organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (2Z)-2-bromo­methyl-3-(2,4-di­chloro­phen­yl)prop-2-enoate

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 27 February 2013; accepted 18 March 2013; online 23 March 2013)

In the title compound C11H9BrCl2O2, which represents the Z isomer, the methyl­acrylate moiety is essentially planar within 0.039 (2) Å and has an extended trans configuration. The benzene ring makes a dihedral angle of 28.3 (1)° with the mean plane of the methyl­acrylate moiety. The crystal packing is characterized by C—H⋯O hydrogen bonding and halogen–halogen inter­actions [Cl⋯Cl = 3.486 (3) Å], resulting in the formation of R22(11) ring motifs and connecting the mol­ecules into chains propagating along the b axis.

Related literature

For the uses of cinnamic acid and its derivatives, see: Xiao et al. (2008[Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828-1836.]); De Fraine & Martin (1991[De Fraine, P. J. & Martin, A. (1991). US Patent No. 5 055 471.]). For the extended conformation of acrylate, see: Schweizer & Dunitz (1982[Schweizer, W. B. & Dunitz, J. D. (1982). Helv. Chim. Acta, 65, 1547-1554.]). For a related structure, see: Karthikeyan et al. (2012[Karthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2012). Acta Cryst. E68, o1273.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For type I halogen inter­actions, see: Johnson & Lemmerer (2012[Johnson, M. & Lemmerer, A. (2012). Acta Cryst. E68, o385.]); Schmidt et al. (2011[Schmidt, N., Schwarzer, A. & Weber, E. (2011). Acta Cryst. E67, o794.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9BrCl2O2

  • Mr = 323.99

  • Triclinic, [P \overline 1]

  • a = 7.9174 (3) Å

  • b = 8.8032 (3) Å

  • c = 9.3585 (3) Å

  • α = 78.374 (2)°

  • β = 86.599 (2)°

  • γ = 73.528 (2)°

  • V = 612.67 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.77 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.405, Tmax = 0.470

  • 16418 measured reflections

  • 3748 independent reflections

  • 2262 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.00

  • 3748 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.33 3.238 (3) 167
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cinnamic acid and its derivatives are important compounds because of their agrochemical and medical applications (De Fraine & Martin, 1991). Also they possess significant antibacterial activities against Staphylococcus aureus (Xiao et al. 2008).

X-ray analysis established the molecular structure and atom connectivity of the title compound, as illustrated in Fig. 1. Its methylacrylate part is essentially planar with a maximum deviation of 0.0390 (24) Å for atom C8 and forms dihedral angle of 28.25 (9) ° with the phenyl ring C1–C6. The methylacrylate moiety adopts an extended conformation as evident from the torsion angle values [C7–C8–C9–O1 = 4.7 (4), C7–C8–C9–O2 = 175.2 (2), C8–C9–O2–C10 = -178.8 (2) and O1–C9–O2–C10 = 1.3 (4) °]. The reasons for the extended conformation were discussed earlier (Schweizer and Dunitz, 1982).

The phenyl ring (C1–C6) and the carbonyl group of the acrylate are (+)syn-periplanar to each other with the torsion angle of C7–C8–C9–O1 = 4.7 (4) °. The carbonyl group of the acrylate and the methyl bromide group are (-)anti-periplanar to each other with the torsion angle of C11–C8–C9–O1 = -171.8 (2) °. The least square plane of methyl bromide group forms dihedral angles of 81.44 (17) and 82.48 (15) ° with the phenyl ring and the acrylate group, respectively, being almost orthogonal to both. The chlorine atom Cl1 is slightly deviating from the phenyl ring plane (C1–C6) – by -0.033 (1) Å. The title compound exhibits structural similarities with an earlier reported related structure (Karthikeyan et al. 2012).

The crystal packing is stabilized by intermolecular C2—H2···O1i hydrogen bond and halogen interation of type I mode represented by Cl1···Cl2i contact [d = 3.486 (3) Å, θ = 151.68 (6) °] which form R22(11) ring motifs which in turn, connect the molecules to form bands parallel to [0 1 0] (Schmidt et al. 2011, Johnson & Lemmerer, 2012). The symmetry code: (i) x,-1 + y,z. The packing view of the title compound is shown in Fig.2.

Related literature top

For the uses of cinnamic acid and its derivatives, see: Xiao et al. (2008); De Fraine & Martin (1991). For the extended conformation of acrylate, see: Schweizer & Dunitz (1982). For a related structure, see: Karthikeyan et al. (2012). For graph-set notation, see: Bernstein et al. (1995). For type I halogen interactions, see: Johnson & Lemmerer (2012); Schmidt et al. (2011).

Experimental top

To a stirred solution of methyl 2-((2,4-dichlorophenyl)(hydroxy)methyl) acrylate (4 mmol) in CH2Cl2 (15 ml), 48% aqueous HBr (0.68 ml) was added at room temperature. The reaction mixture was cooled to 273 K and then catalytic amount of concentrated H2SO4 was added dropwise. The reaction mixture was stirred well at room temperature for about 24 hrs. After the completion of the reaction (confirmed by TLC analysis), the reaction mixture was poured into water and the aqueous layer was extracted with ethyl acetate (3 x 10 ml). The combined organic layer was washed with brine (10 ml) and concentrated. The crude product thus obtained was purified by column chromatography (EtOAc/Hexane, 2–6%) to provide (Methyl (2Z)-2-(bromomethyl)-3-(2,4-dichlorophenyl) prop-2-enoate) in 93% yield, as a yellow crystalline solid.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 - 0.97 Å and refined in riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2 Ueq(C) for aromatic and methylene groups Uiso(H) = 1.5 Ueq(O) for methyl group. The rotation angles for methyl group were optimized by least squares.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at 30% probability level. H atoms are presented as small spheres of arbitary radius.
[Figure 2] Fig. 2. Crystal structure of the title compound, showing the formation of R22(11) ring motifs. Hydrogen bonds are shown as dotted lines. The hydrogen atoms not involved in bonding have been omitted for the sake of clarity.
Methyl (2Z)-2-bromomethyl-3-(2,4-dichlorophenyl)prop-2-enoate top
Crystal data top
C11H9BrCl2O2Z = 2
Mr = 323.99F(000) = 320
Triclinic, P1Dx = 1.756 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9174 (3) ÅCell parameters from 3748 reflections
b = 8.8032 (3) Åθ = 2.2–30.6°
c = 9.3585 (3) ŵ = 3.77 mm1
α = 78.374 (2)°T = 293 K
β = 86.599 (2)°Block, yellow
γ = 73.528 (2)°0.25 × 0.25 × 0.20 mm
V = 612.67 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3748 independent reflections
Radiation source: fine-focus sealed tube2262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 30.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.405, Tmax = 0.470k = 1212
16418 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.0238P]
where P = (Fo2 + 2Fc2)/3
3748 reflections(Δ/σ)max = 0.005
146 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H9BrCl2O2γ = 73.528 (2)°
Mr = 323.99V = 612.67 (4) Å3
Triclinic, P1Z = 2
a = 7.9174 (3) ÅMo Kα radiation
b = 8.8032 (3) ŵ = 3.77 mm1
c = 9.3585 (3) ÅT = 293 K
α = 78.374 (2)°0.25 × 0.25 × 0.20 mm
β = 86.599 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3748 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2262 reflections with I > 2σ(I)
Tmin = 0.405, Tmax = 0.470Rint = 0.033
16418 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.59 e Å3
3748 reflectionsΔρmin = 0.29 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2787 (3)0.5411 (3)0.0226 (3)0.0472 (6)
H10.24840.52240.07560.057*
C20.3057 (3)0.4177 (3)0.0979 (3)0.0485 (6)
H20.29350.31750.05130.058*
C30.3509 (3)0.4437 (3)0.2424 (3)0.0456 (6)
C40.3696 (3)0.5905 (3)0.3132 (3)0.0449 (5)
H40.40010.60710.41150.054*
C50.3424 (3)0.7123 (3)0.2360 (2)0.0409 (5)
C60.2948 (3)0.6937 (3)0.0878 (2)0.0402 (5)
C70.2786 (3)0.8231 (3)0.0076 (2)0.0424 (5)
H70.35050.89030.04030.051*
C80.1750 (3)0.8592 (3)0.1064 (2)0.0416 (5)
C90.1931 (3)0.9985 (3)0.1650 (3)0.0457 (6)
C100.1030 (4)1.1546 (4)0.3480 (3)0.0701 (9)
H10A0.22271.14380.37180.105*
H10B0.03241.15640.43490.105*
H10C0.05851.25340.27920.105*
C110.0395 (3)0.7785 (3)0.1709 (3)0.0468 (6)
H11A0.00340.72950.09830.056*
H11B0.06300.85900.19710.056*
O10.2835 (3)1.0836 (2)0.1128 (2)0.0692 (6)
O20.0964 (3)1.0191 (2)0.2845 (2)0.0595 (5)
Cl10.38993 (11)0.28780 (9)0.33786 (9)0.0670 (2)
Cl20.36663 (10)0.89643 (7)0.32891 (7)0.05947 (19)
Br10.12451 (4)0.61222 (3)0.34428 (3)0.06038 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0551 (14)0.0448 (14)0.0415 (13)0.0184 (12)0.0036 (11)0.0025 (11)
C20.0534 (14)0.0381 (12)0.0556 (15)0.0199 (11)0.0025 (11)0.0029 (11)
C30.0462 (13)0.0407 (13)0.0532 (14)0.0157 (11)0.0046 (11)0.0124 (11)
C40.0493 (13)0.0464 (14)0.0414 (12)0.0179 (11)0.0048 (10)0.0085 (11)
C50.0454 (12)0.0358 (12)0.0416 (12)0.0158 (10)0.0019 (10)0.0019 (10)
C60.0416 (12)0.0376 (12)0.0413 (12)0.0122 (10)0.0002 (9)0.0059 (10)
C70.0494 (13)0.0381 (12)0.0404 (12)0.0159 (10)0.0009 (10)0.0036 (10)
C80.0465 (12)0.0391 (12)0.0363 (12)0.0106 (10)0.0047 (10)0.0009 (10)
C90.0576 (14)0.0415 (13)0.0359 (12)0.0124 (11)0.0025 (10)0.0038 (10)
C100.079 (2)0.0678 (19)0.072 (2)0.0185 (16)0.0056 (16)0.0375 (17)
C110.0469 (13)0.0488 (14)0.0442 (13)0.0151 (11)0.0003 (10)0.0054 (11)
O10.1119 (17)0.0591 (12)0.0510 (11)0.0479 (12)0.0175 (11)0.0140 (9)
O20.0707 (12)0.0581 (12)0.0577 (12)0.0226 (10)0.0141 (9)0.0268 (10)
Cl10.0846 (5)0.0527 (4)0.0762 (5)0.0307 (4)0.0176 (4)0.0297 (4)
Cl20.0858 (5)0.0439 (3)0.0512 (4)0.0290 (3)0.0154 (3)0.0039 (3)
Br10.0792 (2)0.0610 (2)0.04088 (16)0.02708 (15)0.00521 (12)0.00037 (12)
Geometric parameters (Å, º) top
C1—C21.371 (4)C7—H70.9300
C1—C61.397 (3)C8—C111.484 (3)
C1—H10.9300C8—C91.485 (3)
C2—C31.369 (4)C9—O11.195 (3)
C2—H20.9300C9—O21.331 (3)
C3—C41.372 (3)C10—O21.451 (3)
C3—Cl11.731 (3)C10—H10A0.9600
C4—C51.372 (3)C10—H10B0.9600
C4—H40.9300C10—H10C0.9600
C5—C61.404 (3)C11—Br11.961 (2)
C5—Cl21.735 (2)C11—H11A0.9700
C6—C71.459 (3)C11—H11B0.9700
C7—C81.340 (3)
C2—C1—C6122.5 (2)C6—C7—H7115.3
C2—C1—H1118.7C7—C8—C11125.5 (2)
C6—C1—H1118.7C7—C8—C9115.8 (2)
C3—C2—C1119.2 (2)C11—C8—C9118.6 (2)
C3—C2—H2120.4O1—C9—O2122.9 (2)
C1—C2—H2120.4O1—C9—C8124.8 (2)
C2—C3—C4121.3 (2)O2—C9—C8112.3 (2)
C2—C3—Cl1119.7 (2)O2—C10—H10A109.5
C4—C3—Cl1118.97 (19)O2—C10—H10B109.5
C5—C4—C3118.6 (2)H10A—C10—H10B109.5
C5—C4—H4120.7O2—C10—H10C109.5
C3—C4—H4120.7H10A—C10—H10C109.5
C4—C5—C6122.9 (2)H10B—C10—H10C109.5
C4—C5—Cl2117.39 (18)C8—C11—Br1112.60 (15)
C6—C5—Cl2119.75 (18)C8—C11—H11A109.1
C1—C6—C5115.5 (2)Br1—C11—H11A109.1
C1—C6—C7123.4 (2)C8—C11—H11B109.1
C5—C6—C7120.9 (2)Br1—C11—H11B109.1
C8—C7—C6129.4 (2)H11A—C11—H11B107.8
C8—C7—H7115.3C9—O2—C10116.2 (2)
C6—C1—C2—C30.2 (4)C1—C6—C7—C834.5 (4)
C1—C2—C3—C40.0 (4)C5—C6—C7—C8150.7 (2)
C1—C2—C3—Cl1178.65 (19)C6—C7—C8—C115.0 (4)
C2—C3—C4—C50.1 (4)C6—C7—C8—C9178.8 (2)
Cl1—C3—C4—C5178.53 (18)C7—C8—C9—O14.7 (4)
C3—C4—C5—C60.5 (4)C11—C8—C9—O1171.8 (2)
C3—C4—C5—Cl2179.85 (18)C7—C8—C9—O2175.2 (2)
C2—C1—C6—C50.5 (4)C11—C8—C9—O28.4 (3)
C2—C1—C6—C7175.6 (2)C7—C8—C11—Br198.2 (2)
C4—C5—C6—C10.7 (3)C9—C8—C11—Br185.7 (2)
Cl2—C5—C6—C1179.97 (18)O1—C9—O2—C101.3 (4)
C4—C5—C6—C7175.9 (2)C8—C9—O2—C10178.8 (2)
Cl2—C5—C6—C74.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.333.238 (3)167
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H9BrCl2O2
Mr323.99
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9174 (3), 8.8032 (3), 9.3585 (3)
α, β, γ (°)78.374 (2), 86.599 (2), 73.528 (2)
V3)612.67 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.77
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.405, 0.470
No. of measured, independent and
observed [I > 2σ(I)] reflections
16418, 3748, 2262
Rint0.033
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.00
No. of reflections3748
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.29

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.333.238 (3)167
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the data collection. KS thanks the University Grant Commission (UGC), India, for a Minor Research Project.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Fraine, P. J. & Martin, A. (1991). US Patent No. 5 055 471.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, M. & Lemmerer, A. (2012). Acta Cryst. E68, o385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2012). Acta Cryst. E68, o1273.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchmidt, N., Schwarzer, A. & Weber, E. (2011). Acta Cryst. E67, o794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchweizer, W. B. & Dunitz, J. D. (1982). Helv. Chim. Acta, 65, 1547–1554.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828–1836.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds