organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o524-o525

4-Hy­dr­oxy-6-methyl-3-[3-(thio­phen-2-yl)acrylo­yl]-2H-pyran-2-one

aLaboratoire d'Électrochimie des Matériaux Moléculaires et Complexes, Centre Univeresitaire de B.B.A., Algeria, bEcole Normale Superieure de Constantine, 25000 Constantine, Algeria, cUniversité 20 Aout 1955, 21000 Skikda, Algeria, and dLaboratoire de Chimie Biomimétique des Métaux de Transition, Institut de Chimie, Strasbourg, France
*Correspondence e-mail: boufas_sihem@yahoo.fr

(Received 3 February 2013; accepted 7 February 2013; online 9 March 2013)

The title compound, C13H10O4S, crystallizes with two mol­ecules in the asymmetric unit in which the rings make dihedral angles of 3.9 (1) and 6.0 (1)°; this planarity is due in part to the presence of an intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring in each mol­ecule. Both mol­ecules represent E isomers with respect to the central C=C bond. In the crystal, mol­ecules are linked by C—H⋯O inter­actions into a three-dimensional network.

Related literature

For pharmacological properties of chalcones, see: Wattenberg et al. (1994[Wattenberg, L. W., Coccia, J. B. & Galbraith, A. R. (1994). Cancer Lett. 83, 165-169.]); Dinkova-Kostova et al. (1998[Dinkova-Kostova, A. T., Abeygunawardana, C. & Talalay, P. (1998). J. Med. Chem. 41, 5287-5296.]); Ram et al. (2000[Ram, V. J., Saxena, A. S., Srivastava, S. & Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159-2161.]); Kidwai et al. (2001[Kidwai, M., Sapra, P., Mishra, P., Saxena, R. K. & Singh, M. (2001). Bioorg. Med. Chem. 9, 217-220.]); Ballesteros et al. (1995[Ballesteros, J. F., Sanz, M. J., Ubeda, A., Miranda, M. A., Iborra, S., Paya, M. & Alcaraz, M. J. (1995). J. Med. Chem. 38, 2794-2797.]). For their non-linear optical properties, see: Fichou et al. (1988[Fichou, D., Watanabe, T., Takenda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, L429-L430.]) and for their importance, see: Tomazela et al. (2000[Tomazela, D. M., Pupo, M. T., Passador, E. A. P., Da Silva, M. F. G. F., Vieira, P. C., Fernandes, J. B., Rodrigues, F. E., Oliva, G. & Pirani, J. R. (2000). Phytochemistry, 55, 643-651.]). For precursors in the synthesis of flavonoids, see: Drexler & Amiridis (2003[Drexler, M. T. & Amiridis, M. D. (2003). J. Catal. 214, 136-145.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10O4S

  • Mr = 262.27

  • Triclinic, [P \overline 1]

  • a = 8.0737 (4) Å

  • b = 9.9428 (5) Å

  • c = 15.0887 (8) Å

  • α = 87.770 (1)°

  • β = 87.779 (3)°

  • γ = 80.678 (4)°

  • V = 1193.70 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.5 × 0.4 × 0.2 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.947

  • 25106 measured reflections

  • 6954 independent reflections

  • 5295 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.157

  • S = 1.06

  • 6954 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H33⋯O4 0.82 1.68 2.421 (2) 150
O7—H77⋯O8 0.82 1.65 2.400 (2) 150
C8—H8⋯O5 0.93 2.60 3.481 (3) 159
C10—H10⋯O6 0.93 2.59 3.280 (3) 132
C10—H10⋯O8i 0.93 2.59 3.288 (3) 132
C13—H13C⋯O6ii 0.96 2.58 3.507 (3) 164
C23—H23⋯O4iii 0.93 2.56 3.245 (3) 131
C25—H25⋯O7iv 0.93 2.38 3.240 (3) 153
C26—H26B⋯O1v 0.96 2.41 3.338 (3) 163
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z; (iii) -x+1, -y, -z+1; (iv) x-1, y+1, z; (v) -x+2, -y, -z.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Chalcones are an important group of natural products (Tomazela, et al., 2000), which have various pharmacological properties. Some chalcones possess anticancer (Wattenberg, et al., 1994, Dinkova-Kostova, et al., 1998), antimalarial (Ram, et al., 2000), antimicrobial (Kidwai, et al., 2001) and anti-inflammatory (Ballesteros, et al., 1995) activities. Chalcones also serve as precursors in the syntheses of different classes of flavonoids (Drexler, et al., 2003). Chalcone derivatives are also a class of organic compounds with excellent NLO properties (Fichou, et al., 1988), much better than those observed in inorganic crystals. Furthermore, several α,β-unsaturated ketones have been found to exhibit biological activity. In this paper, we report a structure containing both thiazole and α,β-unsaturated ketone moieties in one molecule. The crystals do not exhibit second-order nonlinear optical properties as they crystallize in a centrosymmetric space group.

The title compound (Fig. 1) exists in an E configuration with respect to the C7—C8 and C20—C21 double bonds. 6-membered rings adopt a planar conformation. In the cyclic moiety with O2 atom, the r.m.s. deviation for the non-H atoms is 0.0154 Å, with the maximum deviation of C4 from the mean plane being 0.0222 (14) Å. In the moiety with O5 atom, the r.m.s. deviation for the non-H atoms is 0.0063 Å, with the maximum deviation of C17 from the mean plane -0.0105 (13) Å. The thiazole rings are also planar with a r.m.s deviation for non-H atoms of 0.0076 Å (ring with S1) & 0.0020 Å (ring with S2) with a maximum deviation of C9 from the mean plane being (-0.0107 (13)) Å and a maximum deviation of C24 from the mean plane of 0.0029 (15) Å respectively. With respect to the C7—C8 and C20—C21 bonds, the atom pairs C6/C9, H7/H8 and C19/C20, H20/H21 are all trans, shown by the value of (-0.05 (14)°) for O8—C21—C20—C19 and 0.42 (15)°) for C6—C7—C8—O4 - 0.42 (15)° torsion angle. The double-bond character of the bond between C7 and C8 is deduced from the short bond distance [1.339 (3) Å]. The value in the other molecule is 1.339 (3) Å for C20/C21]. All bond lengths and angles in (I) have normal values (Allen, et al. 1987).

The two rings derived from DHA and 2-Acetyl-thiophene; exhibit coplanar geometry, the coplanarity of the two rings is due to the presence of intramolecular O7—H77···O8 and O3—H33···O4 hydrogen bond. This interactions generate an S(6) ring motif (Bernstein, et al. 1995). The overall structure is held by seven C—H···O interactions, forming a three- dimensional network. (Fig. 2). Among others, C25—H25···O7 interaction is the strongest one.

Related literature top

For pharmacological properties of chalcones, see: Wattenberg et al. (1994); Dinkova-Kostova et al. (1998); Ram et al. (2000); Kidwai et al. (2001); Ballesteros et al. (1995). For their non-linear optical properties, see: Fichou et al. (1988) and for their importance, see: Tomazela et al. (2000). For precursors in the synthesis of flavonoids, see: Drexler & Amiridis (2003). For graph-set notation, see: Bernstein et al. (1995). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Dehydroacetic acid (0.168 g, 1 mmol) in 1 ml of piperidine was added to thiofene-2-carboxaldehyde (0.112 g, 1 mmol) of in 25 ml of chloroform and then refluxed with stirring under nitrogen atmosphere for 3 days. After that, 5–7 ml of the chloroform-water azeotrope mixture were removed by simple distillation. The product were obtained by slow evaporation of the remaining chloroform and washed with ethyl acetate (2x5ml), then it was recrystalized from dichlromethane and dried under vaccum in dissicator for 24 h (yield 63%). Melting point: 150 °C.

Refinement top

C—H and O—H hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H distances of 0.93 Å with Uiso(H) = 1.2Ueq(C) and O—H distances of 0.82 Å, with Uiso(H) = 1.2Ueq(N).

The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.2Ueq(C), but were allowed to rotate freely about the C—C bonds.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The structure of the title compound in 50% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of S(6) rings with dashed bleu lines. C—H···O Hydrogen bonds are shown as red dashed lines. Hydrogen atoms not involved in the motif have been omitted for clarity.
4-Hydroxy-6-methyl-3-[3-(thiophen-2-yl)acryloyl]-2H-pyran-2-one top
Crystal data top
C13H10O4SZ = 4
Mr = 262.27F(000) = 544
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0737 (4) ÅCell parameters from 102968 reflections
b = 9.9428 (5) Åθ = 2.9–27.5°
c = 15.0887 (8) ŵ = 0.27 mm1
α = 87.770 (1)°T = 293 K
β = 87.779 (3)°Block, brown
γ = 80.678 (4)°0.5 × 0.4 × 0.2 mm
V = 1193.70 (11) Å3
Data collection top
Nonius KappaCCD
diffractometer
6954 independent reflections
Radiation source: Enraf Nonius FR5905295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 2.1°
CCD rotation images, thin slices scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 1313
Tmin = 0.875, Tmax = 0.947l = 2121
25106 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.747P]
where P = (Fo2 + 2Fc2)/3
6954 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C13H10O4Sγ = 80.678 (4)°
Mr = 262.27V = 1193.70 (11) Å3
Triclinic, P1Z = 4
a = 8.0737 (4) ÅMo Kα radiation
b = 9.9428 (5) ŵ = 0.27 mm1
c = 15.0887 (8) ÅT = 293 K
α = 87.770 (1)°0.5 × 0.4 × 0.2 mm
β = 87.779 (3)°
Data collection top
Nonius KappaCCD
diffractometer
6954 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
5295 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.947Rint = 0.036
25106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.06Δρmax = 0.97 e Å3
6954 reflectionsΔρmin = 0.30 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.46904 (7)0.30887 (5)0.54080 (4)0.03338 (14)
S10.88623 (7)0.31448 (5)0.04850 (4)0.03337 (14)
O20.57005 (19)0.13416 (14)0.19215 (9)0.0300 (3)
O40.7556 (2)0.19703 (16)0.10407 (10)0.0363 (3)
O30.6293 (2)0.36848 (16)0.03371 (11)0.0417 (4)
H330.66980.32960.07250.063*
O50.99995 (19)0.14198 (15)0.30123 (10)0.0311 (3)
O80.8369 (2)0.18574 (16)0.60568 (10)0.0351 (3)
O71.0375 (2)0.35666 (17)0.53507 (11)0.0423 (4)
H770.97920.31540.57410.063*
O60.8273 (2)0.03013 (16)0.35590 (11)0.0415 (4)
O10.6537 (2)0.04135 (16)0.13444 (11)0.0400 (4)
C170.9154 (2)0.15767 (19)0.45626 (13)0.0247 (4)
C40.6592 (2)0.15850 (18)0.04027 (12)0.0237 (4)
C10.5297 (3)0.2617 (2)0.18823 (14)0.0301 (4)
C50.6115 (3)0.2898 (2)0.03754 (14)0.0281 (4)
C20.5453 (3)0.3400 (2)0.11347 (15)0.0324 (4)
H20.51330.42580.11140.039*
C90.9119 (3)0.1816 (2)0.12658 (13)0.0296 (4)
C30.6316 (2)0.0752 (2)0.12040 (13)0.0263 (4)
C220.5087 (3)0.1834 (2)0.62381 (13)0.0277 (4)
C141.0980 (3)0.2661 (2)0.30732 (14)0.0300 (4)
C250.3326 (3)0.4103 (2)0.60884 (17)0.0385 (5)
H250.2750.49540.59160.046*
C190.8208 (2)0.1100 (2)0.53485 (13)0.0269 (4)
C180.9056 (3)0.0812 (2)0.37306 (13)0.0275 (4)
C161.0214 (3)0.2859 (2)0.46114 (14)0.0291 (4)
C100.9849 (3)0.2172 (2)0.20074 (14)0.0346 (5)
H101.01180.15820.24930.042*
C60.7344 (2)0.1158 (2)0.03667 (13)0.0269 (4)
C210.6233 (3)0.0584 (2)0.61300 (14)0.0291 (4)
H210.64010.00050.66240.035*
C230.4178 (3)0.2221 (2)0.69960 (14)0.0325 (4)
H230.42140.16820.75150.039*
C200.7082 (2)0.0192 (2)0.53790 (13)0.0281 (4)
H200.69470.07540.48710.034*
C151.1117 (3)0.3389 (2)0.38406 (15)0.0321 (4)
H151.180.42370.38690.038*
C70.7857 (3)0.0168 (2)0.04186 (14)0.0307 (4)
H70.770.07820.00630.037*
C130.4714 (3)0.2980 (3)0.27485 (17)0.0445 (6)
H13A0.44480.38870.27040.067*
H13B0.55860.29380.31950.067*
H13C0.37320.23490.29070.067*
C240.3181 (3)0.3516 (2)0.69120 (16)0.0374 (5)
H240.250.39270.73690.045*
C120.9682 (3)0.4177 (2)0.11694 (16)0.0383 (5)
H120.97960.50760.10230.046*
C261.1800 (3)0.3059 (3)0.22020 (16)0.0414 (5)
H26A1.24770.39430.22640.062*
H26B1.24960.24030.20040.062*
H26C1.09550.30880.17760.062*
C111.0149 (3)0.3533 (2)0.19538 (15)0.0377 (5)
H111.06150.39440.24050.045*
C80.8554 (3)0.0524 (2)0.11472 (14)0.0318 (4)
H80.86880.01120.16180.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0367 (3)0.0325 (3)0.0306 (3)0.0057 (2)0.0036 (2)0.0072 (2)
S10.0414 (3)0.0313 (3)0.0277 (3)0.0072 (2)0.0059 (2)0.00652 (19)
O20.0375 (8)0.0285 (7)0.0251 (7)0.0092 (6)0.0039 (6)0.0036 (5)
O40.0454 (9)0.0397 (8)0.0232 (7)0.0067 (7)0.0021 (6)0.0069 (6)
O30.0556 (10)0.0352 (8)0.0370 (9)0.0179 (7)0.0078 (7)0.0151 (7)
O50.0372 (8)0.0296 (7)0.0260 (7)0.0057 (6)0.0022 (6)0.0035 (6)
O80.0415 (9)0.0384 (8)0.0233 (7)0.0013 (7)0.0040 (6)0.0069 (6)
O70.0514 (10)0.0375 (8)0.0315 (8)0.0106 (7)0.0033 (7)0.0088 (6)
O60.0513 (10)0.0331 (8)0.0341 (8)0.0057 (7)0.0066 (7)0.0135 (6)
O10.0604 (11)0.0289 (7)0.0338 (8)0.0165 (7)0.0139 (7)0.0116 (6)
C170.0250 (9)0.0250 (8)0.0243 (9)0.0052 (7)0.0034 (7)0.0028 (7)
C40.0244 (9)0.0227 (8)0.0235 (9)0.0036 (6)0.0014 (7)0.0035 (7)
C10.0271 (9)0.0295 (9)0.0345 (11)0.0064 (8)0.0013 (8)0.0029 (8)
C50.0283 (9)0.0257 (9)0.0301 (10)0.0057 (7)0.0017 (7)0.0060 (7)
C20.0319 (10)0.0256 (9)0.0407 (12)0.0084 (8)0.0013 (8)0.0013 (8)
C90.0350 (10)0.0291 (9)0.0247 (9)0.0054 (8)0.0039 (8)0.0043 (7)
C30.0277 (9)0.0269 (9)0.0243 (9)0.0048 (7)0.0020 (7)0.0033 (7)
C220.0283 (9)0.0285 (9)0.0267 (9)0.0068 (7)0.0028 (7)0.0037 (7)
C140.0300 (10)0.0272 (9)0.0349 (11)0.0105 (8)0.0010 (8)0.0028 (8)
C250.0370 (12)0.0305 (10)0.0457 (13)0.0024 (9)0.0084 (10)0.0001 (9)
C190.0272 (9)0.0281 (9)0.0264 (9)0.0072 (7)0.0043 (7)0.0017 (7)
C180.0287 (9)0.0271 (9)0.0268 (9)0.0059 (7)0.0006 (7)0.0035 (7)
C160.0298 (10)0.0286 (9)0.0287 (10)0.0044 (8)0.0058 (8)0.0044 (8)
C100.0419 (12)0.0382 (11)0.0255 (10)0.0130 (9)0.0025 (8)0.0048 (8)
C60.0261 (9)0.0274 (9)0.0258 (9)0.0003 (7)0.0011 (7)0.0009 (7)
C210.0301 (10)0.0296 (9)0.0279 (10)0.0064 (8)0.0030 (8)0.0044 (8)
C230.0341 (11)0.0337 (10)0.0292 (10)0.0050 (8)0.0010 (8)0.0020 (8)
C200.0271 (9)0.0293 (9)0.0278 (10)0.0045 (7)0.0031 (7)0.0040 (7)
C150.0309 (10)0.0272 (9)0.0372 (11)0.0019 (8)0.0014 (8)0.0007 (8)
C70.0330 (10)0.0292 (9)0.0293 (10)0.0046 (8)0.0019 (8)0.0049 (8)
C130.0505 (14)0.0449 (13)0.0406 (13)0.0123 (11)0.0105 (11)0.0052 (10)
C240.0352 (11)0.0369 (11)0.0383 (12)0.0001 (9)0.0007 (9)0.0060 (9)
C120.0479 (13)0.0301 (10)0.0389 (12)0.0129 (9)0.0022 (10)0.0023 (9)
C260.0508 (14)0.0373 (11)0.0379 (12)0.0143 (10)0.0099 (10)0.0064 (9)
C110.0468 (13)0.0400 (11)0.0293 (11)0.0156 (10)0.0020 (9)0.0037 (9)
C80.0346 (11)0.0321 (10)0.0274 (10)0.0034 (8)0.0013 (8)0.0042 (8)
Geometric parameters (Å, º) top
S2—C251.708 (2)C22—C211.435 (3)
S2—C221.735 (2)C14—C151.340 (3)
S1—C121.707 (2)C14—C261.487 (3)
S1—C91.728 (2)C25—C241.361 (3)
O2—C11.358 (2)C25—H250.93
O2—C31.396 (2)C19—C201.450 (3)
O4—C61.273 (2)C16—C151.421 (3)
O3—C51.303 (2)C10—C111.412 (3)
O3—H330.82C10—H100.93
O5—C141.356 (3)C6—C71.450 (3)
O5—C181.399 (3)C21—C201.339 (3)
O8—C191.281 (2)C21—H210.93
O7—C161.295 (2)C23—C241.408 (3)
O7—H770.82C23—H230.93
O6—C181.206 (2)C20—H200.93
O1—C31.210 (2)C15—H150.93
C17—C161.417 (3)C7—C81.339 (3)
C17—C191.439 (3)C7—H70.93
C17—C181.440 (3)C13—H13A0.96
C4—C51.418 (3)C13—H13B0.96
C4—C61.440 (3)C13—H13C0.96
C4—C31.443 (3)C24—H240.93
C1—C21.344 (3)C12—C111.360 (3)
C1—C131.483 (3)C12—H120.93
C5—C21.423 (3)C26—H26A0.96
C2—H20.93C26—H26B0.96
C9—C101.369 (3)C26—H26C0.96
C9—C81.450 (3)C11—H110.93
C22—C231.368 (3)C8—H80.93
C25—S2—C2291.77 (11)C9—C10—C11112.55 (19)
C12—S1—C991.51 (10)C9—C10—H10123.7
C1—O2—C3123.26 (16)C11—C10—H10123.7
C5—O3—H33109.5O4—C6—C4118.89 (18)
C14—O5—C18123.20 (16)O4—C6—C7117.96 (18)
C16—O7—H77109.5C4—C6—C7123.15 (17)
C16—C17—C19118.31 (17)C20—C21—C22125.64 (19)
C16—C17—C18118.88 (18)C20—C21—H21117.2
C19—C17—C18122.81 (17)C22—C21—H21117.2
C5—C4—C6118.36 (17)C22—C23—C24113.3 (2)
C5—C4—C3118.30 (17)C22—C23—H23123.4
C6—C4—C3123.34 (17)C24—C23—H23123.4
C2—C1—O2121.62 (19)C21—C20—C19120.74 (18)
C2—C1—C13127.2 (2)C21—C20—H20119.6
O2—C1—C13111.21 (19)C19—C20—H20119.6
O3—C5—C4121.18 (18)C14—C15—C16119.67 (19)
O3—C5—C2118.20 (18)C14—C15—H15120.2
C4—C5—C2120.61 (18)C16—C15—H15120.2
C1—C2—C5119.11 (18)C8—C7—C6121.25 (19)
C1—C2—H2120.4C8—C7—H7119.4
C5—C2—H2120.4C6—C7—H7119.4
C10—C9—C8125.57 (19)C1—C13—H13A109.5
C10—C9—S1111.12 (16)C1—C13—H13B109.5
C8—C9—S1123.26 (15)H13A—C13—H13B109.5
O1—C3—O2114.36 (17)C1—C13—H13C109.5
O1—C3—C4128.67 (18)H13A—C13—H13C109.5
O2—C3—C4116.96 (16)H13B—C13—H13C109.5
C23—C22—C21125.88 (19)C25—C24—C23112.6 (2)
C23—C22—S2110.40 (15)C25—C24—H24123.7
C21—C22—S2123.71 (16)C23—C24—H24123.7
C15—C14—O5121.52 (19)C11—C12—S1112.14 (17)
C15—C14—C26127.2 (2)C11—C12—H12123.9
O5—C14—C26111.28 (19)S1—C12—H12123.9
C24—C25—S2111.97 (17)C14—C26—H26A109.5
C24—C25—H25124C14—C26—H26B109.5
S2—C25—H25124H26A—C26—H26B109.5
O8—C19—C17118.31 (18)C14—C26—H26C109.5
O8—C19—C20118.39 (19)H26A—C26—H26C109.5
C17—C19—C20123.31 (17)H26B—C26—H26C109.5
O6—C18—O5114.24 (18)C12—C11—C10112.6 (2)
O6—C18—C17129.1 (2)C12—C11—H11123.7
O5—C18—C17116.70 (17)C10—C11—H11123.7
O7—C16—C17121.05 (19)C7—C8—C9125.68 (19)
O7—C16—C15118.95 (19)C7—C8—H8117.2
C17—C16—C15120.00 (18)C9—C8—H8117.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H33···O40.821.682.421 (2)150
O7—H77···O80.821.652.400 (2)150
C8—H8···O50.932.603.481 (3)159
C10—H10···O60.932.593.280 (3)132
C10—H10···O8i0.932.593.288 (3)132
C13—H13C···O6ii0.962.583.507 (3)164
C23—H23···O4iii0.932.563.245 (3)131
C25—H25···O7iv0.932.383.240 (3)153
C26—H26B···O1v0.962.413.338 (3)163
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x1, y+1, z; (v) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC13H10O4S
Mr262.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0737 (4), 9.9428 (5), 15.0887 (8)
α, β, γ (°)87.770 (1), 87.779 (3), 80.678 (4)
V3)1193.70 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.5 × 0.4 × 0.2
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.875, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
25106, 6954, 5295
Rint0.036
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.157, 1.06
No. of reflections6954
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.30

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H33···O40.821.682.421 (2)150
O7—H77···O80.821.652.400 (2)150
C8—H8···O50.932.603.481 (3)159
C10—H10···O60.932.593.280 (3)132
C10—H10···O8i0.932.593.288 (3)132
C13—H13C···O6ii0.962.583.507 (3)164
C23—H23···O4iii0.932.563.245 (3)131
C25—H25···O7iv0.932.383.240 (3)153
C26—H26B···O1v0.962.413.338 (3)163
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x1, y+1, z; (v) x+2, y, z.
 

Acknowledgements

This work was supported by Université Farhat Abbes DZ-19000. Sétif, Algeria.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBallesteros, J. F., Sanz, M. J., Ubeda, A., Miranda, M. A., Iborra, S., Paya, M. & Alcaraz, M. J. (1995). J. Med. Chem. 38, 2794–2797.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDinkova-Kostova, A. T., Abeygunawardana, C. & Talalay, P. (1998). J. Med. Chem. 41, 5287–5296.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDrexler, M. T. & Amiridis, M. D. (2003). J. Catal. 214, 136–145.  Web of Science CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFichou, D., Watanabe, T., Takenda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, L429–L430.  CrossRef CAS Web of Science Google Scholar
First citationKidwai, M., Sapra, P., Mishra, P., Saxena, R. K. & Singh, M. (2001). Bioorg. Med. Chem. 9, 217–220.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRam, V. J., Saxena, A. S., Srivastava, S. & Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159–2161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomazela, D. M., Pupo, M. T., Passador, E. A. P., Da Silva, M. F. G. F., Vieira, P. C., Fernandes, J. B., Rodrigues, F. E., Oliva, G. & Pirani, J. R. (2000). Phytochemistry, 55, 643–651.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWattenberg, L. W., Coccia, J. B. & Galbraith, A. R. (1994). Cancer Lett. 83, 165–169.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o524-o525
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds