organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-2-oxo­ethyl naphthalene-1-carboxyl­ate

aNational Institute of Technology-Karnataka, Department of Chemistry, Surathkal, Mangalore 575 025, India, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 1 March 2013; accepted 12 March 2013; online 16 March 2013)

In the title compound, C19H13ClO3, an ester of 1-naphthoic acid with an aromatic alcohol, the least-squares planes defined by the C atoms of the respective aromatic systems enclose an angle of 77.16 (3)°. In the crystal, C—H⋯O contacts connect the mol­ecules into undulating sheets parallel to the bc plane.

Related literature

For general information about phenyl benzoates, see: Rather & Reid (1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]). For the photolytic properties of phenyl benzoates, see: Sheehan & Umezaw (1973[Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.]); Ruzicka et al. (2002[Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.]); Litera et al. (2006[Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.]). For synthetic applications of phenyl benzoates, see: Huang et al. (1996[Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]); Gandhi et al. (1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13ClO3

  • Mr = 324.74

  • Monoclinic, P 21 /c

  • a = 5.2708 (1) Å

  • b = 14.8465 (4) Å

  • c = 19.8427 (5) Å

  • β = 100.383 (1)°

  • V = 1527.32 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 200 K

  • 0.37 × 0.35 × 0.27 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 1.000

  • 14592 measured reflections

  • 3769 independent reflections

  • 2984 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.103

  • S = 1.02

  • 3769 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.95 2.41 3.2583 (16) 148
C23—H23⋯O3ii 0.95 2.48 3.2618 (19) 140
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

For decades, phenyl benzoate derivatives have found ample application in the identification of organic acids (Rather & Reid 1919). These compounds can be photolysed under neutral and mild conditions (Sheehan & Umezaw, 1973; Ruzicka et al., 2002; Litera et al., 2006). They also find application in the field of synthetic chemistry such as in the synthesis of oxazoles and imidazoles (Huang et al., 1996) as well as benzoxazepine (Gandhi et al., 1995). In continuation of our research focused on the crystal structures of medical compounds, the title compound was synthesized.

The planes defined by the atoms of the carboxy group on the one hand and the non-hydrogen atoms of the CH2–CO moiety intersect at an angle of 77.9 (2) °. The least-squares planes defined by the carbon atoms of the respective aromatic systems enclose an angle of 77.16 (3) ° (Fig. 1).

In the crystal, intermolecular C–H···O contacts are observed whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the atoms participating. One of the hydrogen atoms of the chlorinated phenyl moiety and the oxygen atom of the keto group give rise to centrosymmetric dimers. Additionally, the hydrogen atom in para position to the carboxy moiety forms a C–H···O contact to the double bonded oxygen atom of exactly this group in a neighbouring molecule. In total, the molecules are connected to undulated sheets parallel bc. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is C11(7)R22(10) on the unary level. Information about metrical parameters as well as the symmetry of those contacts has been summarized in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 4.7603 (9) Å and is apparent between the two different rings in the naphthoic acid moiety and its symmetry-generated equivalents (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For general information about phenyl benzoates, see: Rather & Reid (1919). For the photolytic properties of phenyl benzoates, see: Sheehan & Umezaw (1973); Ruzicka et al. (2002); Litera et al. (2006). For synthetic applications of phenyl benzoates, see: Huang et al. (1996); Gandhi et al. (1995). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

A mixture of naphthalene-1-carboxylic acid (0.1 g, 0.0005 mol), potassium carbonate (0.087 g, 0.00063 mol) and 2-bromo-1-(4-chlorophenyl)ethanone (0.147 g, 0.00063 mol) in dimethylformamide (5 ml) was stirred at room temperature for 2 h. After completion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered, washed with water and recrystallized from ethanol (yield: 0.180 g, 95.7%).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms and C–H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. Symmetry operators: i -x + 1, y - 1/2, -z + 1/2; ii -x + 1, y + 1/2, -z + 1/2; iii -x + 1, -y + 1, -z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
2-(4-Chlorophenyl)-2-oxoethyl naphthalene-1-carboxylate top
Crystal data top
C19H13ClO3F(000) = 672
Mr = 324.74Dx = 1.412 Mg m3
Monoclinic, P21/cMelting point = 396–394 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.2708 (1) ÅCell parameters from 6659 reflections
b = 14.8465 (4) Åθ = 2.5–28.3°
c = 19.8427 (5) ŵ = 0.26 mm1
β = 100.383 (1)°T = 200 K
V = 1527.32 (6) Å3Block, colourless
Z = 40.37 × 0.35 × 0.27 mm
Data collection top
Bruker APEXII CCD
diffractometer
3769 independent reflections
Radiation source: fine-focus sealed tube2984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 74
Tmin = 0.941, Tmax = 1.000k = 1919
14592 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.4268P]
where P = (Fo2 + 2Fc2)/3
3769 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C19H13ClO3V = 1527.32 (6) Å3
Mr = 324.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2708 (1) ŵ = 0.26 mm1
b = 14.8465 (4) ÅT = 200 K
c = 19.8427 (5) Å0.37 × 0.35 × 0.27 mm
β = 100.383 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3769 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2984 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 1.000Rint = 0.016
14592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
3769 reflectionsΔρmin = 0.35 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.04341 (9)0.83154 (3)0.08650 (2)0.05829 (14)
O10.71978 (19)0.48481 (8)0.09291 (5)0.0498 (3)
O21.04495 (18)0.43162 (7)0.20029 (5)0.0401 (2)
O30.8225 (2)0.53669 (7)0.24573 (6)0.0570 (3)
C10.9224 (2)0.52533 (9)0.10107 (6)0.0340 (3)
C21.1344 (2)0.50163 (11)0.16112 (7)0.0408 (3)
H2A1.29010.48130.14400.049*
H2B1.18060.55540.19030.049*
C30.8633 (3)0.45846 (9)0.23619 (7)0.0370 (3)
C110.9666 (2)0.59907 (9)0.05398 (6)0.0313 (3)
C121.1866 (2)0.65299 (10)0.06517 (7)0.0391 (3)
H121.32100.64070.10280.047*
C131.2108 (3)0.72426 (10)0.02184 (8)0.0430 (3)
H131.36010.76140.02980.052*
C141.0158 (3)0.74075 (9)0.03304 (7)0.0384 (3)
C150.7980 (3)0.68741 (10)0.04616 (7)0.0421 (3)
H150.66680.69890.08470.050*
C160.7743 (2)0.61712 (9)0.00232 (7)0.0381 (3)
H160.62430.58040.01070.046*
C200.7172 (2)0.38165 (8)0.25836 (6)0.0336 (3)
C210.7052 (3)0.30251 (10)0.22178 (7)0.0424 (3)
H210.80740.29560.18730.051*
C220.5434 (3)0.23170 (10)0.23488 (8)0.0523 (4)
H220.53880.17710.20980.063*
C230.3936 (3)0.24148 (10)0.28341 (8)0.0505 (4)
H230.28010.19420.29060.061*
C240.4034 (3)0.32039 (10)0.32326 (7)0.0412 (3)
C250.2497 (3)0.33038 (13)0.37451 (9)0.0546 (4)
H250.13350.28360.38110.066*
C260.2647 (3)0.40503 (14)0.41426 (9)0.0597 (5)
H260.15940.41060.44820.072*
C270.4364 (3)0.47393 (12)0.40503 (8)0.0543 (4)
H270.45050.52540.43390.065*
C280.5840 (3)0.46848 (10)0.35528 (7)0.0425 (3)
H280.69730.51660.34960.051*
C290.5706 (2)0.39209 (9)0.31191 (7)0.0340 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0760 (3)0.0426 (2)0.0591 (3)0.00666 (18)0.0197 (2)0.01078 (17)
O10.0353 (5)0.0632 (7)0.0466 (6)0.0177 (5)0.0047 (4)0.0150 (5)
O20.0345 (5)0.0452 (5)0.0400 (5)0.0055 (4)0.0053 (4)0.0087 (4)
O30.0793 (8)0.0324 (5)0.0669 (7)0.0031 (5)0.0335 (6)0.0017 (5)
C10.0268 (6)0.0416 (7)0.0324 (6)0.0030 (5)0.0025 (5)0.0002 (5)
C20.0301 (6)0.0530 (8)0.0378 (7)0.0022 (6)0.0024 (5)0.0075 (6)
C30.0379 (7)0.0374 (7)0.0340 (6)0.0006 (5)0.0024 (5)0.0033 (5)
C110.0265 (6)0.0362 (6)0.0313 (6)0.0016 (5)0.0051 (4)0.0032 (5)
C120.0288 (6)0.0494 (8)0.0376 (7)0.0067 (5)0.0018 (5)0.0014 (6)
C130.0369 (7)0.0465 (8)0.0464 (8)0.0134 (6)0.0094 (6)0.0025 (6)
C140.0457 (7)0.0334 (6)0.0387 (7)0.0021 (6)0.0145 (6)0.0007 (5)
C150.0402 (7)0.0453 (8)0.0377 (7)0.0023 (6)0.0010 (5)0.0040 (6)
C160.0311 (6)0.0412 (7)0.0395 (7)0.0071 (5)0.0000 (5)0.0010 (5)
C200.0337 (6)0.0314 (6)0.0329 (6)0.0026 (5)0.0020 (5)0.0048 (5)
C210.0510 (8)0.0368 (7)0.0358 (7)0.0036 (6)0.0021 (6)0.0001 (5)
C220.0688 (10)0.0337 (7)0.0469 (8)0.0047 (7)0.0100 (7)0.0002 (6)
C230.0525 (9)0.0401 (8)0.0520 (9)0.0110 (7)0.0095 (7)0.0150 (7)
C240.0335 (7)0.0443 (7)0.0416 (7)0.0013 (6)0.0046 (5)0.0173 (6)
C250.0371 (8)0.0688 (11)0.0573 (10)0.0028 (7)0.0065 (7)0.0309 (8)
C260.0513 (9)0.0785 (12)0.0530 (9)0.0224 (9)0.0195 (8)0.0224 (9)
C270.0618 (10)0.0570 (10)0.0457 (8)0.0220 (8)0.0138 (7)0.0056 (7)
C280.0462 (8)0.0396 (7)0.0415 (7)0.0073 (6)0.0074 (6)0.0031 (6)
C290.0305 (6)0.0336 (6)0.0349 (6)0.0048 (5)0.0022 (5)0.0078 (5)
Geometric parameters (Å, º) top
Cl1—C141.7375 (14)C16—H160.9500
O1—C11.2110 (15)C20—C211.3765 (19)
O2—C31.3523 (17)C20—C291.4305 (19)
O2—C21.4279 (16)C21—C221.407 (2)
O3—C31.2023 (17)C21—H210.9500
C1—C111.4847 (18)C22—C231.358 (2)
C1—C21.5206 (18)C22—H220.9500
C2—H2A0.9900C23—C241.409 (2)
C2—H2B0.9900C23—H230.9500
C3—C201.4862 (18)C24—C251.418 (2)
C11—C161.3926 (18)C24—C291.4255 (19)
C11—C121.3933 (17)C25—C261.354 (3)
C12—C131.384 (2)C25—H250.9500
C12—H120.9500C26—C271.400 (3)
C13—C141.378 (2)C26—H260.9500
C13—H130.9500C27—C281.365 (2)
C14—C151.380 (2)C27—H270.9500
C15—C161.379 (2)C28—C291.4178 (19)
C15—H150.9500C28—H280.9500
C3—O2—C2114.00 (11)C21—C20—C29120.29 (12)
O1—C1—C11121.12 (11)C21—C20—C3118.42 (13)
O1—C1—C2119.71 (12)C29—C20—C3120.99 (12)
C11—C1—C2119.16 (11)C20—C21—C22120.81 (15)
O2—C2—C1109.09 (10)C20—C21—H21119.6
O2—C2—H2A109.9C22—C21—H21119.6
C1—C2—H2A109.9C23—C22—C21120.00 (14)
O2—C2—H2B109.9C23—C22—H22120.0
C1—C2—H2B109.9C21—C22—H22120.0
H2A—C2—H2B108.3C22—C23—C24121.30 (14)
O3—C3—O2122.10 (13)C22—C23—H23119.3
O3—C3—C20125.28 (13)C24—C23—H23119.3
O2—C3—C20112.55 (11)C23—C24—C25121.45 (15)
C16—C11—C12118.80 (12)C23—C24—C29119.55 (14)
C16—C11—C1118.20 (11)C25—C24—C29119.00 (15)
C12—C11—C1122.94 (11)C26—C25—C24121.49 (15)
C13—C12—C11120.50 (12)C26—C25—H25119.3
C13—C12—H12119.7C24—C25—H25119.3
C11—C12—H12119.7C25—C26—C27119.55 (15)
C14—C13—C12119.20 (12)C25—C26—H26120.2
C14—C13—H13120.4C27—C26—H26120.2
C12—C13—H13120.4C28—C27—C26121.18 (17)
C13—C14—C15121.57 (13)C28—C27—H27119.4
C13—C14—Cl1119.20 (11)C26—C27—H27119.4
C15—C14—Cl1119.23 (11)C27—C28—C29120.92 (15)
C16—C15—C14118.84 (13)C27—C28—H28119.5
C16—C15—H15120.6C29—C28—H28119.5
C14—C15—H15120.6C28—C29—C24117.78 (13)
C15—C16—C11121.07 (12)C28—C29—C20124.27 (12)
C15—C16—H16119.5C24—C29—C20117.94 (12)
C11—C16—H16119.5
C3—O2—C2—C171.19 (14)O2—C3—C20—C29162.30 (11)
O1—C1—C2—O21.16 (19)C29—C20—C21—C221.9 (2)
C11—C1—C2—O2177.87 (11)C3—C20—C21—C22171.84 (13)
C2—O2—C3—O314.99 (19)C20—C21—C22—C231.0 (2)
C2—O2—C3—C20162.17 (10)C21—C22—C23—C242.4 (2)
O1—C1—C11—C163.7 (2)C22—C23—C24—C25179.23 (14)
C2—C1—C11—C16177.32 (12)C22—C23—C24—C290.9 (2)
O1—C1—C11—C12173.71 (14)C23—C24—C25—C26177.95 (14)
C2—C1—C11—C125.3 (2)C29—C24—C25—C262.2 (2)
C16—C11—C12—C131.3 (2)C24—C25—C26—C270.3 (2)
C1—C11—C12—C13176.09 (13)C25—C26—C27—C281.9 (2)
C11—C12—C13—C140.7 (2)C26—C27—C28—C290.9 (2)
C12—C13—C14—C150.6 (2)C27—C28—C29—C241.65 (19)
C12—C13—C14—Cl1178.78 (11)C27—C28—C29—C20179.49 (13)
C13—C14—C15—C161.2 (2)C23—C24—C29—C28177.01 (12)
Cl1—C14—C15—C16178.12 (11)C25—C24—C29—C283.14 (18)
C14—C15—C16—C110.6 (2)C23—C24—C29—C201.92 (18)
C12—C11—C16—C150.6 (2)C25—C24—C29—C20177.93 (11)
C1—C11—C16—C15176.89 (13)C21—C20—C29—C28175.54 (12)
O3—C3—C20—C21153.08 (15)C3—C20—C29—C2810.86 (19)
O2—C3—C20—C2123.97 (16)C21—C20—C29—C243.32 (17)
O3—C3—C20—C2920.6 (2)C3—C20—C29—C24170.29 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.952.413.2583 (16)148
C23—H23···O3ii0.952.483.2618 (19)140
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H13ClO3
Mr324.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.2708 (1), 14.8465 (4), 19.8427 (5)
β (°) 100.383 (1)
V3)1527.32 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.37 × 0.35 × 0.27
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.941, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14592, 3769, 2984
Rint0.016
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.103, 1.02
No. of reflections3769
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.35

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.952.413.2583 (16)148.0
C23—H23···O3ii0.952.483.2618 (19)139.8
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

AMI thanks Professor Swapan Bhattacharya, Director of the National Institute of Technology Karnataka, Surathkal, India, for his encouragement and for providing research facilities. AMI also thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for the `Young Scientist' award.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Web of Science Google Scholar
First citationLitera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationRuzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.  Web of Science CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds