organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o498-o499

Di­methyl 1-(4-methyl­phen­yl)-8-(thio­phen-2-yl)-11-oxatri­cyclo­[6.2.1.02,7]undeca-2,4,6,9-tetra­ene-9,10-di­carb­oxy­late

aDepartment of Physics, P.T. Lee Chengalvaraya Naicker College of Engineering & Technology, Kancheepuram 631 502, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cPostGraduate & Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 7 February 2013; accepted 24 February 2013; online 6 March 2013)

The title compound, C25H20O5S, is the product of a Diels–Alder reaction. The mol­ecule consists of a fused tricyclic system containing two five-membered rings and one six-membered ring. The five-membered rings both show an envelope conformation with the O atom at the flap, whereas the six-membered ring adopts a boat conformation. The thio­phene ring is disordered over two sets of sites with an occupancy ratio of 0.53 (1):0.47 (1). The dihedral angles between the 4-methyl­phenyl ring and the major and minor components of the thio­phene ring are 66.3 (1) and 67.9 (1)°, respectively, while the dihedral angle between the disordered thio­phenyl components is 3.1 (1)°. The mean plane of the tricyclic ring system makes dihedral angles of 35.8 (1), 30.8 (1) and 32.8 (1)°, respectively, with the 4-methyl­phenyl ring and the major and minor components of the thio­phenyl ring. In the crystal, inversion dimers are formed through pairs of C—H⋯π inter­actions. In addition, C—H⋯O inter­actions are observed.

Related literature

For background to Diels–Alder reactions, see: Denmark & Thorarensen (1996[Denmark, S. E. & Thorarensen, A. (1996). Chem. Rev. 96, 137-166.]). For related structures, see: Ohwada et al. (2001[Ohwada, T., Miura, M., Tanaka, H., Sakamoto, S., Yamaguchi, K., Ikeda, H. & Inagaki, S. (2001). J. Am. Chem. Soc. 123, 10164-10172.]); Takahashi et al. (2003[Takahashi, I., Tsuzuki, M., Kitajima, H., Hetanaka, M., Maeda, S., Yamano, A., Ohta, T. & Hosoi, S. (2003). Anal. Sci. 19, 973-974.]); Fun et al. (2011[Fun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o701-o702.]); Gurbanov et al. (2009[Gurbanov, A. V., Nikitina, E. V., Sorokina, E. A., Zubkov, F. I. & Khrustalev, V. N. (2009). Acta Cryst. E65, o3243-o3244.]); Balakrishnan et al. (2013[Balakrishnan, B., Nandakumar, M., Seshadri, P. R. & Mohanakrishnan, A. K. (2013). Acta Cryst. E69, o323.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20O5S

  • Mr = 432.47

  • Triclinic, [P \overline 1]

  • a = 7.5966 (15) Å

  • b = 10.877 (2) Å

  • c = 13.515 (3) Å

  • α = 91.339 (5)°

  • β = 93.456 (4)°

  • γ = 100.129 (5)°

  • V = 1096.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 19981 measured reflections

  • 5464 independent reflections

  • 4142 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.129

  • S = 1.03

  • 5464 reflections

  • 321 parameters

  • 52 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O4i 0.93 2.47 3.378 (1) 165
C17—H17BCgii 0.96 3.26 3.99 (2) 136
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison. Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison. Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The Diels-Alder reaction involves [4 + 2] cycloaddition of a conjucated diene and a dienophile (an alkene or alkyne). The Diels-Alder reaction is among the most powerful C—C bond forming process and one of most widely used and studied transformation in organic chemistry (Denmark & Thorarensen, 1996). The title compound, C25H20O5S, comprises a fused tricyclic system with one 4-methylphenyl and one thiophenyl group attached to it. The tricyclic system consists of two 5-membered rings and one aromatic ring. In addition, two carboxylate units are attached to the tricyclic system. Geometrical parameters agree well with reported structures (Fun et al., 2011; Gurbanov et al., 2009; Ohwada et al. 2001; Takahashi et al. 2003). The five membered ring C1\C2\C7\C8\O1 adopts an envelope conformation with atom O1 displaced by 0.787 Å from the mean plane of the other ring atoms C1\C2\C7\C8.The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2 = 0.539 (1) Å, ϕ = 144.8 (1)°, ΔS(O1) = 0.006 (1)° and Δ2(O1) = 0.325 (1)°.The second five membered ring C1\ C20\C23\C8\O1 also adopts an envelope conformation with O1 displaced by -0.787 Å from the mean plane of the other ring atoms C1\ C20\C23\C8.The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2 = 0.542 (1) Å, ϕ = -37.3 (1)°, ΔS(O1) = 0.011 (1)° and Δ2(O1) = 0.327 (1)°.The six membered ring C1/C2/C7/C8/C23/C20 adopts boat conformation with puckering parameter q2 = 0.9849 (1) Å, θ= 89.9 (8)° and ϕ = 359.2 (8)°.

The thiophene ring is disordered over two sites with occupancy ratio of 0.53 (3): 0.47 (3).The dihedral angle between the rings C1/C2/C7/C8/O1 and C1/C20/C23/C8/O1 is 82.15 (1)°. The dihedral angle between the terminal 4-methylphenyl and major and minor components of the thiophene rings are 66.3 (1)° and 67.9 (1)° respectively. The mean plane of the tricyclic system makes dihedral angles of 35.8 (1)°, 30.8 (1)° and 32.8 (1)°, respectively, with the 4-methylphenyl ring and the major and minor components of the thiophenyl group. The carboxylate ligand at the C20 carbon atom is turned out the plane in the positive direction of the five membered ring C20/ C1/ O1/ C8/ C23 (the torsion angle C23—C20—C21—O3= 32.2 (2)°, while that at the C23 carbon atom is turned out of this plane in the negative direction (the torsion angle is C20—C23—C24=O4 = -73.8 (2)°). In the crystal structure centrosymmetric dimers are realised by C—H···π interactions. In addition, intermolecular C—H···O interactions are observed (Table 1).

Related literature top

For background to Diels–Alder reactions, see: Denmark & Thorarensen (1996). For related structures, see: Ohwada et al. (2001); Takahashi et al. (2003); Fun et al. (2011); Gurbanov et al. (2009); Balakrishnan et al. (2013). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To a stirred solution of 1-(thiophen-2-yl)-3-p-tolylisobenzofuran (2 g, 6.897 mmol) in dry DCM was added DMAD (1.08 g, 7.59 mmol) and the reaction mixture was stirred for 0.5 h at room temperature under nitrogen atmosphere. The solvent was removed and the resulting solid was washed with methanol to give the title compound as a colourless solid. This adduct was crystallized from CHCl3/CH3OH (3:1) by slow evaporation method.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with (C—H= 0.93–0.96 Å), and Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for other H atoms.The thiophene ring is disordered over two sites with occupancy ratio of 0.53 (3): 0.47 (3).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the C—H···π interactions in the crystal structure of the title compound.
Dimethyl 1-(4-methylphenyl)-8-(thiophen-2-yl)-11-oxatricyclo[6.2.1.02,7]undeca-2,4,6,9-tetraene-9,10-dicarboxylate top
Crystal data top
C25H20O5SV = 1096.6 (4) Å3
Mr = 432.47Z = 2
Triclinic, P1F(000) = 452
Hall symbol: -P 1Dx = 1.310 Mg m3
a = 7.5966 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.877 (2) Åθ = 1.5–28.5°
c = 13.515 (3) ŵ = 0.18 mm1
α = 91.339 (5)°T = 293 K
β = 93.456 (4)°Block, colourless
γ = 100.129 (5)°0.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4142 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.5°, θmin = 1.5°
ω and ϕ scansh = 1010
19981 measured reflectionsk = 1414
5464 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.1968P]
where P = (Fo2 + 2Fc2)/3
5464 reflections(Δ/σ)max < 0.001
321 parametersΔρmax = 0.25 e Å3
52 restraintsΔρmin = 0.16 e Å3
Crystal data top
C25H20O5Sγ = 100.129 (5)°
Mr = 432.47V = 1096.6 (4) Å3
Triclinic, P1Z = 2
a = 7.5966 (15) ÅMo Kα radiation
b = 10.877 (2) ŵ = 0.18 mm1
c = 13.515 (3) ÅT = 293 K
α = 91.339 (5)°0.35 × 0.30 × 0.25 mm
β = 93.456 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4142 reflections with I > 2σ(I)
19981 measured reflectionsRint = 0.024
5464 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04152 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
5464 reflectionsΔρmin = 0.16 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C170.3508 (4)0.3528 (2)0.05041 (17)0.1061 (10)
H17A0.29580.42450.03960.159*
H17B0.39500.32600.01210.159*
H17C0.44850.37420.09230.159*
C160.2140 (3)0.24828 (15)0.09987 (12)0.0618 (5)
C180.2271 (2)0.21039 (15)0.19687 (12)0.0577 (4)
H180.32140.25000.23190.069*
C190.1036 (2)0.11537 (14)0.24304 (11)0.0484 (3)
H190.11570.09180.30850.058*
C130.03822 (19)0.05453 (11)0.19297 (9)0.0391 (3)
C140.0529 (2)0.09272 (14)0.09555 (10)0.0520 (4)
H140.14760.05370.06050.062*
C150.0721 (3)0.18817 (16)0.05039 (11)0.0647 (5)
H150.06010.21250.01490.078*
C10.15925 (18)0.05759 (11)0.24036 (9)0.0365 (3)
C20.34514 (18)0.10769 (12)0.20407 (9)0.0394 (3)
C30.4745 (2)0.05272 (16)0.16187 (11)0.0510 (4)
H30.45340.03210.14460.061*
C40.6378 (2)0.12840 (19)0.14586 (12)0.0622 (5)
H40.72570.09380.11600.075*
C50.6713 (2)0.25310 (19)0.17340 (13)0.0608 (4)
H50.78160.30140.16220.073*
C60.5419 (2)0.30857 (15)0.21812 (11)0.0494 (3)
H60.56530.39260.23810.059*
C70.37929 (18)0.23483 (12)0.23151 (9)0.0391 (3)
C80.21057 (17)0.25712 (11)0.28215 (9)0.0359 (3)
C230.21701 (17)0.18743 (11)0.38086 (9)0.0358 (3)
C200.18841 (18)0.06611 (12)0.35510 (9)0.0364 (3)
C210.23243 (19)0.03877 (12)0.41371 (10)0.0409 (3)
C220.2710 (3)0.11567 (19)0.57314 (13)0.0660 (5)
H22A0.20710.19600.54920.099*
H22B0.24070.10000.63970.099*
H22C0.39750.11450.57250.099*
C240.2738 (2)0.25025 (12)0.47907 (10)0.0413 (3)
C250.5151 (3)0.3704 (2)0.57359 (15)0.0837 (7)
H25A0.43990.42670.59520.126*
H25B0.63320.41620.56560.126*
H21C0.52140.30810.62220.126*
C90.16129 (19)0.38335 (12)0.28373 (10)0.0409 (3)
O20.2780 (2)0.12775 (11)0.37594 (9)0.0698 (4)
O30.22201 (16)0.01996 (10)0.50989 (7)0.0536 (3)
O40.17981 (19)0.24950 (13)0.54677 (9)0.0712 (4)
O50.44061 (16)0.31032 (11)0.47947 (8)0.0606 (3)
O10.07523 (12)0.16735 (8)0.22614 (6)0.0360 (2)
S10.2161 (5)0.4865 (3)0.1956 (3)0.0697 (7)0.531 (3)
C120.0495 (16)0.4293 (11)0.3505 (9)0.093 (5)0.531 (3)
H120.00230.38580.40410.112*0.531 (3)
C110.019 (3)0.5478 (14)0.3260 (14)0.066 (2)0.531 (3)
H110.05360.59160.36070.079*0.531 (3)
C100.1054 (17)0.5919 (11)0.2473 (9)0.063 (2)0.531 (3)
H100.10480.67140.22350.076*0.531 (3)
S1'0.0250 (4)0.4286 (3)0.3645 (2)0.0532 (4)0.466 (3)
C12'0.214 (2)0.4812 (10)0.2173 (8)0.071 (4)0.466 (3)
H12'0.29900.47960.17080.085*0.466 (3)
C11'0.122 (2)0.5793 (14)0.2312 (12)0.082 (3)0.466 (3)
H11'0.12720.64620.18920.098*0.466 (3)
C10'0.024 (4)0.5679 (16)0.3107 (17)0.063 (3)0.466 (3)
H10'0.03620.62890.33380.076*0.466 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C170.132 (2)0.0921 (16)0.0677 (12)0.0455 (15)0.0117 (13)0.0130 (11)
C160.0819 (12)0.0487 (8)0.0460 (8)0.0072 (8)0.0117 (8)0.0001 (6)
C180.0628 (10)0.0538 (9)0.0509 (8)0.0046 (7)0.0019 (7)0.0017 (7)
C190.0553 (9)0.0477 (8)0.0410 (7)0.0068 (6)0.0034 (6)0.0043 (6)
C130.0477 (8)0.0339 (6)0.0363 (6)0.0110 (5)0.0027 (5)0.0017 (5)
C140.0696 (10)0.0478 (8)0.0349 (7)0.0001 (7)0.0030 (6)0.0001 (6)
C150.0943 (14)0.0575 (9)0.0345 (7)0.0049 (9)0.0011 (8)0.0058 (6)
C10.0425 (7)0.0344 (6)0.0345 (6)0.0132 (5)0.0005 (5)0.0023 (5)
C20.0411 (7)0.0453 (7)0.0339 (6)0.0142 (6)0.0007 (5)0.0009 (5)
C30.0522 (9)0.0610 (9)0.0448 (7)0.0249 (7)0.0025 (6)0.0059 (6)
C40.0465 (9)0.0950 (14)0.0521 (9)0.0301 (9)0.0098 (7)0.0011 (9)
C50.0393 (8)0.0861 (12)0.0565 (9)0.0080 (8)0.0061 (7)0.0083 (8)
C60.0434 (8)0.0558 (8)0.0473 (8)0.0050 (6)0.0004 (6)0.0041 (6)
C70.0390 (7)0.0450 (7)0.0345 (6)0.0117 (5)0.0005 (5)0.0011 (5)
C80.0375 (7)0.0338 (6)0.0368 (6)0.0085 (5)0.0003 (5)0.0019 (5)
C230.0365 (6)0.0374 (6)0.0351 (6)0.0113 (5)0.0026 (5)0.0010 (5)
C200.0383 (7)0.0374 (6)0.0344 (6)0.0100 (5)0.0016 (5)0.0015 (5)
C210.0447 (7)0.0383 (6)0.0401 (7)0.0097 (6)0.0012 (5)0.0004 (5)
C220.0725 (12)0.0807 (12)0.0532 (9)0.0335 (10)0.0043 (8)0.0249 (8)
C240.0514 (8)0.0363 (6)0.0380 (7)0.0142 (6)0.0005 (6)0.0036 (5)
C250.0901 (15)0.0779 (13)0.0740 (12)0.0069 (11)0.0338 (11)0.0254 (10)
C90.0450 (8)0.0343 (6)0.0446 (7)0.0122 (6)0.0013 (6)0.0020 (5)
O20.1124 (11)0.0517 (6)0.0545 (7)0.0423 (7)0.0019 (7)0.0020 (5)
O30.0697 (7)0.0588 (6)0.0388 (5)0.0287 (5)0.0024 (5)0.0074 (4)
O40.0834 (9)0.0810 (8)0.0479 (6)0.0093 (7)0.0176 (6)0.0169 (6)
O50.0544 (7)0.0663 (7)0.0561 (6)0.0035 (5)0.0083 (5)0.0156 (5)
O10.0372 (5)0.0334 (4)0.0382 (5)0.0104 (4)0.0025 (4)0.0017 (3)
S10.0928 (13)0.0521 (9)0.0734 (13)0.0312 (9)0.0184 (10)0.0206 (9)
C120.100 (8)0.061 (5)0.118 (8)0.014 (4)0.009 (5)0.016 (4)
C110.068 (4)0.059 (6)0.076 (6)0.031 (5)0.001 (4)0.012 (4)
C100.087 (4)0.035 (2)0.072 (5)0.027 (2)0.012 (4)0.001 (3)
S1'0.0557 (7)0.0439 (8)0.0641 (7)0.0204 (6)0.0050 (6)0.0040 (6)
C12'0.088 (6)0.059 (6)0.064 (6)0.019 (4)0.011 (4)0.027 (4)
C11'0.129 (7)0.050 (5)0.071 (5)0.025 (4)0.018 (4)0.013 (4)
C10'0.078 (5)0.044 (4)0.075 (6)0.035 (4)0.005 (4)0.002 (3)
Geometric parameters (Å, º) top
C17—C161.511 (2)C23—C201.3335 (17)
C17—H17A0.9600C23—C241.4831 (17)
C17—H17B0.9600C20—C211.4782 (18)
C17—H17C0.9600C21—O21.1969 (17)
C16—C151.377 (3)C21—O31.3204 (17)
C16—C181.379 (2)C22—O31.4465 (18)
C18—C191.377 (2)C22—H22A0.9600
C18—H180.9300C22—H22B0.9600
C19—C131.384 (2)C22—H22C0.9600
C19—H190.9300C24—O41.1932 (18)
C13—C141.3881 (19)C24—O51.3195 (19)
C13—C11.4970 (17)C25—O51.453 (2)
C14—C151.380 (2)C25—H25A0.9600
C14—H140.9300C25—H25B0.9600
C15—H150.9300C25—H21C0.9600
C1—O11.4606 (14)C9—C121.417 (9)
C1—C21.5353 (19)C9—C12'1.428 (10)
C1—C201.5515 (17)C9—S1'1.673 (3)
C2—C31.381 (2)C9—S11.676 (3)
C2—C71.3984 (19)S1—C101.697 (11)
C3—C41.395 (3)C12—C111.392 (14)
C3—H30.9300C12—H120.9300
C4—C51.374 (3)C11—C101.338 (7)
C4—H40.9300C11—H110.9300
C5—C61.399 (2)C10—H100.9300
C5—H50.9300S1'—C10'1.696 (12)
C6—C71.374 (2)C12'—C11'1.390 (14)
C6—H60.9300C12'—H12'0.9300
C7—C81.5419 (19)C11'—C10'1.337 (7)
C8—O11.4498 (15)C11'—H11'0.9300
C8—C91.4853 (18)C10'—H10'0.9300
C8—C231.5521 (17)
C16—C17—H17A109.5C24—C23—C8124.05 (11)
C16—C17—H17B109.5C23—C20—C21128.37 (11)
H17A—C17—H17B109.5C23—C20—C1106.33 (11)
C16—C17—H17C109.5C21—C20—C1122.53 (10)
H17A—C17—H17C109.5O2—C21—O3125.26 (13)
H17B—C17—H17C109.5O2—C21—C20122.09 (13)
C15—C16—C18117.71 (14)O3—C21—C20112.60 (11)
C15—C16—C17121.50 (17)O3—C22—H22A109.5
C18—C16—C17120.79 (18)O3—C22—H22B109.5
C19—C18—C16121.53 (16)H22A—C22—H22B109.5
C19—C18—H18119.2O3—C22—H22C109.5
C16—C18—H18119.2H22A—C22—H22C109.5
C18—C19—C13120.66 (14)H22B—C22—H22C109.5
C18—C19—H19119.7O4—C24—O5125.08 (13)
C13—C19—H19119.7O4—C24—C23124.66 (14)
C19—C13—C14118.14 (13)O5—C24—C23110.22 (12)
C19—C13—C1119.86 (12)O5—C25—H25A109.5
C14—C13—C1121.69 (13)O5—C25—H25B109.5
C15—C14—C13120.44 (15)H25A—C25—H25B109.5
C15—C14—H14119.8O5—C25—H21C109.5
C13—C14—H14119.8H25A—C25—H21C109.5
C16—C15—C14121.52 (15)H25B—C25—H21C109.5
C16—C15—H15119.2C12—C9—C12'106.5 (9)
C14—C15—H15119.2C12—C9—C8126.6 (5)
O1—C1—C13109.03 (10)C12'—C9—C8126.9 (6)
O1—C1—C299.71 (10)C12—C9—S1'3.5 (6)
C13—C1—C2122.54 (11)C12'—C9—S1'109.8 (6)
O1—C1—C2098.77 (9)C8—C9—S1'123.20 (15)
C13—C1—C20118.47 (11)C12—C9—S1110.4 (5)
C2—C1—C20104.23 (10)C12'—C9—S16.3 (6)
C3—C2—C7120.66 (14)C8—C9—S1122.68 (15)
C3—C2—C1134.05 (13)S1'—C9—S1113.69 (18)
C7—C2—C1105.03 (11)C21—O3—C22116.20 (12)
C2—C3—C4117.93 (15)C24—O5—C25115.45 (14)
C2—C3—H3121.0C8—O1—C197.66 (9)
C4—C3—H3121.0C9—S1—C1092.5 (5)
C5—C4—C3121.26 (15)C11—C12—C9111.6 (11)
C5—C4—H4119.4C11—C12—H12124.2
C3—C4—H4119.4C9—C12—H12124.2
C4—C5—C6120.97 (16)C10—C11—C12112.9 (12)
C4—C5—H5119.5C10—C11—H11123.6
C6—C5—H5119.5C12—C11—H11123.6
C7—C6—C5117.80 (15)C11—C10—S1112.4 (11)
C7—C6—H6121.1C11—C10—H10123.8
C5—C6—H6121.1S1—C10—H10123.8
C6—C7—C2121.35 (13)C9—S1'—C10'93.2 (6)
C6—C7—C8133.63 (13)C11'—C12'—C9111.2 (12)
C2—C7—C8104.81 (11)C11'—C12'—H12'124.4
O1—C8—C9111.21 (10)C9—C12'—H12'124.4
O1—C8—C7100.06 (9)C10'—C11'—C12'113.4 (14)
C9—C8—C7120.07 (11)C10'—C11'—H11'123.3
O1—C8—C2398.86 (9)C12'—C11'—H11'123.3
C9—C8—C23118.64 (11)C11'—C10'—S1'111.8 (13)
C7—C8—C23104.50 (10)C11'—C10'—H10'124.1
C20—C23—C24129.51 (12)S1'—C10'—H10'124.1
C20—C23—C8105.73 (10)
C15—C16—C18—C190.4 (3)C2—C1—C20—C2192.07 (14)
C17—C16—C18—C19180.0 (2)C23—C20—C21—O2145.48 (17)
C16—C18—C19—C130.1 (3)C1—C20—C21—O213.0 (2)
C18—C19—C13—C140.5 (2)C23—C20—C21—O332.2 (2)
C18—C19—C13—C1173.23 (14)C1—C20—C21—O3169.33 (12)
C19—C13—C14—C150.5 (2)C20—C23—C24—O473.8 (2)
C1—C13—C14—C15173.11 (15)C8—C23—C24—O4117.26 (17)
C18—C16—C15—C140.4 (3)C20—C23—C24—O5108.36 (17)
C17—C16—C15—C14180.0 (2)C8—C23—C24—O560.61 (16)
C13—C14—C15—C160.1 (3)O1—C8—C9—C1284.9 (7)
C19—C13—C1—O181.69 (15)C7—C8—C9—C12158.9 (7)
C14—C13—C1—O191.80 (15)C23—C8—C9—C1228.6 (7)
C19—C13—C1—C2162.74 (13)O1—C8—C9—C12'93.7 (7)
C14—C13—C1—C223.77 (19)C7—C8—C9—C12'22.5 (7)
C19—C13—C1—C2030.06 (18)C23—C8—C9—C12'152.7 (7)
C14—C13—C1—C20156.45 (13)O1—C8—C9—S1'83.85 (18)
O1—C1—C2—C3152.34 (15)C7—C8—C9—S1'159.97 (15)
C13—C1—C2—C332.2 (2)C23—C8—C9—S1'29.7 (2)
C20—C1—C2—C3105.94 (16)O1—C8—C9—S188.1 (2)
O1—C1—C2—C733.71 (12)C7—C8—C9—S128.1 (2)
C13—C1—C2—C7153.82 (11)C23—C8—C9—S1158.34 (19)
C20—C1—C2—C768.00 (12)O2—C21—O3—C220.3 (2)
C7—C2—C3—C41.3 (2)C20—C21—O3—C22177.29 (13)
C1—C2—C3—C4174.46 (14)O4—C24—O5—C255.3 (2)
C2—C3—C4—C51.6 (2)C23—C24—O5—C25176.88 (14)
C3—C4—C5—C60.3 (3)C9—C8—O1—C1178.92 (11)
C4—C5—C6—C71.4 (2)C7—C8—O1—C153.14 (10)
C5—C6—C7—C21.8 (2)C23—C8—O1—C153.42 (10)
C5—C6—C7—C8175.54 (14)C13—C1—O1—C8176.84 (10)
C3—C2—C7—C60.4 (2)C2—C1—O1—C853.64 (10)
C1—C2—C7—C6174.50 (12)C20—C1—O1—C852.55 (11)
C3—C2—C7—C8175.79 (12)C12—C9—S1—C102.8 (7)
C1—C2—C7—C80.84 (13)C12'—C9—S1—C1049 (7)
C6—C7—C8—O1152.90 (14)C8—C9—S1—C10176.8 (4)
C2—C7—C8—O132.60 (12)S1'—C9—S1—C104.2 (5)
C6—C7—C8—C931.1 (2)C12'—C9—C12—C113.9 (16)
C2—C7—C8—C9154.42 (11)C8—C9—C12—C11174.9 (13)
C6—C7—C8—C23105.12 (16)S1'—C9—C12—C11160 (11)
C2—C7—C8—C2369.38 (12)S1—C9—C12—C111.2 (16)
O1—C8—C23—C2034.38 (12)C9—C12—C11—C102 (2)
C9—C8—C23—C20154.53 (12)C12—C11—C10—S14 (2)
C7—C8—C23—C2068.50 (13)C9—S1—C10—C113.8 (15)
O1—C8—C23—C24154.44 (12)C12—C9—S1'—C10'20 (10)
C9—C8—C23—C2434.28 (18)C12'—C9—S1'—C10'3.0 (13)
C7—C8—C23—C24102.68 (14)C8—C9—S1'—C10'174.9 (11)
C24—C23—C20—C2110.6 (2)S1—C9—S1'—C10'2.3 (12)
C8—C23—C20—C21159.93 (13)C12—C9—C12'—C11'7.9 (14)
C24—C23—C20—C1171.81 (13)C8—C9—C12'—C11'170.9 (9)
C8—C23—C20—C11.28 (13)S1'—C9—C12'—C11'6.9 (13)
O1—C1—C20—C2331.92 (13)S1—C9—C12'—C11'122 (7)
C13—C1—C20—C23149.24 (12)C9—C12'—C11'—C10'8 (2)
C2—C1—C20—C2370.50 (13)C12'—C11'—C10'—S1'6 (3)
O1—C1—C20—C21165.50 (12)C9—S1'—C10'—C11'2 (2)
C13—C1—C20—C2148.18 (18)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.932.473.378 (1)165
C17—H17B···Cgii0.963.263.99 (2)136
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC25H20O5S
Mr432.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5966 (15), 10.877 (2), 13.515 (3)
α, β, γ (°)91.339 (5), 93.456 (4), 100.129 (5)
V3)1096.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19981, 5464, 4142
Rint0.024
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.129, 1.03
No. of reflections5464
No. of parameters321
No. of restraints52
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.932.473.378 (1)165
C17—H17B···Cgii0.963.263.99 (2)136
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai 600 025, India, for the data collection.

References

First citationBalakrishnan, B., Nandakumar, M., Seshadri, P. R. & Mohanakrishnan, A. K. (2013). Acta Cryst. E69, o323.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison. Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDenmark, S. E. & Thorarensen, A. (1996). Chem. Rev. 96, 137–166.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o701–o702.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGurbanov, A. V., Nikitina, E. V., Sorokina, E. A., Zubkov, F. I. & Khrustalev, V. N. (2009). Acta Cryst. E65, o3243–o3244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOhwada, T., Miura, M., Tanaka, H., Sakamoto, S., Yamaguchi, K., Ikeda, H. & Inagaki, S. (2001). J. Am. Chem. Soc. 123, 10164–10172.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, I., Tsuzuki, M., Kitajima, H., Hetanaka, M., Maeda, S., Yamano, A., Ohta, T. & Hosoi, S. (2003). Anal. Sci. 19, 973–974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o498-o499
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds