organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o539-o540

5-Amino-6-methyl­quinolin-1-ium 3-carb­­oxy­propano­ate

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 1 March 2013; accepted 8 March 2013; online 16 March 2013)

The asymmetric unit of the title salt, C10H11N2+·C4H5O4, consists of two independent 5-amino-6-methyl­quinolin-1-ium cations and two 3-carb­oxy­propano­ate anions. Both cations are protonated at the pyridine N atoms and are essentially planar, with maximum deviations of 0.026 (3) and 0.016 (2) Å. In the crystal, the cations and anions are linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a layer parallel to the ab plane. In the layer, weak C—H⋯O hydrogen bonds and ππ stacking inter­actions, with centroid-to-centroid distances of 3.7283 (15) and 3.8467 (15) Å, are observed. The crystal structure also features weak C—H⋯O hydrogen bonds between the layers.

Related literature

For background to and the biological activity of quinoline derivatives, see: Sasaki et al. (1998[Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851-3856.]); Reux et al. (2009[Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441-4447.]); Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]). For related structures, see: Thanigaimani et al. (2013a[Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013a). Acta Cryst. E69, o42-o43.],b[Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013b). Acta Cryst. E69, o44.],c[Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013c). Acta Cryst. E69, o319-o320.]); Loh et al. (2010[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2357.]); Sauer et al. (2008[Sauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100-108.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N2+·C4H5O4

  • Mr = 276.29

  • Triclinic, [P \overline 1]

  • a = 8.0784 (3) Å

  • b = 10.8234 (4) Å

  • c = 16.4366 (6) Å

  • α = 91.608 (2)°

  • β = 101.039 (2)°

  • γ = 105.782 (2)°

  • V = 1352.49 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.31 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.984

  • 19941 measured reflections

  • 6733 independent reflections

  • 4669 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.200

  • S = 1.04

  • 6733 reflections

  • 395 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O4A 0.88 (1) 1.78 (1) 2.667 (3) 177 (4)
N1B—H1NB⋯O4B 0.97 (3) 1.71 (3) 2.664 (3) 170 (3)
O2A—H1OA⋯O4Ai 0.83 (2) 1.69 (2) 2.520 (2) 176 (3)
O2B—H1OB⋯O4Bi 0.93 (4) 1.60 (4) 2.525 (2) 179 (4)
N2A—H2NA⋯O3Aii 0.99 (5) 1.97 (5) 2.931 (3) 163 (4)
N2A—H3NA⋯O2Biii 0.93 (4) 2.11 (4) 2.937 (3) 149 (3)
N2B—H2NB⋯O2Aii 0.87 (3) 2.22 (3) 3.037 (3) 157 (3)
N2B—H3NB⋯O3Bii 0.87 (3) 2.14 (3) 3.001 (3) 172 (3)
C7A—H7AA⋯O3Aii 0.95 2.42 3.343 (3) 165
C9A—H9AA⋯O1Aiv 0.95 2.37 3.271 (3) 158
C7B—H7BA⋯O3Bii 0.95 2.31 3.253 (3) 169
C8B—H8BA⋯O3Bv 0.95 2.51 3.323 (3) 143
C9B—H9BA⋯O4Bv 0.95 2.52 3.388 (3) 153
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x-1, y+1, z; (iv) -x+1, -y+1, -z; (v) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Thanigaimani et al., 2013a,b,c; Loh et al., 2010). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991) and biologically active compounds (Markees et al., 1970). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). In this paper, we present the X-ray single-crystal structure of 5-amino-6-methylquinolin-1-ium hydrogen succinate (I).

The asymmetric unit of the title salt consists of two crystallographically independent 5-amino-6-methylquinolin-1-ium cations (A and B) and two 3-carboxypropanoate anions (A and B) (Fig. 1). Each 5-amino-6-methylquinolin-1-ium cation is essentially planar, with maximum deviations of 0.026 (3) Å for atom C5A in cation A and 0.016 (2) Å for C8B atom in cation B. In the cations, protonation of atoms N1A and N1B lead to a slight increase in C1A—N1A—C9A [123.1 (2)°] and C1B—N1B—C9B [123.3 (2)°] angles. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the ion units are linked by N1A—H1NA···O4A, N1B—H1NB···O4B, O2A—H10A···O4Ai, O2B—H10B···O4Bi, N2A—H2NA···O3Aii, N2A—H3NA···O2Biii, N2B—H2NB···O2Aii and N2B—H3NB···O3Bii hydrogen bonds (symmetry codes in Table 1), into a three-dimensional network. Furthermore, the crystal structure is stabilized by C7A—H7AA···O3Aii, C9A—H9AA···O1Aiv, C7B—H7BA···O3Bii, C8B—H8BA···O3Bv and C9B—H9BA···O4Bv hydrogen bonds (symmetry codes in Table 1) and ππ stacking interactions between the centroids of C1A–C6A (Cg2), N1B/C6B–C9B/C1B (Cg4) rings and C1A–C6A, C1B–C6B (Cg5) rings, with Cg2···Cg4 and Cg2···Cg5 distances of 3.7283 (15) and 3.8467 (15) Å, respectively.

Related literature top

For background to and the biological activity of quinoline derivatives, see: Sasaki et al. (1998); Reux et al. (2009); Morimoto et al. (1991); Markees et al. (1970). For related structures, see: Thanigaimani et al. (2013a,b,c); Loh et al. (2010); Sauer et al. (2008). For reference bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 5-amino-6-methylquinoline (39 mg, Aldrich) and succinic acid (29 mg, Aldrich) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

O- and N-bound H atoms were located in a difference Fourier maps. Atoms H1OB, H2NA, H3NA, H1NB, H2NB and H3NB were refined freely, while atoms H1OA and H1NA were refined with a bond restraint O—H = 0.82 (1) Å and N—H = 0.87 (1) Å [refined distances: O2A—H1OA = 0.834 (10) Å, O2B—H1OB = 0.92 (4) Å, N1A—H1NA = 0.883 (10) Å, N2A—H2NA = 0.98 (5) Å, N2A—H3NA = 0.93 (4) Å, N1B—H1NB = 0.96 (3) Å, N2B—H2NB = 0.87 (3) Å and N2B—H3NB = 0.88 (3) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl group. Three outliers were omitted (-4 -7 7, -1 -7 12 and -4 -7 6) in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
5-Amino-6-methylquinolin-1-ium 3-carboxypropanoate top
Crystal data top
C10H11N2+·C4H5O4Z = 4
Mr = 276.29F(000) = 584
Triclinic, P1Dx = 1.357 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0784 (3) ÅCell parameters from 5690 reflections
b = 10.8234 (4) Åθ = 2.4–29.7°
c = 16.4366 (6) ŵ = 0.10 mm1
α = 91.608 (2)°T = 100 K
β = 101.039 (2)°Block, orange
γ = 105.782 (2)°0.31 × 0.17 × 0.16 mm
V = 1352.49 (9) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6733 independent reflections
Radiation source: fine-focus sealed tube4669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 28.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.970, Tmax = 0.984k = 1414
19941 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0947P)2 + 1.0362P]
where P = (Fo2 + 2Fc2)/3
6733 reflections(Δ/σ)max < 0.001
395 parametersΔρmax = 0.52 e Å3
2 restraintsΔρmin = 0.35 e Å3
Crystal data top
C10H11N2+·C4H5O4γ = 105.782 (2)°
Mr = 276.29V = 1352.49 (9) Å3
Triclinic, P1Z = 4
a = 8.0784 (3) ÅMo Kα radiation
b = 10.8234 (4) ŵ = 0.10 mm1
c = 16.4366 (6) ÅT = 100 K
α = 91.608 (2)°0.31 × 0.17 × 0.16 mm
β = 101.039 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6733 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4669 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.984Rint = 0.048
19941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0662 restraints
wR(F2) = 0.200H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.52 e Å3
6733 reflectionsΔρmin = 0.35 e Å3
395 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.1452 (3)0.6288 (2)0.13378 (13)0.0263 (4)
N2A0.1161 (3)1.0273 (2)0.25781 (16)0.0356 (5)
C1A0.1331 (3)0.6995 (2)0.20182 (15)0.0259 (5)
C2A0.1184 (3)0.6413 (3)0.27674 (16)0.0299 (6)
H2AA0.11760.55380.28150.036*
C3A0.1054 (4)0.7167 (3)0.34280 (17)0.0339 (6)
H3AA0.09640.67920.39390.041*
C4A0.1047 (3)0.8441 (3)0.33871 (16)0.0318 (6)
C5A0.1197 (3)0.9047 (2)0.26446 (16)0.0282 (5)
C6A0.1369 (3)0.8304 (2)0.19393 (15)0.0248 (5)
C7A0.1584 (3)0.8819 (3)0.11766 (16)0.0281 (5)
H7AA0.16300.96960.11130.034*
C8A0.1728 (4)0.8061 (3)0.05216 (16)0.0325 (6)
H8AA0.18860.84140.00100.039*
C9A0.1641 (3)0.6781 (3)0.06169 (17)0.0318 (6)
H9AA0.17170.62490.01640.038*
C10A0.0868 (5)0.9222 (3)0.41296 (18)0.0463 (8)
H10A0.07720.86850.45980.069*
H10B0.01890.95150.39840.069*
H10C0.19050.99700.42870.069*
O1A0.7074 (2)0.44158 (16)0.09215 (11)0.0275 (4)
O2A0.7631 (2)0.26649 (17)0.14664 (12)0.0279 (4)
O3A0.1102 (2)0.17893 (16)0.11289 (12)0.0294 (4)
O4A0.0728 (2)0.37301 (16)0.13103 (12)0.0273 (4)
C11A0.6595 (3)0.3411 (2)0.12228 (14)0.0217 (5)
C12A0.4757 (3)0.2834 (2)0.13614 (15)0.0228 (5)
H12A0.48180.27350.19620.027*
H12B0.42780.19640.10630.027*
C13A0.3505 (3)0.3625 (2)0.10726 (16)0.0253 (5)
H13A0.34780.37620.04780.030*
H13B0.39410.44800.13920.030*
C14A0.1656 (3)0.2977 (2)0.11840 (15)0.0228 (5)
N1B0.5783 (3)0.6411 (2)0.37371 (12)0.0233 (4)
N2B0.6094 (3)1.0271 (2)0.22984 (14)0.0264 (5)
C1B0.6078 (3)0.7071 (2)0.30499 (15)0.0219 (5)
C2B0.6486 (3)0.6475 (2)0.23808 (15)0.0246 (5)
H2BA0.65680.56160.23900.029*
C3B0.6768 (3)0.7175 (2)0.17047 (15)0.0257 (5)
H3BA0.70490.67790.12470.031*
C4B0.6658 (3)0.8439 (2)0.16653 (15)0.0228 (5)
C5B0.6250 (3)0.9052 (2)0.23322 (14)0.0214 (5)
C6B0.5952 (3)0.8359 (2)0.30487 (14)0.0206 (5)
C7B0.5578 (3)0.8897 (2)0.37612 (15)0.0237 (5)
H7BA0.55080.97590.37780.028*
C8B0.5312 (3)0.8191 (2)0.44323 (15)0.0263 (5)
H8BA0.50660.85610.49100.032*
C9B0.5410 (3)0.6919 (2)0.43990 (15)0.0254 (5)
H9BA0.52090.64160.48540.031*
C10B0.7013 (4)0.9169 (2)0.09179 (16)0.0299 (6)
H10D0.72680.86110.05080.045*
H10E0.80240.99310.10920.045*
H10F0.59770.94380.06700.045*
O1B1.2074 (2)0.44971 (16)0.43052 (11)0.0258 (4)
O2B1.2173 (2)0.27375 (18)0.35962 (13)0.0333 (4)
O3B0.5817 (2)0.19433 (15)0.37244 (11)0.0264 (4)
O4B0.5389 (2)0.38843 (15)0.37072 (11)0.0248 (4)
C11B1.1346 (3)0.3473 (2)0.39056 (14)0.0220 (5)
C12B0.9375 (3)0.2871 (2)0.36983 (16)0.0255 (5)
H12C0.90790.21130.40220.031*
H12D0.90100.25620.31010.031*
C13B0.8340 (3)0.3788 (2)0.38803 (16)0.0232 (5)
H13C0.85290.44970.35110.028*
H13D0.87900.41700.44620.028*
C14B0.6382 (3)0.3128 (2)0.37564 (14)0.0199 (4)
H1OA0.8673 (18)0.301 (3)0.144 (2)0.041 (9)*
H1OB1.335 (5)0.317 (3)0.364 (2)0.053 (10)*
H1NA0.125 (4)0.5444 (11)0.134 (2)0.041 (9)*
H2NA0.136 (6)1.074 (4)0.208 (3)0.082 (14)*
H3NA0.127 (5)1.084 (4)0.303 (2)0.061 (11)*
H1NB0.574 (4)0.551 (3)0.369 (2)0.053 (10)*
H2NB0.660 (4)1.079 (3)0.197 (2)0.036 (8)*
H3NB0.593 (4)1.069 (3)0.272 (2)0.039 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0259 (11)0.0269 (11)0.0281 (11)0.0100 (9)0.0065 (9)0.0043 (9)
N2A0.0424 (14)0.0305 (12)0.0329 (13)0.0111 (10)0.0050 (11)0.0046 (10)
C1A0.0206 (12)0.0312 (13)0.0244 (12)0.0068 (10)0.0019 (9)0.0008 (10)
C2A0.0267 (13)0.0321 (13)0.0295 (13)0.0065 (11)0.0047 (10)0.0036 (10)
C3A0.0348 (15)0.0394 (15)0.0244 (13)0.0082 (12)0.0018 (11)0.0051 (11)
C4A0.0261 (13)0.0426 (15)0.0227 (12)0.0062 (11)0.0014 (10)0.0046 (11)
C5A0.0234 (12)0.0295 (13)0.0276 (13)0.0039 (10)0.0015 (10)0.0025 (10)
C6A0.0186 (11)0.0321 (13)0.0216 (12)0.0059 (9)0.0010 (9)0.0014 (9)
C7A0.0250 (12)0.0325 (13)0.0268 (13)0.0095 (10)0.0038 (10)0.0033 (10)
C8A0.0317 (14)0.0441 (15)0.0229 (12)0.0119 (12)0.0069 (10)0.0043 (11)
C9A0.0310 (14)0.0399 (15)0.0264 (13)0.0126 (12)0.0071 (11)0.0008 (11)
C10A0.062 (2)0.0485 (18)0.0275 (15)0.0143 (16)0.0089 (14)0.0036 (13)
O1A0.0267 (9)0.0261 (9)0.0340 (10)0.0112 (7)0.0106 (8)0.0074 (7)
O2A0.0184 (9)0.0324 (10)0.0374 (10)0.0120 (7)0.0080 (7)0.0139 (8)
O3A0.0216 (9)0.0238 (9)0.0424 (11)0.0076 (7)0.0035 (8)0.0056 (7)
O4A0.0204 (8)0.0232 (8)0.0414 (11)0.0097 (7)0.0083 (7)0.0048 (7)
C11A0.0209 (11)0.0252 (12)0.0200 (11)0.0081 (9)0.0049 (9)0.0003 (9)
C12A0.0202 (11)0.0248 (11)0.0270 (12)0.0113 (9)0.0053 (9)0.0078 (9)
C13A0.0195 (11)0.0241 (12)0.0324 (13)0.0062 (9)0.0052 (10)0.0035 (10)
C14A0.0181 (11)0.0256 (12)0.0235 (11)0.0068 (9)0.0003 (9)0.0035 (9)
N1B0.0232 (10)0.0232 (10)0.0229 (10)0.0078 (8)0.0014 (8)0.0043 (8)
N2B0.0323 (12)0.0225 (10)0.0264 (11)0.0090 (9)0.0086 (9)0.0059 (9)
C1B0.0187 (11)0.0223 (11)0.0232 (12)0.0071 (9)0.0014 (9)0.0002 (9)
C2B0.0269 (12)0.0225 (11)0.0258 (12)0.0113 (10)0.0027 (10)0.0017 (9)
C3B0.0261 (12)0.0282 (12)0.0235 (12)0.0118 (10)0.0016 (10)0.0021 (9)
C4B0.0217 (11)0.0243 (11)0.0209 (11)0.0052 (9)0.0026 (9)0.0021 (9)
C5B0.0202 (11)0.0208 (11)0.0227 (11)0.0079 (9)0.0001 (9)0.0003 (9)
C6B0.0190 (11)0.0193 (11)0.0220 (11)0.0055 (8)0.0007 (9)0.0014 (8)
C7B0.0241 (12)0.0219 (11)0.0251 (12)0.0069 (9)0.0044 (9)0.0025 (9)
C8B0.0284 (13)0.0277 (12)0.0227 (12)0.0075 (10)0.0058 (10)0.0005 (9)
C9B0.0236 (12)0.0302 (13)0.0219 (12)0.0071 (10)0.0036 (9)0.0041 (9)
C10B0.0342 (14)0.0303 (13)0.0252 (13)0.0085 (11)0.0074 (11)0.0025 (10)
O1B0.0215 (8)0.0259 (9)0.0287 (9)0.0072 (7)0.0021 (7)0.0024 (7)
O2B0.0185 (9)0.0301 (9)0.0496 (12)0.0073 (8)0.0051 (8)0.0128 (8)
O3B0.0235 (9)0.0204 (8)0.0380 (10)0.0077 (7)0.0105 (7)0.0026 (7)
O4B0.0193 (8)0.0234 (8)0.0336 (10)0.0098 (7)0.0049 (7)0.0025 (7)
C11B0.0212 (11)0.0254 (11)0.0218 (11)0.0119 (9)0.0022 (9)0.0028 (9)
C12B0.0202 (11)0.0262 (12)0.0303 (13)0.0095 (9)0.0023 (9)0.0028 (10)
C13B0.0191 (11)0.0220 (11)0.0315 (13)0.0100 (9)0.0061 (9)0.0033 (9)
C14B0.0218 (11)0.0228 (11)0.0177 (10)0.0099 (9)0.0050 (9)0.0021 (8)
Geometric parameters (Å, º) top
N1A—C9A1.331 (3)N1B—C9B1.326 (3)
N1A—C1A1.371 (3)N1B—C1B1.378 (3)
N1A—H1NA0.883 (10)N1B—H1NB0.96 (3)
N2A—C5A1.342 (3)N2B—C5B1.361 (3)
N2A—H2NA0.98 (5)N2B—H2NB0.87 (3)
N2A—H3NA0.93 (4)N2B—H3NB0.88 (3)
C1A—C2A1.409 (4)C1B—C2B1.396 (3)
C1A—C6A1.419 (3)C1B—C6B1.426 (3)
C2A—C3A1.377 (4)C2B—C3B1.382 (3)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.384 (4)C3B—C4B1.398 (3)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.412 (4)C4B—C5B1.402 (3)
C4A—C10A1.517 (4)C4B—C10B1.510 (3)
C5A—C6A1.442 (3)C5B—C6B1.437 (3)
C6A—C7A1.408 (3)C6B—C7B1.412 (3)
C7A—C8A1.377 (4)C7B—C8B1.377 (3)
C7A—H7AA0.9500C7B—H7BA0.9500
C8A—C9A1.383 (4)C8B—C9B1.401 (3)
C8A—H8AA0.9500C8B—H8BA0.9500
C9A—H9AA0.9500C9B—H9BA0.9500
C10A—H10A0.9800C10B—H10D0.9800
C10A—H10B0.9800C10B—H10E0.9800
C10A—H10C0.9800C10B—H10F0.9800
O1A—C11A1.205 (3)O1B—C11B1.209 (3)
O2A—C11A1.331 (3)O2B—C11B1.317 (3)
O2A—H1OA0.834 (10)O2B—H1OB0.92 (4)
O3A—C14A1.235 (3)O3B—C14B1.235 (3)
O4A—C14A1.285 (3)O4B—C14B1.286 (3)
C11A—C12A1.510 (3)C11B—C12B1.514 (3)
C12A—C13A1.514 (3)C12B—C13B1.518 (3)
C12A—H12A0.9900C12B—H12C0.9900
C12A—H12B0.9900C12B—H12D0.9900
C13A—C14A1.516 (3)C13B—C14B1.519 (3)
C13A—H13A0.9900C13B—H13C0.9900
C13A—H13B0.9900C13B—H13D0.9900
C9A—N1A—C1A123.1 (2)C9B—N1B—C1B123.3 (2)
C9A—N1A—H1NA116 (2)C9B—N1B—H1NB121 (2)
C1A—N1A—H1NA120 (2)C1B—N1B—H1NB116 (2)
C5A—N2A—H2NA123 (2)C5B—N2B—H2NB121 (2)
C5A—N2A—H3NA123 (2)C5B—N2B—H3NB122 (2)
H2NA—N2A—H3NA111 (3)H2NB—N2B—H3NB112 (3)
N1A—C1A—C2A119.7 (2)N1B—C1B—C2B120.0 (2)
N1A—C1A—C6A118.1 (2)N1B—C1B—C6B118.1 (2)
C2A—C1A—C6A122.2 (2)C2B—C1B—C6B121.9 (2)
C3A—C2A—C1A117.1 (2)C3B—C2B—C1B117.9 (2)
C3A—C2A—H2AA121.5C3B—C2B—H2BA121.1
C1A—C2A—H2AA121.5C1B—C2B—H2BA121.1
C2A—C3A—C4A123.5 (3)C2B—C3B—C4B122.9 (2)
C2A—C3A—H3AA118.2C2B—C3B—H3BA118.5
C4A—C3A—H3AA118.2C4B—C3B—H3BA118.5
C3A—C4A—C5A120.5 (2)C3B—C4B—C5B119.9 (2)
C3A—C4A—C10A121.4 (3)C3B—C4B—C10B120.7 (2)
C5A—C4A—C10A118.1 (3)C5B—C4B—C10B119.4 (2)
N2A—C5A—C4A122.1 (2)N2B—C5B—C4B120.9 (2)
N2A—C5A—C6A119.9 (2)N2B—C5B—C6B120.2 (2)
C4A—C5A—C6A118.1 (2)C4B—C5B—C6B118.9 (2)
C7A—C6A—C1A118.4 (2)C7B—C6B—C1B118.1 (2)
C7A—C6A—C5A123.1 (2)C7B—C6B—C5B123.5 (2)
C1A—C6A—C5A118.6 (2)C1B—C6B—C5B118.4 (2)
C8A—C7A—C6A120.6 (2)C8B—C7B—C6B121.0 (2)
C8A—C7A—H7AA119.7C8B—C7B—H7BA119.5
C6A—C7A—H7AA119.7C6B—C7B—H7BA119.5
C7A—C8A—C9A119.3 (2)C7B—C8B—C9B118.9 (2)
C7A—C8A—H8AA120.4C7B—C8B—H8BA120.5
C9A—C8A—H8AA120.4C9B—C8B—H8BA120.5
N1A—C9A—C8A120.6 (2)N1B—C9B—C8B120.5 (2)
N1A—C9A—H9AA119.7N1B—C9B—H9BA119.8
C8A—C9A—H9AA119.7C8B—C9B—H9BA119.8
C4A—C10A—H10A109.5C4B—C10B—H10D109.5
C4A—C10A—H10B109.5C4B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C4A—C10A—H10C109.5C4B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C11A—O2A—H1OA112 (2)C11B—O2B—H1OB111 (2)
O1A—C11A—O2A123.7 (2)O1B—C11B—O2B124.1 (2)
O1A—C11A—C12A124.7 (2)O1B—C11B—C12B124.5 (2)
O2A—C11A—C12A111.64 (19)O2B—C11B—C12B111.4 (2)
C11A—C12A—C13A113.97 (19)C11B—C12B—C13B113.5 (2)
C11A—C12A—H12A108.8C11B—C12B—H12C108.9
C13A—C12A—H12A108.8C13B—C12B—H12C108.9
C11A—C12A—H12B108.8C11B—C12B—H12D108.9
C13A—C12A—H12B108.8C13B—C12B—H12D108.9
H12A—C12A—H12B107.7H12C—C12B—H12D107.7
C12A—C13A—C14A112.12 (19)C12B—C13B—C14B112.63 (19)
C12A—C13A—H13A109.2C12B—C13B—H13C109.1
C14A—C13A—H13A109.2C14B—C13B—H13C109.1
C12A—C13A—H13B109.2C12B—C13B—H13D109.1
C14A—C13A—H13B109.2C14B—C13B—H13D109.1
H13A—C13A—H13B107.9H13C—C13B—H13D107.8
O3A—C14A—O4A123.7 (2)O3B—C14B—O4B123.4 (2)
O3A—C14A—C13A120.2 (2)O3B—C14B—C13B121.0 (2)
O4A—C14A—C13A116.2 (2)O4B—C14B—C13B115.60 (19)
C9A—N1A—C1A—C2A178.1 (2)C9B—N1B—C1B—C2B179.2 (2)
C9A—N1A—C1A—C6A1.5 (4)C9B—N1B—C1B—C6B0.8 (3)
N1A—C1A—C2A—C3A179.5 (2)N1B—C1B—C2B—C3B179.9 (2)
C6A—C1A—C2A—C3A0.9 (4)C6B—C1B—C2B—C3B0.1 (3)
C1A—C2A—C3A—C4A0.5 (4)C1B—C2B—C3B—C4B0.1 (4)
C2A—C3A—C4A—C5A0.7 (4)C2B—C3B—C4B—C5B0.1 (4)
C2A—C3A—C4A—C10A178.9 (3)C2B—C3B—C4B—C10B178.8 (2)
C3A—C4A—C5A—N2A178.7 (3)C3B—C4B—C5B—N2B178.4 (2)
C10A—C4A—C5A—N2A0.9 (4)C10B—C4B—C5B—N2B2.9 (4)
C3A—C4A—C5A—C6A0.5 (4)C3B—C4B—C5B—C6B0.1 (3)
C10A—C4A—C5A—C6A179.9 (2)C10B—C4B—C5B—C6B178.6 (2)
N1A—C1A—C6A—C7A1.9 (3)N1B—C1B—C6B—C7B1.6 (3)
C2A—C1A—C6A—C7A177.7 (2)C2B—C1B—C6B—C7B178.4 (2)
N1A—C1A—C6A—C5A178.4 (2)N1B—C1B—C6B—C5B179.7 (2)
C2A—C1A—C6A—C5A2.0 (4)C2B—C1B—C6B—C5B0.3 (3)
N2A—C5A—C6A—C7A2.9 (4)N2B—C5B—C6B—C7B3.2 (4)
C4A—C5A—C6A—C7A177.9 (2)C4B—C5B—C6B—C7B178.3 (2)
N2A—C5A—C6A—C1A177.5 (2)N2B—C5B—C6B—C1B178.2 (2)
C4A—C5A—C6A—C1A1.7 (3)C4B—C5B—C6B—C1B0.3 (3)
C1A—C6A—C7A—C8A0.9 (4)C1B—C6B—C7B—C8B1.1 (3)
C5A—C6A—C7A—C8A179.5 (2)C5B—C6B—C7B—C8B179.7 (2)
C6A—C7A—C8A—C9A0.7 (4)C6B—C7B—C8B—C9B0.3 (4)
C1A—N1A—C9A—C8A0.1 (4)C1B—N1B—C9B—C8B0.6 (4)
C7A—C8A—C9A—N1A1.2 (4)C7B—C8B—C9B—N1B1.1 (4)
O1A—C11A—C12A—C13A0.9 (3)O1B—C11B—C12B—C13B12.1 (3)
O2A—C11A—C12A—C13A178.4 (2)O2B—C11B—C12B—C13B168.0 (2)
C11A—C12A—C13A—C14A177.1 (2)C11B—C12B—C13B—C14B173.8 (2)
C12A—C13A—C14A—O3A31.2 (3)C12B—C13B—C14B—O3B17.2 (3)
C12A—C13A—C14A—O4A150.7 (2)C12B—C13B—C14B—O4B164.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O4A0.88 (1)1.78 (1)2.667 (3)177 (4)
N1B—H1NB···O4B0.97 (3)1.71 (3)2.664 (3)170 (3)
O2A—H1OA···O4Ai0.83 (2)1.69 (2)2.520 (2)176 (3)
O2B—H1OB···O4Bi0.93 (4)1.60 (4)2.525 (2)179 (4)
N2A—H2NA···O3Aii0.99 (5)1.97 (5)2.931 (3)163 (4)
N2A—H3NA···O2Biii0.93 (4)2.11 (4)2.937 (3)149 (3)
N2B—H2NB···O2Aii0.87 (3)2.22 (3)3.037 (3)157 (3)
N2B—H3NB···O3Bii0.87 (3)2.14 (3)3.001 (3)172 (3)
C7A—H7AA···O3Aii0.952.423.343 (3)165
C9A—H9AA···O1Aiv0.952.373.271 (3)158
C7B—H7BA···O3Bii0.952.313.253 (3)169
C8B—H8BA···O3Bv0.952.513.323 (3)143
C9B—H9BA···O4Bv0.952.523.388 (3)153
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y+1, z; (iv) x+1, y+1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H11N2+·C4H5O4
Mr276.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0784 (3), 10.8234 (4), 16.4366 (6)
α, β, γ (°)91.608 (2), 101.039 (2), 105.782 (2)
V3)1352.49 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.31 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.970, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
19941, 6733, 4669
Rint0.048
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.200, 1.04
No. of reflections6733
No. of parameters395
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O4A0.883 (13)1.784 (12)2.667 (3)177 (4)
N1B—H1NB···O4B0.97 (3)1.71 (3)2.664 (3)170 (3)
O2A—H1OA···O4Ai0.83 (2)1.69 (2)2.520 (2)176 (3)
O2B—H1OB···O4Bi0.93 (4)1.60 (4)2.525 (2)179 (4)
N2A—H2NA···O3Aii0.99 (5)1.97 (5)2.931 (3)163 (4)
N2A—H3NA···O2Biii0.93 (4)2.11 (4)2.937 (3)149 (3)
N2B—H2NB···O2Aii0.87 (3)2.22 (3)3.037 (3)157 (3)
N2B—H3NB···O3Bii0.87 (3)2.14 (3)3.001 (3)172 (3)
C7A—H7AA···O3Aii0.952.423.343 (3)165
C9A—H9AA···O1Aiv0.952.373.271 (3)158
C7B—H7BA···O3Bii0.952.313.253 (3)169
C8B—H8BA···O3Bv0.952.513.323 (3)143
C9B—H9BA···O4Bv0.952.523.388 (3)153
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y+1, z; (iv) x+1, y+1, z; (v) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for research facilities and a USM Short Term Grant (No. 304/PFIZIK/6312078) to conduct this work. KT thanks the Academy of Sciences for the Developing World and USM for the TWAS-USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLoh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationReux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441–4447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851–3856.  Web of Science CrossRef Google Scholar
First citationSauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100–108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013a). Acta Cryst. E69, o42–o43.  CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013b). Acta Cryst. E69, o44.  CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013c). Acta Cryst. E69, o319–o320.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o539-o540
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds