metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[bis­­(4-pyridine­aldoxime-κN1)zinc]-μ-benzene-1,4-di­carboxyl­ato-κ2O1:O4] 4-pyridine­aldoxime monosolvate]

aToyota Central R&D Labs., Inc., Nagakute 41-1, Aichi, Japan, and bDepartment of Chemistry, Fukuoka University, Fukuoka 814-0180, Japan
*Correspondence e-mail: e1254@mosk.tytlabs.co.jp

(Received 18 February 2013; accepted 4 March 2013; online 16 March 2013)

In the title compound, {[Zn(C8H4O4)(C6H6N2O)2]·C6H6N2O}n, the ZnII ion exhibits a tetra­hedral coordination environment defined by two benzene-1,4-dicarboxylate dianions and two 4-pyridinealdoxime ligands. The dianions bridge the ZnII ions, giving a zigzag chain along the b axis. Adjacent chains are connected by O—H⋯O hydrogen bonds, forming a cavity in which an uncoordinating 4-pyridine­aldoxime mol­ecule is located; this mol­ecule is linked by O—H⋯O and O—H⋯N hydrogen bonds to the zigzag chain.

Related literature

For coordination polymers, see: Cheetham et al. (1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]); Furukawa et al. (2010[Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q., O'Keeffe, M., Kim, J. & Yaghi, O. M. (2010). Science, 329, 424-428.]). For related host–guest systems, see: Kitagawa & Kawata (2002[Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11-34.]); Lehn (1995[Lehn, J.-M. (1995). In Supramolecular Chemistry: Concepts and Perspectives. VCH: Weinheim.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H4O4)(C6H6N2O)2]·C6H6N2O

  • Mr = 595.88

  • Monoclinic, P 21 /c

  • a = 7.583 (3) Å

  • b = 15.831 (6) Å

  • c = 21.906 (8) Å

  • β = 98.516 (3)°

  • V = 2600.7 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 K

  • 0.60 × 0.40 × 0.15 mm

Data collection
  • Rigaku Mercury70 diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.714, Tmax = 0.860

  • 24675 measured reflections

  • 5922 independent reflections

  • 5402 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.078

  • S = 1.06

  • 5922 reflections

  • 373 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H3⋯N5i 0.89 (5) 1.81 (4) 2.692 (3) 172 (4)
O6—H9⋯O4ii 0.81 (3) 1.94 (3) 2.752 (3) 177 (3)
O7—H13⋯O4i 0.77 (4) 2.07 (4) 2.800 (3) 158 (4)
Symmetry codes: (i) x+1, y, z; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The design and synthesis of coordination polymers (CPs) have received considerable attention in recent years due to potential applications for magnetic materials, sorption and host–guest materials (Cheetham et al., 1999; Furukawa et al., 2010; Lehn, 1995). Intermolecular interactions, such as coordination bonding, hydrogen bonding and van der Waals forces, have been used to produce such network materials. Among them, hydrogen bonding interaction is an important interaction to realize self-assemblies of molecules with novel properties such as proton-transfer-mediated electron transfer, non-linear optics and thermochromic properties of crystalline forms. We have focused on the synthesis and characterization of one-dimensional coordination polymers as host materials and have found a number of host–guest systems using hydrogen bonding interactions (Kitagawa & Kawata, 2002). Here we report synthesis and single-crystal structure of a new one-dimensional coordination polymer which consists of tetrahedral Zn(II) ion, 1,4-benzenedicarboxylate as a bridging ligand and 4-pyridineoxime (4-pyNOH) as terminal ligands. Two types of 4-pyridinealdoxime are found in the crystal. One is uncoordinated and the other 4-pyNOH coordinates to Zn(II) ion. Uncoordinated 4-pyNOH molecules are stabilized by intermolecular hydrogen bonds in the cavity formed by hydrogen bonds between chains.

Related literature top

For coordination polymers, see: Cheetham et al. (1999); Furukawa et al. (2010). For related host–guest systems, see: Kitagawa & Kawata (2002); Lehn (1995).

Experimental top

An aqueous solution (5 ml) of zinc nitrate hexahydrate (0.29 g) was transferred to a glass tube, then an ethanol-water mixture (5 ml) of terephthalic acid (0.17 g), NaOH (0.08 g) and 4-pyNOH (0.24 g) was poured into the glass tube without mixing the two solutions. Colorless crystals began to form at ambient temperature in 2 months. One of these crystals was used for X-ray crystallography.

Refinement top

Hydrogen atoms bonded to carbon atoms were introduced at the positions calculated theoretically and treated with riding models with Uiso(H) = 1.2Ueq(C). Other hydrogen atoms (H3, H9, H13) were located in a Fourier difference map and refined freely [O—H = 0.77 (4)–0.89 (5) Å].

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. View of the title compound with atomic numbering scheme. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Hydrogen bonding interactions between chains (blue and red) and intercalated 4-pyNOH molecules. Hydrogen atoms and hydrogen bonding interactions are shown as purple color and dashed line, respectively.
catena-Poly[[[bis(4-pyridinealdoxime-κN1)zinc]-µ-benzene-1,4-dicarboxylato-κ2O1:O4] 4-pyridinealdoxime monosolvate] top
Crystal data top
[Zn(C8H4O4)(C6H6N2O)2]·C6H6N2OF(000) = 1224.00
Mr = 595.88Dx = 1.522 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 5655 reflections
a = 7.583 (3) Åθ = 3.0–27.5°
b = 15.831 (6) ŵ = 1.00 mm1
c = 21.906 (8) ÅT = 293 K
β = 98.516 (3)°Platelet, colorless
V = 2600.7 (16) Å30.60 × 0.40 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury70
diffractometer
5402 reflections with F2 > 2σ(F2)
Detector resolution: 7.314 pixels mm-1Rint = 0.019
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 99
Tmin = 0.714, Tmax = 0.860k = 2020
24675 measured reflectionsl = 2828
5922 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.8505P]
where P = (Fo2 + 2Fc2)/3
5922 reflections(Δ/σ)max = 0.002
373 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.27 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Zn(C8H4O4)(C6H6N2O)2]·C6H6N2OV = 2600.7 (16) Å3
Mr = 595.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.583 (3) ŵ = 1.00 mm1
b = 15.831 (6) ÅT = 293 K
c = 21.906 (8) Å0.60 × 0.40 × 0.15 mm
β = 98.516 (3)°
Data collection top
Rigaku Mercury70
diffractometer
5922 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
5402 reflections with F2 > 2σ(F2)
Tmin = 0.714, Tmax = 0.860Rint = 0.019
24675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.34 e Å3
5922 reflectionsΔρmin = 0.27 e Å3
373 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.06451 (2)0.622158 (11)0.714672 (8)0.03146 (7)
O10.21883 (16)0.54529 (7)0.74818 (6)0.0431 (3)
O20.00514 (16)0.45411 (8)0.76070 (7)0.0509 (4)
O30.79388 (15)0.22499 (7)0.79980 (6)0.0421 (3)
O40.58272 (17)0.16416 (8)0.86719 (6)0.0474 (3)
O50.9256 (2)0.74280 (12)0.91104 (8)0.0654 (5)
O60.3534 (2)0.50254 (9)0.39196 (7)0.0525 (4)
O70.4650 (4)0.24025 (15)0.98388 (10)0.0887 (7)
N10.15225 (17)0.66275 (8)0.77281 (6)0.0339 (3)
N20.7742 (2)0.70378 (11)0.88055 (7)0.0503 (4)
N30.02911 (17)0.59469 (8)0.63468 (6)0.0330 (3)
N40.30194 (19)0.49616 (9)0.45026 (7)0.0415 (4)
N50.1156 (3)0.60383 (14)0.94885 (9)0.0614 (5)
N60.3640 (3)0.30885 (14)0.95959 (9)0.0680 (5)
C10.2999 (3)0.61485 (10)0.78018 (9)0.0417 (4)
C20.4614 (3)0.64161 (11)0.81024 (9)0.0427 (4)
C30.4744 (3)0.72219 (11)0.83570 (7)0.0381 (4)
C40.3214 (3)0.77116 (11)0.82951 (8)0.0407 (4)
C50.1641 (3)0.74000 (10)0.79765 (8)0.0376 (4)
C60.6445 (3)0.75430 (13)0.86763 (9)0.0491 (5)
C70.0049 (3)0.65017 (10)0.58845 (8)0.0369 (4)
C80.0624 (3)0.64167 (11)0.53383 (8)0.0409 (4)
C90.1692 (3)0.57299 (10)0.52502 (8)0.0376 (4)
C100.2016 (3)0.51452 (11)0.57240 (8)0.0414 (4)
C110.1296 (3)0.52711 (11)0.62583 (8)0.0405 (4)
C120.2375 (3)0.56456 (12)0.46607 (9)0.0474 (5)
C130.2764 (2)0.41148 (9)0.78608 (7)0.0318 (3)
C140.4586 (2)0.42012 (9)0.76680 (8)0.0356 (4)
C150.5772 (2)0.36017 (10)0.78215 (8)0.0357 (4)
C160.5140 (2)0.29122 (9)0.81793 (7)0.0314 (3)
C170.3329 (2)0.28438 (10)0.83923 (8)0.0363 (4)
C180.2141 (2)0.34347 (10)0.82278 (8)0.0359 (4)
C190.1499 (2)0.47331 (10)0.76378 (7)0.0344 (4)
C200.6376 (2)0.22133 (9)0.83015 (8)0.0348 (4)
C210.1206 (3)0.54202 (17)0.90740 (10)0.0629 (6)
C220.2009 (3)0.46555 (16)0.92026 (9)0.0603 (6)
C230.2809 (3)0.44822 (15)0.98042 (9)0.0547 (5)
C240.2726 (3)0.51129 (17)1.02396 (10)0.0637 (6)
C250.1912 (3)0.58644 (18)1.00653 (11)0.0670 (7)
C260.3730 (4)0.36927 (16)0.99751 (10)0.0631 (6)
H10.29210.56050.76400.0500*
H20.56070.60650.81360.0512*
H30.990 (6)0.699 (3)0.9271 (18)0.131 (15)*
H40.32470.82490.84680.0488*
H50.06290.77390.79330.0451*
H60.65720.81110.87830.0590*
H70.07700.69640.59340.0443*
H80.03640.68190.50290.0490*
H90.376 (4)0.4540 (18)0.3841 (12)0.075 (9)*
H100.27150.46720.56820.0497*
H110.15140.48710.65710.0485*
H120.23310.61090.43980.0568*
H130.456 (5)0.208 (3)0.9572 (16)0.105 (13)*
H140.50120.46680.74330.0427*
H150.69870.36600.76850.0429*
H170.29090.23960.86480.0436*
H180.09260.33760.83640.0431*
H210.06580.55180.86720.0755*
H220.20230.42550.88920.0723*
H240.32220.50251.06490.0764*
H250.18830.62781.03650.0804*
H260.43880.36321.03660.0757*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02747 (10)0.02856 (10)0.03936 (11)0.00125 (6)0.00831 (7)0.00241 (7)
O10.0429 (7)0.0306 (6)0.0598 (8)0.0038 (5)0.0205 (6)0.0039 (5)
O20.0326 (6)0.0496 (8)0.0730 (9)0.0027 (6)0.0165 (6)0.0068 (7)
O30.0330 (6)0.0317 (6)0.0612 (8)0.0067 (5)0.0050 (6)0.0005 (5)
O40.0488 (7)0.0361 (7)0.0571 (8)0.0058 (6)0.0077 (6)0.0126 (6)
O50.0478 (8)0.0793 (12)0.0652 (10)0.0185 (8)0.0049 (7)0.0220 (9)
O60.0630 (9)0.0467 (8)0.0536 (8)0.0017 (7)0.0281 (7)0.0102 (6)
O70.1144 (17)0.0847 (14)0.0620 (12)0.0132 (12)0.0030 (11)0.0018 (11)
N10.0327 (7)0.0311 (7)0.0382 (7)0.0005 (5)0.0066 (6)0.0001 (6)
N20.0416 (9)0.0650 (11)0.0428 (9)0.0147 (8)0.0011 (7)0.0138 (8)
N30.0293 (7)0.0324 (7)0.0377 (7)0.0008 (5)0.0062 (6)0.0013 (6)
N40.0367 (8)0.0466 (8)0.0422 (8)0.0037 (6)0.0091 (6)0.0074 (7)
N50.0432 (9)0.0849 (14)0.0554 (11)0.0078 (9)0.0050 (8)0.0060 (10)
N60.0698 (13)0.0799 (14)0.0540 (11)0.0014 (11)0.0079 (9)0.0014 (10)
C10.0360 (9)0.0327 (8)0.0553 (11)0.0017 (7)0.0033 (8)0.0092 (7)
C20.0339 (9)0.0408 (9)0.0524 (11)0.0025 (7)0.0029 (8)0.0083 (8)
C30.0400 (9)0.0413 (9)0.0335 (8)0.0079 (7)0.0069 (7)0.0032 (7)
C40.0525 (10)0.0340 (8)0.0365 (9)0.0024 (7)0.0098 (8)0.0069 (7)
C50.0423 (9)0.0345 (8)0.0381 (9)0.0054 (7)0.0129 (7)0.0010 (7)
C60.0511 (11)0.0491 (11)0.0462 (11)0.0129 (9)0.0037 (9)0.0101 (8)
C70.0375 (9)0.0322 (8)0.0410 (9)0.0028 (7)0.0061 (7)0.0008 (7)
C80.0492 (10)0.0351 (8)0.0388 (9)0.0023 (7)0.0081 (8)0.0037 (7)
C90.0370 (9)0.0373 (9)0.0394 (9)0.0036 (7)0.0086 (7)0.0043 (7)
C100.0399 (9)0.0395 (9)0.0454 (10)0.0090 (7)0.0083 (8)0.0012 (7)
C110.0413 (9)0.0385 (9)0.0416 (9)0.0070 (7)0.0063 (7)0.0046 (7)
C120.0593 (12)0.0405 (10)0.0461 (10)0.0002 (8)0.0204 (9)0.0002 (8)
C130.0309 (8)0.0272 (7)0.0385 (8)0.0034 (6)0.0094 (6)0.0041 (6)
C140.0328 (8)0.0256 (7)0.0491 (9)0.0022 (6)0.0085 (7)0.0036 (7)
C150.0274 (8)0.0311 (8)0.0490 (10)0.0002 (6)0.0066 (7)0.0018 (7)
C160.0313 (8)0.0270 (7)0.0371 (8)0.0027 (6)0.0085 (6)0.0013 (6)
C170.0348 (8)0.0334 (8)0.0402 (9)0.0005 (6)0.0037 (7)0.0061 (7)
C180.0287 (8)0.0367 (8)0.0417 (9)0.0014 (6)0.0029 (7)0.0006 (7)
C190.0357 (8)0.0313 (8)0.0373 (8)0.0059 (6)0.0091 (7)0.0045 (6)
C200.0351 (8)0.0279 (8)0.0431 (9)0.0031 (6)0.0111 (7)0.0022 (7)
C210.0549 (12)0.0891 (17)0.0432 (11)0.0147 (12)0.0025 (9)0.0012 (11)
C220.0608 (13)0.0814 (16)0.0392 (10)0.0156 (12)0.0096 (9)0.0062 (10)
C230.0451 (11)0.0778 (14)0.0426 (10)0.0173 (10)0.0114 (8)0.0015 (10)
C240.0549 (13)0.0956 (18)0.0397 (11)0.0098 (12)0.0045 (9)0.0071 (11)
C250.0539 (13)0.0950 (19)0.0515 (13)0.0069 (13)0.0057 (10)0.0186 (12)
C260.0637 (14)0.0843 (17)0.0420 (11)0.0127 (12)0.0102 (10)0.0050 (11)
Geometric parameters (Å, º) top
Zn1—O11.9088 (14)C14—C151.383 (3)
Zn1—O3i1.9501 (13)C15—C161.387 (3)
Zn1—N12.0289 (13)C16—C171.388 (3)
Zn1—N32.0327 (15)C16—C201.500 (3)
O1—C191.279 (2)C17—C181.383 (3)
O2—C191.226 (2)C21—C221.366 (4)
O3—C201.2713 (19)C22—C231.394 (3)
O4—C201.245 (2)C23—C241.389 (4)
O5—N21.385 (3)C23—C261.453 (4)
O6—N41.393 (3)C24—C251.368 (4)
O7—N61.388 (4)O5—H30.89 (4)
N1—C11.342 (3)O6—H90.81 (3)
N1—C51.336 (2)O7—H130.78 (4)
N2—C61.267 (3)C1—H10.930
N3—C71.336 (3)C2—H20.930
N3—C111.344 (3)C4—H40.930
N4—C121.258 (3)C5—H50.930
N5—C211.339 (4)C6—H60.930
N5—C251.337 (3)C7—H70.930
N6—C261.262 (4)C8—H80.930
C1—C21.369 (3)C10—H100.930
C2—C31.390 (3)C11—H110.930
C3—C41.385 (3)C12—H120.930
C3—C61.464 (3)C14—H140.930
C4—C51.381 (3)C15—H150.930
C7—C81.375 (3)C17—H170.930
C8—C91.386 (3)C18—H180.930
C9—C101.385 (3)C21—H210.930
C9—C121.467 (3)C22—H220.930
C10—C111.378 (3)C24—H240.930
C13—C141.390 (3)C25—H250.930
C13—C181.384 (3)C26—H260.930
C13—C191.502 (3)
O1—Zn1—O3i103.92 (6)N5—C21—C22124.4 (2)
O1—Zn1—N1116.51 (6)C21—C22—C23119.2 (2)
O1—Zn1—N3120.49 (6)C22—C23—C24116.8 (3)
O3i—Zn1—N1102.30 (6)C22—C23—C26122.5 (2)
O3i—Zn1—N3107.02 (6)C24—C23—C26120.69 (19)
N1—Zn1—N3104.77 (6)C23—C24—C25119.9 (2)
Zn1—O1—C19114.91 (12)N5—C25—C24123.7 (3)
Zn1ii—O3—C20119.68 (10)N6—C26—C23120.4 (2)
Zn1—N1—C1118.72 (11)N2—O5—H3102 (3)
Zn1—N1—C5123.01 (11)N4—O6—H9103 (2)
C1—N1—C5117.62 (14)N6—O7—H13104 (3)
O5—N2—C6112.76 (18)N1—C1—H1118.183
Zn1—N3—C7117.37 (12)C2—C1—H1118.181
Zn1—N3—C11124.92 (11)C1—C2—H2120.577
C7—N3—C11117.63 (15)C3—C2—H2120.575
O6—N4—C12111.28 (16)C3—C4—H4120.076
C21—N5—C25116.0 (3)C5—C4—H4120.063
O7—N6—C26111.6 (2)N1—C5—H5118.876
N1—C1—C2123.64 (16)C4—C5—H5118.881
C1—C2—C3118.85 (16)N2—C6—H6120.410
C2—C3—C4117.76 (16)C3—C6—H6120.420
C2—C3—C6121.03 (17)N3—C7—H7118.651
C4—C3—C6121.21 (17)C8—C7—H7118.656
C3—C4—C5119.86 (16)C7—C8—H8120.074
N1—C5—C4122.24 (16)C9—C8—H8120.082
N2—C6—C3119.17 (18)C9—C10—H10120.301
N3—C7—C8122.69 (16)C11—C10—H10120.286
C7—C8—C9119.84 (16)N3—C11—H11118.577
C8—C9—C10117.54 (17)C10—C11—H11118.577
C8—C9—C12118.92 (16)N4—C12—H12119.234
C10—C9—C12123.51 (16)C9—C12—H12119.230
C9—C10—C11119.41 (17)C13—C14—H14119.625
N3—C11—C10122.85 (16)C15—C14—H14119.627
N4—C12—C9121.54 (18)C14—C15—H15120.158
C14—C13—C18119.43 (15)C16—C15—H15120.177
C14—C13—C19119.41 (14)C16—C17—H17119.676
C18—C13—C19121.06 (14)C18—C17—H17119.670
C13—C14—C15120.75 (14)C13—C18—H18120.059
C14—C15—C16119.66 (15)C17—C18—H18120.071
C15—C16—C17119.55 (15)N5—C21—H21117.814
C15—C16—C20120.58 (14)C22—C21—H21117.818
C17—C16—C20119.74 (14)C21—C22—H22120.395
C16—C17—C18120.65 (15)C23—C22—H22120.411
C13—C18—C17119.87 (15)C23—C24—H24120.064
O1—C19—O2124.31 (16)C25—C24—H24120.069
O1—C19—C13114.32 (14)N5—C25—H25118.127
O2—C19—C13121.36 (15)C24—C25—H25118.128
O3—C20—O4124.72 (15)N6—C26—H26119.823
O3—C20—C16115.58 (14)C23—C26—H26119.820
O4—C20—C16119.68 (14)
O1—Zn1—O3i—C20i51.57 (11)C2—C3—C6—N211.0 (3)
O3i—Zn1—O1—C19177.30 (8)C4—C3—C6—N2169.38 (16)
O1—Zn1—N1—C184.68 (11)C6—C3—C4—C5178.20 (15)
O1—Zn1—N1—C5104.80 (11)C3—C4—C5—N11.0 (3)
N1—Zn1—O1—C1965.65 (10)N3—C7—C8—C90.5 (3)
O1—Zn1—N3—C7122.99 (9)C7—C8—C9—C100.8 (3)
O1—Zn1—N3—C1160.34 (11)C7—C8—C9—C12179.15 (14)
N3—Zn1—O1—C1962.98 (10)C8—C9—C10—C110.7 (3)
O3i—Zn1—N1—C1162.75 (9)C8—C9—C12—N4164.73 (16)
O3i—Zn1—N1—C57.77 (12)C10—C9—C12—N413.5 (3)
N1—Zn1—O3i—C20i173.22 (10)C12—C9—C10—C11179.00 (15)
O3i—Zn1—N3—C74.81 (10)C9—C10—C11—N30.6 (3)
O3i—Zn1—N3—C11178.51 (9)C14—C13—C18—C170.8 (3)
N3—Zn1—O3i—C20i76.92 (11)C18—C13—C14—C152.2 (3)
N1—Zn1—N3—C7103.31 (9)C14—C13—C19—O125.0 (2)
N1—Zn1—N3—C1173.36 (11)C14—C13—C19—O2154.27 (14)
N3—Zn1—N1—C151.20 (10)C19—C13—C14—C15174.36 (13)
N3—Zn1—N1—C5119.32 (10)C18—C13—C19—O1158.55 (14)
Zn1—O1—C19—O23.1 (2)C18—C13—C19—O222.2 (3)
Zn1—O1—C19—C13176.10 (8)C19—C13—C18—C17175.65 (13)
Zn1ii—O3—C20—O422.5 (3)C13—C14—C15—C160.9 (3)
Zn1ii—O3—C20—C16156.16 (9)C14—C15—C16—C171.7 (3)
Zn1—N1—C1—C2169.39 (12)C14—C15—C16—C20174.19 (14)
Zn1—N1—C5—C4170.06 (10)C15—C16—C17—C183.0 (3)
C1—N1—C5—C40.6 (3)C15—C16—C20—O38.3 (3)
C5—N1—C1—C21.6 (3)C15—C16—C20—O4172.96 (15)
O5—N2—C6—C3179.56 (15)C17—C16—C20—O3167.49 (14)
Zn1—N3—C7—C8175.10 (10)C17—C16—C20—O411.2 (3)
Zn1—N3—C11—C10174.78 (10)C20—C16—C17—C18172.87 (14)
C7—N3—C11—C101.9 (3)C16—C17—C18—C131.8 (3)
C11—N3—C7—C81.8 (3)N5—C21—C22—C231.4 (4)
O6—N4—C12—C9178.33 (14)C21—C22—C23—C240.2 (4)
C21—N5—C25—C240.9 (4)C21—C22—C23—C26178.39 (19)
C25—N5—C21—C221.9 (4)C22—C23—C24—C251.0 (4)
O7—N6—C26—C23178.2 (2)C22—C23—C26—N69.1 (4)
N1—C1—C2—C31.1 (3)C24—C23—C26—N6172.4 (2)
C1—C2—C3—C40.4 (3)C26—C23—C24—C25177.53 (19)
C1—C2—C3—C6179.20 (16)C23—C24—C25—N50.5 (4)
C2—C3—C4—C51.4 (3)
Symmetry codes: (i) x1, y+1/2, z+3/2; (ii) x1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H3···N5iii0.89 (5)1.81 (4)2.692 (3)172 (4)
O6—H9···O4iv0.81 (3)1.94 (3)2.752 (3)177 (3)
O7—H13···O4iii0.77 (4)2.07 (4)2.800 (3)158 (4)
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H4O4)(C6H6N2O)2]·C6H6N2O
Mr595.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.583 (3), 15.831 (6), 21.906 (8)
β (°) 98.516 (3)
V3)2600.7 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.60 × 0.40 × 0.15
Data collection
DiffractometerRigaku Mercury70
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.714, 0.860
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
24675, 5922, 5402
Rint0.019
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.06
No. of reflections5922
No. of parameters373
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H3···N5i0.89 (5)1.81 (4)2.692 (3)172 (4)
O6—H9···O4ii0.81 (3)1.94 (3)2.752 (3)177 (3)
O7—H13···O4i0.77 (4)2.07 (4)2.800 (3)158 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z1/2.
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationFurukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q., O'Keeffe, M., Kim, J. & Yaghi, O. M. (2010). Science, 329, 424–428.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11–34.  Web of Science CrossRef CAS Google Scholar
First citationLehn, J.-M. (1995). In Supramolecular Chemistry: Concepts and Perspectives. VCH: Weinheim.  Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds