118.10 (18)
H5A—C5—H5B108.3C16—C17—C18118.9 (2)
N1—C6—C5112.15 (17)C16—C17—H17120.6
N1—C6—H6A109.2C18—C17—H17120.6
C5—C6—H6A109.2C17—C18—C13120.5 (2)
N1—C6—H6B109.2C17—C18—H18119.7
C5—C6—H6B109.2C13—C18—H18119.7
C1—N1—C2—O15.5 (3)C3—S1—C7—C1267.81 (18)
C6—N1—C2—O1167.7 (2)C12—C7—C8—C90.4 (3)
C1—N1—C2—C3173.40 (18)S1—C7—C8—C9175.67 (17)
C6—N1—C2—C313.4 (3)C7—C8—C9—C100.5 (3)
O1—C2—C3—C4174.26 (18)C8—C9—C10—C110.0 (3)
N1—C2—C3—C44.6 (3)C8—C9—C10—Br1179.85 (17)
O1—C2—C3—S248.0 (2)C9—C10—C11—C120.6 (3)
N1—C2—C3—S2130.94 (17)Br1—C10—C11—C12179.60 (15)
O1—C2—C3—S162.4 (2)C10—C11—C12—C70.6 (3)
N1—C2—C3—S1118.72 (17)C8—C7—C12—C110.1 (3)
C13—S2—C3—C468.86 (16)S1—C7—C12—C11176.10 (16)
C13—S2—C3—C258.56 (15)C3—S2—C13—C1480.85 (19)
C13—S2—C3—S1166.99 (10)C3—S2—C13—C18103.11 (18)
C7—S1—C3—C430.32 (17)C18—C13—C14—C150.5 (3)
C7—S1—C3—C2153.23 (13)S2—C13—C14—C15176.61 (18)
C7—S1—C3—S292.10 (11)C13—C14—C15—C160.5 (4)
C2—C3—C4—C542.8 (2)C14—C15—C16—C170.0 (4)
S2—C3—C4—C5168.28 (14)C14—C15—C16—Br2178.26 (18)
S1—C3—C4—C573.31 (19)C15—C16—C17—C180.5 (4)
C3—C4—C5—C664.5 (2)Br2—C16—C17—C18178.74 (17)
C2—N1—C6—C59.0 (3)C16—C17—C18—C130.5 (3)
C1—N1—C6—C5164.26 (18)C14—C13—C18—C170.0 (3)
C4—C5—C6—N147.3 (2)S2—C13—C18—C17176.02 (17)
C3—S1—C7—C8116.16 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···Br2i0.952.873.744 (2)154
C11—H11···O1ii0.952.273.195 (3)163
C1—H1B···Cg1i0.982.863.660 (3)139
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H17Br2NOS2
Mr487.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.8777 (1), 9.6481 (1), 24.6757 (3)
β (°) 93.190 (1)
V3)1872.57 (4)
Z4
Radiation typeCu Kα
µ (mm1)7.61
Crystal size (mm)0.25 × 0.25 × 0.05
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.298, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18656, 3916, 3715
Rint0.038
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.10
No. of reflections3916
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 1.26

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···Br2i0.952.873.744 (2)154
C11—H11···O1ii0.952.273.195 (3)163
C1—H1B···Cg1i0.982.863.660 (3)139
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We thank the Brazilian agencies FAPESP, CNPq and CAPES (808/2009 to JZ-S) for financial support. CRC and BC thank CNPq for scholarships; PRO and JZ-S thank CNPq for fellowships. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOlivato, P. R., Cerqueira, C. R. Jr, Contieri, B., Santos, J. M. M. & Zukerman-Schpector, J. (2013). J. Sulfur Chem. doi:10.1080/17415993.2013.771359).  Google Scholar
First citationOlivato, P. R., Santos, J. M. M., Cerqueira, C. R. Jr, Vinhato, E., Zukerman-Schpector, J., Ng, S. W., Tiekink, E. R. T. & Dal Colle, M. (2012). J. Mol. Struct. 1028, 97–106.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinhato, E. (2007). PhD thesis, University of São Paulo, Brazil.  Google Scholar
First citationVinhato, E., Olivato, P. R., Rodrigues, A., Zukerman-Schpector, J. & Dal Colle, M. (2011). J. Mol. Struct. 1002, 97–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Vinhato, E., Olivato, P. R., Rodrigues, A., Dal Colle, M., Cerqueira, C. R. Jr, Aman, H. D. & Tiekink, E. R. T. (2009). Z. Kristallogr. New Cryst. Struct. 214, 563–564.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds