organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o485-o486

Cinnarizinium bis­­(p-toluene­sulfonate) dihydrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 18 January 2013; accepted 8 February 2013; online 6 March 2013)

The asymmetric unit of the title salt [systematic name: 1-benzhydryl-4-cinnamylpiperazine-1,4-diium bis­(p-toluene­sulfonate) dihydrate], C26H30N22+·2C7H7O3S·2H2O, consists of a diprotonated cinnarizinium cation hydrogen bonded through two water mol­ecules to two independent p-toluene­sulfonate anions, one which is disordered over two sets of sites in a 0.793 (3):0.207 (3) ratio. In the cation, the piperazine ring adopts a chair configuration and contains two positively charged N atoms with quarternery character. The dihedral angle between the two benzene rings in the benzhydr­yl group is 71.8 (1)°. The benzene ring flanked opposite the piperazine ring is twisted by 75.9 (9) and 8.8 (3)° from these two benzene rings. In the crystal, the [N—H⋯Owater—H⋯O( S)]2 hydrogen-bonded asymmetric unit is connected by further O—H⋯O hydrogen bonds linking the components into chains along [100].

Related literature

For cinnarizine (systematic name: 1-benzhydryl-4-cinnamyl-piperazine) as a nootropic drug, see: Towse (1980[Towse, G. (1980). J. Laryngol. Otol. 94, 1009-1015.]). For cinnarizine in allergic disorders, see: Barrett & Zolov (1960[Barrett, R. J. & Zolov, B. (1960). J. Maine Med. Assoc. 51, 454-457.]). For related structures, see: Bertolasi et al. (1980[Bertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 1975-1977.]); Dayananda et al. (2012[Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165-o1166.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500-o501.]); Mouillé et al. (1975[Mouillé, Y., Cotrait, M., Hospital, M. & Marsau, P. (1975). Acta Cryst. B31, 1495-1496.]); Smith et al. (2001[Smith, G., Bott, R. C. & Wermuth, U. D. (2001). Acta Cryst. E57, o640-o642.]); Song et al. (2012[Song, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, o1747.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H30N22+·2C7H7O3S·2H2O

  • Mr = 748.92

  • Monoclinic, P 21 /n

  • a = 10.0845 (2) Å

  • b = 14.6026 (3) Å

  • c = 25.8591 (6) Å

  • β = 93.414 (2)°

  • V = 3801.25 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.72 mm−1

  • T = 100 K

  • 0.47 × 0.28 × 0.17 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.705, Tmax = 1.000

  • 14591 measured reflections

  • 7666 independent reflections

  • 7051 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.140

  • S = 1.06

  • 7666 reflections

  • 541 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1W 0.84 (3) 1.86 (3) 2.699 (2) 174 (3)
N2—H2N⋯O2W 0.98 (3) 1.69 (3) 2.661 (3) 173 (3)
O1W—H1W1⋯O1Bi 0.84 (3) 1.86 (3) 2.685 (2) 167 (3)
O1W—H1W1⋯O3Ci 0.84 (3) 2.07 (3) 2.826 (9) 149 (3)
O1W—H1W2⋯O3A 0.91 (4) 1.85 (4) 2.747 (2) 168 (4)
O2W—H2W1⋯O2Aii 0.86 (4) 1.88 (4) 2.739 (3) 176 (3)
O2W—H2W2⋯O1C 0.83 (5) 1.59 (5) 2.336 (10) 147 (4)
O2W—H2W2⋯O1B 0.83 (5) 2.01 (5) 2.830 (3) 169 (4)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cinnarizine (Iupac name: 1-benzhydryl-4-cinnamyl-piperazine) is an antihistamine which is mainly used for the control of nausea and vomiting due to motion sickness. Cinnarizine could be also viewed as a nootropic drug because of its vasorelaxating abilities (due to calcium channel blockage), which happen mostly in the brain and is also used as a labyrinthine sedative (Towse, 1980). A clinical evaluation of cinnarizine in various allergic disorders is published (Barrett & Zolov, 1960). Cinnarizine can be used in scuba divers without an increased risk of central nervous system oxygen toxicity. The crystal structures of some related compounds viz., cinnarizine (Mouillé et al., 1975), cyclizine hydrochloride (Bertolasi et al., 1980), cinnarizinium dipicrate (Jasinski et al., 2011), cinnarizinium 3,5-dinitrosalicylate (Dayananda et al., 2012), cinnarizinium picrate (Song et al., 2012), have been reported. In view of the importance of cinnarizine, this paper reports the crystal structure of the title compound, C26H30N2+ . C14H14O6S2- . 2H2O, (I).

The asymmetric unit of the title salt (Fig .1), C26H30N2+ . C14H14O6S2- . 2H2O consists of a diprotonated cinnarizinium cation hydrogen bonded through two water molecules to two independent p-toluenesulfonate anions, one of which is disordered in a 0.793 (3):0.207 (3) ratio. In the cation, the piperazine ring, N1/C1/C2/N2/C3/C4, adopts a chair configuration with puckering parameters Q = 0.585 (2)Å, θ = 180.0 (19)°, ϕ = 150 (10)° (Cremer & Pople, 1975) and contains two positively charged N atoms with quarternery character. The dihedral angle between the two benzene rings in the benzhydryl group is 71.8 (1)°. The benzene ring flanked opposite the piperazine ring is twisted by 75.9 (9)° and 8.8 (3)° from these two benzene rings. The bond lengths in the title compound are as expected (Allen, et al., 1987).

In the crystal, N—H···O hydrogen bonds (Table 1) from the diprotonated N atoms of the cation to nearby water molecules which subsequentially form O—H···O hydrogen bonds to the two p-toluenesulfonate anions link the components into infinite 1-D chains along [100] (Fig. 2).

Related literature top

For cinnarizine (systematic name: 1-benzhydryl-4-cinnamyl-piperazine) as a nootropic drug, see: Towse (1980). For cinnarizine in allergic disorders, see: Barrett & Zolov (1960). For related structures, see: Bertolasi et al. (1980); Dayananda et al. (2012); Jasinski et al. (2011); Mouillé et al. (1975); Smith et al. (2001); Song et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Cinnarizine (3.68 g, 0.01 mol) and p-toluenesuphonic acid monohydrate (1.90 g, 0.01 mol) were dissolved in hot dimethyl sulphoxide solution and stirred over a heating magnetic stirrer for few minutes. The resulting solution was allowed to cool slowly at room temperature. X-ray quality crystals of the title compound appeared after a few days. (M.P.: 373–378 K).

Refinement top

HN1, HN2, H1W1, H1W2, H2W1 and H2W2 were located by Fourier maps and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2) and 0.98Å (CH3) Isotropic displacement parameters for these atoms were set to 1.19-1.21 (CH, CH2) or 1.49-1.51 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 30% probability displacement ellipsoids. Dashed lines indicate N—H···O and O—H···O hydrogen bonds. One of the two independent p-toluenesulfonate anions is disordered in a 0.793 (3):0.207 (3) ratio and only the major component (B) is displayed.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Dashed lines indicate N—H···O, and O—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been removed for clarity.
1-Benzhydryl-4-cinnamylpiperazine-1,4-diium bis(p-toluenesulfonate) dihydrate top
Crystal data top
C26H30N22+·2C7H7O3S·2H2OF(000) = 1592
Mr = 748.92Dx = 1.309 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 7892 reflections
a = 10.0845 (2) Åθ = 3.0–75.5°
b = 14.6026 (3) ŵ = 1.72 mm1
c = 25.8591 (6) ÅT = 100 K
β = 93.414 (2)°Triangular prism, colorless
V = 3801.25 (14) Å30.47 × 0.28 × 0.17 mm
Z = 4
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
7666 independent reflections
Radiation source: Enhance (Cu) X-ray Source7051 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 3.4°
ω scansh = 129
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1218
Tmin = 0.705, Tmax = 1.000l = 3231
14591 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0664P)2 + 2.4545P]
where P = (Fo2 + 2Fc2)/3
7666 reflections(Δ/σ)max = 0.001
541 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C26H30N22+·2C7H7O3S·2H2OV = 3801.25 (14) Å3
Mr = 748.92Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.0845 (2) ŵ = 1.72 mm1
b = 14.6026 (3) ÅT = 100 K
c = 25.8591 (6) Å0.47 × 0.28 × 0.17 mm
β = 93.414 (2)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
7666 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
7051 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 1.000Rint = 0.033
14591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.60 e Å3
7666 reflectionsΔρmin = 0.37 e Å3
541 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.65374 (16)0.31271 (11)0.56450 (6)0.0214 (3)
N20.76219 (17)0.49893 (11)0.56859 (6)0.0266 (3)
C10.72326 (19)0.35115 (13)0.61278 (7)0.0242 (4)
H1A0.81870.33490.61360.029*
H1B0.68510.32370.64360.029*
C20.70870 (19)0.45477 (13)0.61469 (7)0.0240 (4)
H2A0.61360.47070.61630.029*
H2B0.75660.47850.64640.029*
C30.6939 (2)0.46042 (14)0.52066 (7)0.0288 (4)
H3A0.73160.48840.48990.035*
H3B0.59830.47590.51990.035*
C40.7099 (2)0.35766 (14)0.51847 (7)0.0287 (4)
H4A0.66390.33400.48630.034*
H4B0.80540.34230.51760.034*
C50.67147 (19)0.20872 (13)0.56135 (8)0.0253 (4)
H5A0.76850.19700.55860.030*
C60.6320 (2)0.16318 (13)0.61093 (8)0.0265 (4)
C70.5008 (2)0.14981 (14)0.62210 (9)0.0327 (4)
H7A0.43110.17010.59850.039*
C80.4715 (3)0.10679 (17)0.66771 (10)0.0445 (6)
H8A0.38150.09780.67540.053*
C90.5728 (3)0.07656 (17)0.70246 (10)0.0502 (7)
H9A0.55210.04690.73370.060*
C100.7033 (3)0.08991 (18)0.69133 (10)0.0491 (6)
H10A0.77280.06930.71490.059*
C110.7335 (2)0.13331 (15)0.64591 (9)0.0370 (5)
H11A0.82360.14280.63850.044*
C120.6004 (2)0.16984 (13)0.51271 (7)0.0260 (4)
C130.4735 (2)0.19524 (16)0.49385 (9)0.0391 (5)
H13A0.42760.24240.51070.047*
C140.4132 (3)0.15240 (17)0.45060 (10)0.0422 (5)
H14A0.32690.17060.43790.051*
C150.4790 (3)0.08314 (15)0.42614 (8)0.0372 (5)
H15A0.43760.05300.39690.045*
C160.6051 (3)0.05796 (15)0.44440 (9)0.0385 (5)
H16A0.65040.01040.42770.046*
C170.6659 (2)0.10176 (14)0.48701 (8)0.0315 (4)
H17A0.75360.08490.49880.038*
C180.7481 (2)0.60194 (14)0.56963 (8)0.0338 (5)
H18A0.77880.62770.53700.041*
H18B0.65320.61800.57170.041*
C190.8262 (2)0.64383 (14)0.61442 (8)0.0312 (4)
H19A0.91870.63170.61870.037*
C200.7705 (2)0.69750 (15)0.64845 (8)0.0315 (4)
H20A0.67640.70210.64560.038*
C210.8404 (2)0.75044 (14)0.69008 (8)0.0305 (4)
C220.9735 (2)0.73627 (16)0.70559 (9)0.0360 (5)
H22A1.02250.68960.68960.043*
C231.0346 (3)0.78994 (19)0.74422 (10)0.0438 (6)
H23A1.12510.77930.75490.053*
C240.9647 (3)0.85916 (18)0.76743 (9)0.0474 (6)
H24A1.00710.89640.79360.057*
C250.8337 (3)0.87308 (18)0.75206 (9)0.0487 (6)
H25A0.78540.92030.76780.058*
C260.7715 (3)0.81953 (18)0.71422 (9)0.0405 (5)
H26A0.68040.82970.70440.049*
S1B1.10167 (7)0.22582 (6)0.55532 (5)0.0278 (2)0.793 (3)
O1B1.16096 (19)0.31402 (13)0.54245 (8)0.0344 (5)0.793 (3)
O2B0.9784 (3)0.2394 (3)0.58013 (13)0.0404 (7)0.793 (3)
O3B1.1951 (2)0.16581 (15)0.58372 (8)0.0395 (5)0.793 (3)
C1B1.0592 (4)0.1723 (3)0.4955 (2)0.0299 (9)0.793 (3)
C2B0.9819 (4)0.2188 (2)0.45755 (16)0.0297 (7)0.793 (3)
H2BA0.95730.28080.46290.036*0.793 (3)
C3B0.9407 (4)0.1743 (3)0.41185 (16)0.0316 (8)0.793 (3)
H3BA0.88640.20560.38630.038*0.793 (3)
C4B0.9788 (5)0.0836 (3)0.4034 (2)0.0344 (10)0.793 (3)
C5B1.0551 (5)0.0398 (3)0.44126 (19)0.0583 (12)0.793 (3)
H5BA1.08080.02200.43610.070*0.793 (3)
C6B1.0959 (5)0.0837 (3)0.48724 (19)0.0547 (12)0.793 (3)
H6BA1.14940.05210.51290.066*0.793 (3)
C7B0.9309 (5)0.0331 (3)0.35407 (16)0.0435 (9)0.793 (3)
H7BA0.90930.03030.36260.065*0.793 (3)
H7BB1.00100.03380.32940.065*0.793 (3)
H7BC0.85150.06350.33860.065*0.793 (3)
S1C1.0840 (4)0.2469 (3)0.53724 (19)0.0396 (10)*0.207 (3)
O1C1.0619 (9)0.3411 (7)0.5240 (4)0.049 (2)*0.207 (3)
O2C0.9917 (16)0.2132 (10)0.5773 (6)0.045 (4)*0.207 (3)
O3C1.2223 (8)0.2279 (6)0.5563 (3)0.040 (2)*0.207 (3)
C1C1.0485 (19)0.1819 (12)0.4812 (6)0.021 (4)*0.207 (3)
C2C0.9489 (14)0.2030 (10)0.4471 (7)0.025 (4)*0.207 (3)
H2CA0.89650.25570.45290.030*0.207 (3)
C3C0.9204 (18)0.1512 (12)0.4045 (7)0.030 (5)*0.207 (3)
H3CA0.84840.17080.38180.036*0.207 (3)
C4C0.985 (2)0.0736 (14)0.3910 (7)0.027 (5)*0.207 (3)
C5C1.1030 (12)0.0533 (9)0.4276 (5)0.027 (3)*0.207 (3)
H5CA1.16000.00390.41990.033*0.207 (3)
C6C1.1315 (13)0.1042 (10)0.4720 (5)0.031 (3)*0.207 (3)
H6CA1.20340.08830.49570.037*0.207 (3)
C7C0.9595 (19)0.0133 (13)0.3475 (8)0.040 (5)*0.207 (3)
H7CA1.04300.01450.33800.060*0.207 (3)
H7CB0.92020.04830.31810.060*0.207 (3)
H7CC0.89770.03490.35690.060*0.207 (3)
S1A0.33646 (5)0.58716 (3)0.629055 (18)0.02690 (13)
O1A0.43410 (19)0.60649 (13)0.59122 (6)0.0434 (4)
O2A0.20127 (17)0.60346 (11)0.60795 (7)0.0444 (4)
O3A0.35469 (18)0.49646 (10)0.65172 (6)0.0378 (4)
C1A0.36629 (19)0.66653 (14)0.68031 (8)0.0263 (4)
C2A0.3782 (2)0.75874 (15)0.66805 (8)0.0310 (4)
H2AA0.37250.77780.63290.037*
C3A0.3983 (2)0.82273 (15)0.70733 (9)0.0342 (5)
H3AA0.40510.88580.69880.041*
C4A0.4086 (2)0.79587 (16)0.75925 (9)0.0345 (5)
C5A0.3980 (2)0.70304 (17)0.77068 (8)0.0385 (5)
H5AA0.40570.68360.80580.046*
C6A0.3765 (2)0.63828 (15)0.73161 (8)0.0349 (5)
H6AA0.36890.57520.74000.042*
C7A0.4288 (3)0.86573 (19)0.80187 (10)0.0494 (6)
H7AA0.44440.83430.83520.074*
H7AB0.34950.90420.80290.074*
H7AC0.50580.90410.79530.074*
O1W0.40391 (15)0.37324 (11)0.57489 (7)0.0343 (3)
O2W1.02377 (19)0.47283 (15)0.57219 (10)0.0560 (5)
H1N0.574 (3)0.3282 (18)0.5665 (9)0.027 (6)*
H2N0.857 (3)0.487 (2)0.5673 (11)0.039 (7)*
H1W10.330 (3)0.348 (2)0.5678 (11)0.042 (8)*
H1W20.379 (4)0.409 (3)0.6016 (15)0.070 (11)*
H2W11.082 (3)0.512 (3)0.5843 (13)0.057 (9)*
H2W21.056 (4)0.422 (3)0.5652 (16)0.081 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0199 (7)0.0216 (7)0.0226 (7)0.0008 (6)0.0003 (6)0.0043 (6)
N20.0293 (9)0.0253 (8)0.0249 (8)0.0070 (7)0.0004 (6)0.0010 (6)
C10.0274 (9)0.0227 (9)0.0221 (8)0.0004 (7)0.0019 (7)0.0025 (7)
C20.0262 (9)0.0232 (9)0.0228 (8)0.0033 (7)0.0022 (7)0.0021 (7)
C30.0340 (10)0.0298 (10)0.0221 (9)0.0090 (8)0.0013 (7)0.0005 (7)
C40.0329 (10)0.0314 (10)0.0219 (9)0.0042 (8)0.0029 (7)0.0038 (7)
C50.0235 (9)0.0221 (9)0.0302 (9)0.0035 (7)0.0005 (7)0.0051 (7)
C60.0327 (10)0.0179 (8)0.0288 (9)0.0018 (7)0.0002 (8)0.0056 (7)
C70.0369 (11)0.0230 (9)0.0383 (11)0.0017 (8)0.0024 (9)0.0066 (8)
C80.0534 (14)0.0318 (11)0.0501 (14)0.0093 (10)0.0187 (11)0.0117 (10)
C90.086 (2)0.0338 (12)0.0317 (11)0.0092 (13)0.0073 (12)0.0006 (9)
C100.0692 (18)0.0359 (12)0.0404 (13)0.0005 (12)0.0119 (12)0.0078 (10)
C110.0433 (12)0.0283 (10)0.0384 (11)0.0027 (9)0.0053 (9)0.0008 (9)
C120.0320 (10)0.0203 (8)0.0258 (9)0.0018 (7)0.0015 (7)0.0024 (7)
C130.0416 (12)0.0324 (11)0.0421 (12)0.0089 (9)0.0077 (10)0.0143 (9)
C140.0473 (13)0.0342 (12)0.0430 (12)0.0018 (10)0.0160 (10)0.0033 (10)
C150.0593 (14)0.0248 (10)0.0265 (10)0.0090 (9)0.0065 (9)0.0032 (8)
C160.0542 (14)0.0263 (10)0.0357 (11)0.0004 (10)0.0067 (10)0.0095 (9)
C170.0357 (11)0.0236 (9)0.0353 (10)0.0020 (8)0.0025 (8)0.0034 (8)
C180.0445 (12)0.0244 (10)0.0322 (10)0.0104 (9)0.0014 (9)0.0035 (8)
C190.0351 (11)0.0249 (9)0.0332 (10)0.0079 (8)0.0006 (8)0.0012 (8)
C200.0311 (10)0.0291 (10)0.0340 (10)0.0044 (8)0.0008 (8)0.0046 (8)
C210.0359 (11)0.0282 (10)0.0277 (9)0.0058 (8)0.0035 (8)0.0045 (8)
C220.0381 (12)0.0342 (11)0.0358 (11)0.0030 (9)0.0027 (9)0.0026 (9)
C230.0398 (12)0.0524 (14)0.0383 (12)0.0159 (11)0.0046 (10)0.0085 (11)
C240.0742 (18)0.0438 (13)0.0240 (10)0.0242 (13)0.0012 (11)0.0018 (9)
C250.0776 (19)0.0396 (13)0.0300 (11)0.0034 (13)0.0120 (11)0.0027 (10)
C260.0450 (13)0.0441 (13)0.0328 (11)0.0052 (10)0.0062 (9)0.0029 (10)
S1B0.0196 (3)0.0276 (4)0.0365 (5)0.0009 (2)0.0041 (3)0.0067 (4)
O1B0.0331 (10)0.0299 (10)0.0401 (10)0.0039 (8)0.0021 (8)0.0060 (8)
O2B0.0266 (12)0.0406 (17)0.0543 (16)0.0023 (12)0.0052 (9)0.0097 (13)
O3B0.0348 (10)0.0405 (11)0.0424 (11)0.0038 (9)0.0033 (8)0.0013 (9)
C1B0.0223 (16)0.0286 (18)0.039 (2)0.0009 (11)0.0007 (16)0.0018 (17)
C2B0.0306 (17)0.0229 (15)0.0367 (19)0.0002 (15)0.0111 (14)0.0021 (14)
C3B0.0325 (18)0.0293 (19)0.034 (2)0.0030 (16)0.0089 (14)0.0048 (16)
C4B0.042 (2)0.029 (2)0.032 (2)0.0064 (13)0.0009 (17)0.0062 (17)
C5B0.073 (3)0.0317 (18)0.068 (3)0.019 (2)0.019 (2)0.0175 (18)
C6B0.058 (3)0.039 (2)0.063 (3)0.0226 (19)0.024 (2)0.016 (2)
C7B0.056 (3)0.036 (2)0.0380 (19)0.0036 (19)0.0014 (18)0.0039 (16)
S1A0.0314 (3)0.0229 (2)0.0258 (2)0.00075 (17)0.00353 (18)0.00027 (17)
O1A0.0562 (10)0.0478 (10)0.0265 (7)0.0112 (8)0.0058 (7)0.0046 (7)
O2A0.0397 (9)0.0308 (8)0.0600 (11)0.0026 (7)0.0186 (8)0.0113 (7)
O3A0.0590 (10)0.0248 (7)0.0296 (7)0.0073 (7)0.0030 (7)0.0010 (6)
C1A0.0259 (9)0.0245 (9)0.0280 (9)0.0002 (7)0.0007 (7)0.0016 (7)
C2A0.0352 (11)0.0284 (10)0.0290 (10)0.0043 (8)0.0015 (8)0.0022 (8)
C3A0.0355 (11)0.0253 (10)0.0412 (11)0.0051 (8)0.0029 (9)0.0014 (8)
C4A0.0304 (10)0.0373 (11)0.0352 (11)0.0000 (9)0.0021 (8)0.0079 (9)
C5A0.0487 (13)0.0400 (12)0.0262 (10)0.0022 (10)0.0023 (9)0.0009 (9)
C6A0.0449 (12)0.0298 (10)0.0296 (10)0.0002 (9)0.0009 (9)0.0034 (8)
C7A0.0599 (16)0.0458 (14)0.0418 (13)0.0028 (12)0.0042 (11)0.0141 (11)
O1W0.0231 (7)0.0317 (8)0.0483 (9)0.0003 (6)0.0047 (6)0.0126 (7)
O2W0.0312 (9)0.0375 (10)0.0971 (17)0.0067 (8)0.0143 (10)0.0064 (10)
Geometric parameters (Å, º) top
N1—C41.500 (2)C26—H26A0.9500
N1—C11.504 (2)S1B—O2B1.446 (3)
N1—C51.532 (2)S1B—O3B1.454 (2)
N1—H1N0.84 (3)S1B—O1B1.467 (2)
N2—C21.485 (2)S1B—C1B1.764 (5)
N2—C31.492 (2)C1B—C6B1.366 (5)
N2—C181.511 (3)C1B—C2B1.393 (6)
N2—H2N0.98 (3)C2B—C3B1.390 (6)
C1—C21.521 (3)C2B—H2BA0.9500
C1—H1A0.9900C3B—C4B1.400 (6)
C1—H1B0.9900C3B—H3BA0.9500
C2—H2A0.9900C4B—C5B1.368 (6)
C2—H2B0.9900C4B—C7B1.527 (6)
C3—C41.511 (3)C5B—C6B1.392 (5)
C3—H3A0.9900C5B—H5BA0.9500
C3—H3B0.9900C6B—H6BA0.9500
C4—H4A0.9900C7B—H7BA0.9800
C4—H4B0.9900C7B—H7BB0.9800
C5—C61.518 (3)C7B—H7BC0.9800
C5—C121.520 (3)S1C—O1C1.432 (11)
C5—H5A1.0000S1C—O3C1.478 (9)
C6—C71.385 (3)S1C—O2C1.515 (17)
C6—C111.395 (3)S1C—C1C1.751 (16)
C7—C81.384 (3)C1C—C2C1.33 (2)
C7—H7A0.9500C1C—C6C1.44 (2)
C8—C91.391 (4)C2C—C3C1.354 (19)
C8—H8A0.9500C2C—H2CA0.9500
C9—C101.378 (4)C3C—C4C1.36 (3)
C9—H9A0.9500C3C—H3CA0.9500
C10—C111.384 (4)C4C—C7C1.44 (2)
C10—H10A0.9500C4C—C5C1.50 (2)
C11—H11A0.9500C5C—C6C1.385 (19)
C12—C171.385 (3)C5C—H5CA0.9500
C12—C131.392 (3)C6C—H6CA0.9500
C13—C141.390 (3)C7C—H7CA0.9800
C13—H13A0.9500C7C—H7CB0.9800
C14—C151.384 (4)C7C—H7CC0.9800
C14—H14A0.9500S1A—O3A1.4555 (15)
C15—C161.379 (4)S1A—O1A1.4564 (18)
C15—H15A0.9500S1A—O2A1.4576 (16)
C16—C171.385 (3)S1A—C1A1.773 (2)
C16—H16A0.9500C1A—C6A1.387 (3)
C17—H17A0.9500C1A—C2A1.390 (3)
C18—C191.492 (3)C2A—C3A1.386 (3)
C18—H18A0.9900C2A—H2AA0.9500
C18—H18B0.9900C3A—C4A1.396 (3)
C19—C201.328 (3)C3A—H3AA0.9500
C19—H19A0.9500C4A—C5A1.393 (3)
C20—C211.471 (3)C4A—C7A1.507 (3)
C20—H20A0.9500C5A—C6A1.391 (3)
C21—C221.393 (3)C5A—H5AA0.9500
C21—C261.394 (3)C6A—H6AA0.9500
C22—C231.385 (3)C7A—H7AA0.9800
C22—H22A0.9500C7A—H7AB0.9800
C23—C241.389 (4)C7A—H7AC0.9800
C23—H23A0.9500O1W—H1W10.84 (3)
C24—C251.372 (4)O1W—H1W20.91 (4)
C24—H24A0.9500O2W—H2W10.86 (4)
C25—C261.375 (4)O2W—H2W20.83 (5)
C25—H25A0.9500
C4—N1—C1108.42 (14)C22—C23—H23A119.7
C4—N1—C5109.94 (15)C24—C23—H23A119.7
C1—N1—C5111.35 (14)C25—C24—C23119.2 (2)
C4—N1—H1N109.8 (17)C25—C24—H24A120.4
C1—N1—H1N104.4 (17)C23—C24—H24A120.4
C5—N1—H1N112.7 (18)C24—C25—C26120.9 (2)
C2—N2—C3109.37 (15)C24—C25—H25A119.6
C2—N2—C18112.28 (16)C26—C25—H25A119.6
C3—N2—C18110.54 (16)C25—C26—C21120.8 (2)
C2—N2—H2N110.5 (16)C25—C26—H26A119.6
C3—N2—H2N107.8 (16)C21—C26—H26A119.6
C18—N2—H2N106.2 (17)O2B—S1B—O3B114.03 (19)
N1—C1—C2110.92 (15)O2B—S1B—O1B110.68 (18)
N1—C1—H1A109.5O3B—S1B—O1B112.54 (13)
C2—C1—H1A109.5O2B—S1B—C1B106.23 (19)
N1—C1—H1B109.5O3B—S1B—C1B107.02 (17)
C2—C1—H1B109.5O1B—S1B—C1B105.72 (18)
H1A—C1—H1B108.0C6B—C1B—C2B119.9 (4)
N2—C2—C1111.45 (15)C6B—C1B—S1B120.1 (4)
N2—C2—H2A109.3C2B—C1B—S1B119.9 (3)
C1—C2—H2A109.3C3B—C2B—C1B119.8 (3)
N2—C2—H2B109.3C3B—C2B—H2BA120.1
C1—C2—H2B109.3C1B—C2B—H2BA120.1
H2A—C2—H2B108.0C2B—C3B—C4B120.3 (4)
N2—C3—C4111.13 (16)C2B—C3B—H3BA119.9
N2—C3—H3A109.4C4B—C3B—H3BA119.9
C4—C3—H3A109.4C5B—C4B—C3B118.6 (4)
N2—C3—H3B109.4C5B—C4B—C7B120.6 (4)
C4—C3—H3B109.4C3B—C4B—C7B120.7 (4)
H3A—C3—H3B108.0C4B—C5B—C6B121.4 (4)
N1—C4—C3111.03 (16)C4B—C5B—H5BA119.3
N1—C4—H4A109.4C6B—C5B—H5BA119.3
C3—C4—H4A109.4C1B—C6B—C5B120.0 (4)
N1—C4—H4B109.4C1B—C6B—H6BA120.0
C3—C4—H4B109.4C5B—C6B—H6BA120.0
H4A—C4—H4B108.0O1C—S1C—O3C113.0 (6)
C6—C5—C12113.64 (16)O1C—S1C—O2C112.5 (7)
C6—C5—N1110.62 (15)O3C—S1C—O2C108.5 (8)
C12—C5—N1111.31 (15)O1C—S1C—C1C107.6 (8)
C6—C5—H5A107.0O3C—S1C—C1C108.4 (8)
C12—C5—H5A107.0O2C—S1C—C1C106.6 (8)
N1—C5—H5A107.0C2C—C1C—C6C119.8 (15)
C7—C6—C11119.6 (2)C2C—C1C—S1C122.0 (15)
C7—C6—C5122.63 (18)C6C—C1C—S1C118.2 (13)
C11—C6—C5117.76 (19)C1C—C2C—C3C121.6 (16)
C8—C7—C6119.8 (2)C1C—C2C—H2CA119.2
C8—C7—H7A120.1C3C—C2C—H2CA119.2
C6—C7—H7A120.1C2C—C3C—C4C126.2 (18)
C7—C8—C9120.6 (2)C2C—C3C—H3CA116.9
C7—C8—H8A119.7C4C—C3C—H3CA116.9
C9—C8—H8A119.7C3C—C4C—C7C130.0 (18)
C10—C9—C8119.6 (2)C3C—C4C—C5C112.0 (15)
C10—C9—H9A120.2C7C—C4C—C5C118.0 (16)
C8—C9—H9A120.2C6C—C5C—C4C122.2 (13)
C9—C10—C11120.2 (2)C6C—C5C—H5CA118.9
C9—C10—H10A119.9C4C—C5C—H5CA118.9
C11—C10—H10A119.9C5C—C6C—C1C117.8 (13)
C10—C11—C6120.2 (2)C5C—C6C—H6CA121.1
C10—C11—H11A119.9C1C—C6C—H6CA121.1
C6—C11—H11A119.9C4C—C7C—H7CA109.5
C17—C12—C13118.55 (19)C4C—C7C—H7CB109.5
C17—C12—C5116.74 (18)H7CA—C7C—H7CB109.5
C13—C12—C5124.66 (18)C4C—C7C—H7CC109.5
C14—C13—C12120.7 (2)H7CA—C7C—H7CC109.5
C14—C13—H13A119.6H7CB—C7C—H7CC109.5
C12—C13—H13A119.6O3A—S1A—O1A111.88 (11)
C15—C14—C13119.9 (2)O3A—S1A—O2A113.10 (11)
C15—C14—H14A120.1O1A—S1A—O2A111.82 (11)
C13—C14—H14A120.1O3A—S1A—C1A106.39 (9)
C16—C15—C14119.7 (2)O1A—S1A—C1A106.50 (10)
C16—C15—H15A120.1O2A—S1A—C1A106.64 (10)
C14—C15—H15A120.1C6A—C1A—C2A120.25 (19)
C15—C16—C17120.3 (2)C6A—C1A—S1A121.34 (16)
C15—C16—H16A119.8C2A—C1A—S1A118.41 (15)
C17—C16—H16A119.8C3A—C2A—C1A119.8 (2)
C16—C17—C12120.8 (2)C3A—C2A—H2AA120.1
C16—C17—H17A119.6C1A—C2A—H2AA120.1
C12—C17—H17A119.6C2A—C3A—C4A121.0 (2)
C19—C18—N2112.09 (18)C2A—C3A—H3AA119.5
C19—C18—H18A109.2C4A—C3A—H3AA119.5
N2—C18—H18A109.2C5A—C4A—C3A118.4 (2)
C19—C18—H18B109.2C5A—C4A—C7A120.8 (2)
N2—C18—H18B109.2C3A—C4A—C7A120.8 (2)
H18A—C18—H18B107.9C6A—C5A—C4A121.2 (2)
C20—C19—C18122.1 (2)C6A—C5A—H5AA119.4
C20—C19—H19A118.9C4A—C5A—H5AA119.4
C18—C19—H19A118.9C1A—C6A—C5A119.5 (2)
C19—C20—C21126.3 (2)C1A—C6A—H6AA120.3
C19—C20—H20A116.8C5A—C6A—H6AA120.3
C21—C20—H20A116.8C4A—C7A—H7AA109.5
C22—C21—C26118.4 (2)C4A—C7A—H7AB109.5
C22—C21—C20123.0 (2)H7AA—C7A—H7AB109.5
C26—C21—C20118.6 (2)C4A—C7A—H7AC109.5
C23—C22—C21120.2 (2)H7AA—C7A—H7AC109.5
C23—C22—H22A119.9H7AB—C7A—H7AC109.5
C21—C22—H22A119.9H1W1—O1W—H1W298 (3)
C22—C23—C24120.5 (2)H2W1—O2W—H2W2114 (4)
C4—N1—C1—C257.1 (2)C22—C21—C26—C250.7 (3)
C5—N1—C1—C2178.22 (15)C20—C21—C26—C25177.7 (2)
C3—N2—C2—C156.7 (2)O2B—S1B—C1B—C6B111.7 (4)
C18—N2—C2—C1179.75 (16)O3B—S1B—C1B—C6B10.5 (5)
N1—C1—C2—N257.9 (2)O1B—S1B—C1B—C6B130.7 (4)
C2—N2—C3—C457.2 (2)O2B—S1B—C1B—C2B64.8 (4)
C18—N2—C3—C4178.65 (17)O3B—S1B—C1B—C2B173.0 (3)
C1—N1—C4—C358.0 (2)O1B—S1B—C1B—C2B52.8 (4)
C5—N1—C4—C3179.91 (15)C6B—C1B—C2B—C3B1.1 (7)
N2—C3—C4—N159.2 (2)S1B—C1B—C2B—C3B175.5 (3)
C4—N1—C5—C6172.46 (15)C1B—C2B—C3B—C4B1.3 (6)
C1—N1—C5—C652.3 (2)C2B—C3B—C4B—C5B1.1 (7)
C4—N1—C5—C1260.2 (2)C2B—C3B—C4B—C7B178.2 (4)
C1—N1—C5—C12179.62 (15)C3B—C4B—C5B—C6B0.6 (8)
C12—C5—C6—C749.0 (2)C7B—C4B—C5B—C6B177.8 (5)
N1—C5—C6—C777.0 (2)C2B—C1B—C6B—C5B0.6 (8)
C12—C5—C6—C11130.33 (19)S1B—C1B—C6B—C5B175.9 (4)
N1—C5—C6—C11103.6 (2)C4B—C5B—C6B—C1B0.4 (9)
C11—C6—C7—C80.2 (3)O1C—S1C—C1C—C2C37.5 (16)
C5—C6—C7—C8179.20 (19)O3C—S1C—C1C—C2C160.0 (13)
C6—C7—C8—C90.2 (3)O2C—S1C—C1C—C2C83.4 (15)
C7—C8—C9—C100.2 (4)O1C—S1C—C1C—C6C141.7 (11)
C8—C9—C10—C110.1 (4)O3C—S1C—C1C—C6C19.2 (14)
C9—C10—C11—C60.5 (4)O2C—S1C—C1C—C6C97.4 (13)
C7—C6—C11—C100.5 (3)C6C—C1C—C2C—C3C2 (2)
C5—C6—C11—C10178.9 (2)S1C—C1C—C2C—C3C178.6 (13)
C6—C5—C12—C1794.7 (2)C1C—C2C—C3C—C4C1 (3)
N1—C5—C12—C17139.64 (18)C2C—C3C—C4C—C7C178.0 (19)
C6—C5—C12—C1382.6 (3)C2C—C3C—C4C—C5C4 (3)
N1—C5—C12—C1343.1 (3)C3C—C4C—C5C—C6C6 (2)
C17—C12—C13—C140.8 (4)C7C—C4C—C5C—C6C176.3 (15)
C5—C12—C13—C14176.4 (2)C4C—C5C—C6C—C1C3.6 (19)
C12—C13—C14—C150.6 (4)C2C—C1C—C6C—C5C1 (2)
C13—C14—C15—C161.0 (4)S1C—C1C—C6C—C5C179.8 (10)
C14—C15—C16—C170.1 (4)O3A—S1A—C1A—C6A11.5 (2)
C15—C16—C17—C121.5 (3)O1A—S1A—C1A—C6A131.02 (19)
C13—C12—C17—C161.9 (3)O2A—S1A—C1A—C6A109.44 (19)
C5—C12—C17—C16175.6 (2)O3A—S1A—C1A—C2A169.05 (17)
C2—N2—C18—C1963.1 (2)O1A—S1A—C1A—C2A49.6 (2)
C3—N2—C18—C19174.45 (18)O2A—S1A—C1A—C2A69.98 (19)
N2—C18—C19—C20124.4 (2)C6A—C1A—C2A—C3A1.0 (3)
C18—C19—C20—C21172.35 (19)S1A—C1A—C2A—C3A178.44 (17)
C19—C20—C21—C2213.5 (3)C1A—C2A—C3A—C4A0.9 (3)
C19—C20—C21—C26164.8 (2)C2A—C3A—C4A—C5A0.1 (3)
C26—C21—C22—C230.1 (3)C2A—C3A—C4A—C7A179.2 (2)
C20—C21—C22—C23178.4 (2)C3A—C4A—C5A—C6A0.6 (4)
C21—C22—C23—C240.9 (4)C7A—C4A—C5A—C6A178.6 (2)
C22—C23—C24—C250.8 (4)C2A—C1A—C6A—C5A0.3 (3)
C23—C24—C25—C260.0 (4)S1A—C1A—C6A—C5A179.06 (18)
C24—C25—C26—C210.8 (4)C4A—C5A—C6A—C1A0.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1W0.84 (3)1.86 (3)2.699 (2)174 (3)
N2—H2N···O2W0.98 (3)1.69 (3)2.661 (3)173 (3)
O1W—H1W1···O1Bi0.84 (3)1.86 (3)2.685 (2)167 (3)
O1W—H1W1···O3Ci0.84 (3)2.07 (3)2.826 (9)149 (3)
O1W—H1W2···O3A0.91 (4)1.85 (4)2.747 (2)168 (4)
O2W—H2W1···O2Aii0.86 (4)1.88 (4)2.739 (3)176 (3)
O2W—H2W2···O1C0.83 (5)1.59 (5)2.336 (10)147 (4)
O2W—H2W2···O1B0.83 (5)2.01 (5)2.830 (3)169 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H30N22+·2C7H7O3S·2H2O
Mr748.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.0845 (2), 14.6026 (3), 25.8591 (6)
β (°) 93.414 (2)
V3)3801.25 (14)
Z4
Radiation typeCu Kα
µ (mm1)1.72
Crystal size (mm)0.47 × 0.28 × 0.17
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.705, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14591, 7666, 7051
Rint0.033
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.140, 1.06
No. of reflections7666
No. of parameters541
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.37

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1W0.84 (3)1.86 (3)2.699 (2)174 (3)
N2—H2N···O2W0.98 (3)1.69 (3)2.661 (3)173 (3)
O1W—H1W1···O1Bi0.84 (3)1.86 (3)2.685 (2)167 (3)
O1W—H1W1···O3Ci0.84 (3)2.07 (3)2.826 (9)149 (3)
O1W—H1W2···O3A0.91 (4)1.85 (4)2.747 (2)168 (4)
O2W—H2W1···O2Aii0.86 (4)1.88 (4)2.739 (3)176 (3)
O2W—H2W2···O1C0.83 (5)1.59 (5)2.336 (10)147 (4)
O2W—H2W2···O1B0.83 (5)2.01 (5)2.830 (3)169 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

CNK thanks the UOM for research facilities. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBarrett, R. J. & Zolov, B. (1960). J. Maine Med. Assoc. 51, 454–457.  PubMed Google Scholar
First citationBertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 1975–1977.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165–o1166.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500–o501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMouillé, Y., Cotrait, M., Hospital, M. & Marsau, P. (1975). Acta Cryst. B31, 1495–1496.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Bott, R. C. & Wermuth, U. D. (2001). Acta Cryst. E57, o640–o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, o1747.  CSD CrossRef IUCr Journals Google Scholar
First citationTowse, G. (1980). J. Laryngol. Otol. 94, 1009–1015.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o485-o486
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds