organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(3,5-Dimeth­­oxy­phen­yl)-1-(2-meth­­oxy­phen­yl)prop-2-en-1-one

aDivision of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea, and bDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

(Received 22 February 2013; accepted 5 March 2013; online 9 March 2013)

In the title mol­ecule, C18H18O4, the dihedral angle between the benzene rings is 52.52 (7)°. The C=C bond of the central enone group adopts a trans conformation. The relative conformation of the two double bonds in the enone group is s-transoid. In the crystal, mol­ecules are linked by pairs of weak C—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For the synthesis and biological properties of chalcone derivatives, see: Shin et al. (2012[Shin, S. Y., Ahn, S., Park, M. J., Yoon, H., Kim, M., Ji, S. Y., Koh, D., Lee, Y. H. & Lim, Y. (2012). J. Korean Soc. Appl. Biol. Chem. 55, 669-675.]); Hwang et al. (2011[Hwang, D., Hyun, J., Jo, G., Koh, D. & Lim, Y. (2011). Magn. Reson. Chem. 49, 41-45.]). For related structures, see: Fun et al. (2012[Fun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1560-o1561.]); Lee et al. (2012[Lee, H.-J., Lim, Y. & Koh, D. (2012). Acta Cryst. E68, o3403.]); Prasath et al. (2010[Prasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O4

  • Mr = 298.32

  • Monoclinic, P 21 /c

  • a = 12.0925 (18) Å

  • b = 8.4460 (12) Å

  • c = 15.109 (2) Å

  • β = 92.340 (3)°

  • V = 1541.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.24 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 11328 measured reflections

  • 3865 independent reflections

  • 1544 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.132

  • S = 0.81

  • 3865 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.51 3.457 (3) 172
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Chalcones have an α,β-unsaturated carbonyl (enone) group which connects two aromatic rings at the 1,3-positions. Typically, the conformation of enone system is s-cisoid, in which the CC and CO double bonds are cis with respect to each other. Few examples of s-transoid conformations have been reported in the literature (Fun et al., 2012; Prasath et al., 2010). As a part of our studies on the substituent effects of chalcones on structures and biological activities (Shin et al., 2012; Hwang et al., 2011), the crystal structure of title compound has been determined.

The molecular structure of the title compound is shown in Fig. 1. The relative conformation of two double bonds of the central enone group is s-transoid. The trans configuration at the C1C2 bond is reflected in the O1-C1-C2-C3 torsion angle of -168.7 (2)° compared to the value of -1.1 (5)° in a structure with an s-cisoid configuration (Lee et al., 2012). The dihedral angle between the benzene rings is 52.52 (7)°. Two methoxy groups at meta positions of the C4-C6/C8/C9/C11 ring are essentially co-planar with the ring [C8—C6—O2—C7 = -2.4 (3)° and C11—C9—O3—C10 = -1.2 (3)°]. However, the methoxy group at the ortho position of the C12-C17 ring is slightly twisted with respect to the benzene ring [C16—C17—O4—C18 = 21.6 (3)°]. In the crystal, molecules are linked by a pair of weak C—H···O hydrogen bonds to form inversion dimers (Table 1, Fig. 2).

Related literature top

For the synthesis and biological properties of chalcone derivatives, see: Shin et al. (2012); Hwang et al. (2011). For related structures, see: Fun et al. (2012); Lee et al. (2012); Prasath et al. (2010).

Experimental top

To a solution of 3,5-dimethoxybenzaldehyde (415 mg, 2.5 mmol) in 30 ml of ethanol was added 2-methoxyacetophenone (300 mg, 2 mmol) and the temperature was adjusted to around 276 K in an ice-bath. To the cooled reaction mixture was added 2 ml of 50% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 5 h. This mixture was poured into iced water (50 ml) was acidified (pH = 3) with 3 N HCl solution to give a precipitate. Filtration and washing with water afforded crude solid of the title compound (560 mg, 94%). Recrystallization of the solid in ethanol gave single crystals (mp: 353–355 K).

Refinement top

H atoms were placed in calculated positions and refined as riding with C—H = 0.95–0.98 Å, and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing an inversion dimer formed via a pair of weak intermolecular C—H···O hydrogen bonds shown as dashed lines.
(E)-3-(3,5-Dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H18O4F(000) = 632
Mr = 298.32Dx = 1.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2539 reflections
a = 12.0925 (18) Åθ = 2.7–28.1°
b = 8.4460 (12) ŵ = 0.09 mm1
c = 15.109 (2) ÅT = 200 K
β = 92.340 (3)°Block, colorless
V = 1541.9 (4) Å30.24 × 0.14 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1544 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 28.5°, θmin = 1.7°
ϕ and ω scansh = 1614
11328 measured reflectionsk = 1110
3865 independent reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0575P)2]
where P = (Fo2 + 2Fc2)/3
3865 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H18O4V = 1541.9 (4) Å3
Mr = 298.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0925 (18) ŵ = 0.09 mm1
b = 8.4460 (12) ÅT = 200 K
c = 15.109 (2) Å0.24 × 0.14 × 0.10 mm
β = 92.340 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1544 reflections with I > 2σ(I)
11328 measured reflectionsRint = 0.053
3865 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.81Δρmax = 0.21 e Å3
3865 reflectionsΔρmin = 0.27 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40664 (18)0.2012 (2)0.41632 (14)0.0370 (5)
O10.35034 (13)0.11209 (19)0.46017 (11)0.0569 (5)
C20.52596 (18)0.2050 (2)0.43027 (13)0.0366 (5)
H20.55970.12420.46580.044*
C30.59125 (17)0.3144 (2)0.39646 (13)0.0359 (5)
H30.55570.39370.36090.043*
C40.71093 (17)0.3259 (2)0.40791 (14)0.0352 (5)
C50.77006 (18)0.2441 (2)0.47412 (14)0.0371 (5)
H50.73220.18070.51510.045*
C60.88426 (18)0.2553 (2)0.48006 (14)0.0378 (5)
O20.93429 (13)0.17546 (17)0.54903 (10)0.0498 (4)
C71.05199 (19)0.1787 (3)0.55712 (17)0.0562 (7)
H7A1.08270.13130.50430.084*
H7B1.07700.11860.60970.084*
H7C1.07730.28860.56300.084*
C80.94020 (17)0.3433 (2)0.41983 (14)0.0384 (5)
H81.01870.34960.42390.046*
C90.88069 (18)0.4234 (2)0.35258 (15)0.0379 (5)
O30.94471 (12)0.50354 (18)0.29569 (11)0.0518 (5)
C100.8906 (2)0.5865 (3)0.22476 (16)0.0587 (7)
H10A0.84560.51240.18870.088*
H10B0.94590.63590.18800.088*
H10C0.84270.66850.24850.088*
C110.76750 (17)0.4184 (2)0.34780 (14)0.0359 (5)
H110.72750.47780.30370.043*
C120.34924 (17)0.3117 (2)0.35221 (13)0.0341 (5)
C130.26908 (18)0.4123 (2)0.38312 (14)0.0392 (5)
H130.25210.40930.44390.047*
C140.21334 (18)0.5168 (2)0.32693 (15)0.0427 (6)
H140.15950.58680.34900.051*
C150.23697 (18)0.5181 (2)0.23841 (15)0.0426 (6)
H150.19860.58930.19940.051*
C160.31528 (18)0.4178 (2)0.20554 (14)0.0399 (6)
H160.33030.41930.14430.048*
C170.37188 (17)0.3148 (2)0.26260 (14)0.0351 (5)
O40.44767 (12)0.20606 (17)0.23581 (9)0.0440 (4)
C180.4977 (2)0.2339 (3)0.15387 (16)0.0613 (8)
H18A0.44300.21710.10510.092*
H18B0.55970.16050.14770.092*
H18C0.52490.34310.15220.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0341 (13)0.0409 (13)0.0364 (12)0.0028 (10)0.0042 (10)0.0045 (10)
O10.0405 (10)0.0666 (11)0.0637 (11)0.0077 (8)0.0019 (8)0.0290 (9)
C20.0336 (13)0.0404 (13)0.0357 (12)0.0040 (10)0.0005 (10)0.0056 (10)
C30.0343 (13)0.0366 (12)0.0369 (12)0.0016 (9)0.0009 (10)0.0009 (10)
C40.0357 (13)0.0331 (11)0.0371 (12)0.0008 (10)0.0051 (10)0.0023 (10)
C50.0377 (14)0.0385 (12)0.0350 (12)0.0012 (10)0.0012 (10)0.0049 (10)
C60.0405 (14)0.0335 (12)0.0388 (13)0.0078 (10)0.0064 (11)0.0005 (10)
O20.0446 (10)0.0522 (10)0.0517 (10)0.0050 (8)0.0108 (8)0.0071 (8)
C70.0429 (16)0.0523 (15)0.0717 (18)0.0036 (12)0.0198 (13)0.0017 (13)
C80.0283 (12)0.0369 (12)0.0497 (14)0.0034 (10)0.0019 (10)0.0016 (11)
C90.0355 (13)0.0327 (12)0.0460 (14)0.0014 (10)0.0087 (11)0.0003 (10)
O30.0360 (10)0.0558 (10)0.0642 (11)0.0011 (8)0.0085 (8)0.0177 (9)
C100.0510 (17)0.0658 (17)0.0600 (17)0.0020 (13)0.0098 (14)0.0228 (14)
C110.0307 (13)0.0341 (12)0.0428 (13)0.0019 (9)0.0014 (10)0.0018 (10)
C120.0317 (12)0.0335 (11)0.0374 (12)0.0039 (9)0.0030 (10)0.0025 (10)
C130.0375 (13)0.0433 (13)0.0370 (12)0.0041 (10)0.0044 (10)0.0006 (11)
C140.0348 (13)0.0378 (13)0.0555 (16)0.0000 (10)0.0036 (11)0.0028 (12)
C150.0350 (13)0.0393 (13)0.0530 (15)0.0023 (10)0.0050 (11)0.0091 (11)
C160.0413 (14)0.0417 (13)0.0364 (13)0.0043 (11)0.0002 (11)0.0060 (11)
C170.0318 (12)0.0348 (12)0.0389 (13)0.0020 (10)0.0040 (10)0.0005 (10)
O40.0471 (10)0.0489 (9)0.0363 (9)0.0096 (7)0.0061 (7)0.0007 (7)
C180.0630 (19)0.0699 (17)0.0529 (16)0.0118 (14)0.0248 (14)0.0074 (14)
Geometric parameters (Å, º) top
C1—O11.227 (2)O3—C101.418 (3)
C1—C21.450 (3)C10—H10A0.9800
C1—C121.496 (3)C10—H10B0.9800
C2—C31.331 (3)C10—H10C0.9800
C2—H20.9500C11—H110.9500
C3—C41.454 (3)C12—C131.384 (3)
C3—H30.9500C12—C171.392 (3)
C4—C51.390 (3)C13—C141.381 (3)
C4—C111.398 (3)C13—H130.9500
C5—C61.384 (3)C14—C151.379 (3)
C5—H50.9500C14—H140.9500
C6—O21.362 (2)C15—C161.378 (3)
C6—C81.374 (3)C15—H150.9500
O2—C71.424 (3)C16—C171.386 (3)
C7—H7A0.9800C16—H160.9500
C7—H7B0.9800C17—O41.370 (2)
C7—H7C0.9800O4—C181.420 (2)
C8—C91.396 (3)C18—H18A0.9800
C8—H80.9500C18—H18B0.9800
C9—O31.361 (2)C18—H18C0.9800
C9—C111.368 (3)
O1—C1—C2120.4 (2)O3—C10—H10B109.5
O1—C1—C12118.7 (2)H10A—C10—H10B109.5
C2—C1—C12120.86 (18)O3—C10—H10C109.5
C3—C2—C1124.2 (2)H10A—C10—H10C109.5
C3—C2—H2117.9H10B—C10—H10C109.5
C1—C2—H2117.9C9—C11—C4119.8 (2)
C2—C3—C4127.2 (2)C9—C11—H11120.1
C2—C3—H3116.4C4—C11—H11120.1
C4—C3—H3116.4C13—C12—C17119.01 (19)
C5—C4—C11119.6 (2)C13—C12—C1118.51 (18)
C5—C4—C3122.21 (19)C17—C12—C1122.46 (18)
C11—C4—C3118.11 (19)C14—C13—C12121.0 (2)
C6—C5—C4119.7 (2)C14—C13—H13119.5
C6—C5—H5120.1C12—C13—H13119.5
C4—C5—H5120.1C15—C14—C13119.1 (2)
O2—C6—C8124.0 (2)C15—C14—H14120.5
O2—C6—C5115.25 (19)C13—C14—H14120.5
C8—C6—C5120.7 (2)C16—C15—C14121.1 (2)
C6—O2—C7117.86 (18)C16—C15—H15119.4
O2—C7—H7A109.5C14—C15—H15119.4
O2—C7—H7B109.5C15—C16—C17119.4 (2)
H7A—C7—H7B109.5C15—C16—H16120.3
O2—C7—H7C109.5C17—C16—H16120.3
H7A—C7—H7C109.5O4—C17—C16123.80 (18)
H7B—C7—H7C109.5O4—C17—C12115.80 (18)
C6—C8—C9119.4 (2)C16—C17—C12120.32 (19)
C6—C8—H8120.3C17—O4—C18117.45 (17)
C9—C8—H8120.3O4—C18—H18A109.5
O3—C9—C11125.1 (2)O4—C18—H18B109.5
O3—C9—C8114.3 (2)H18A—C18—H18B109.5
C11—C9—C8120.6 (2)O4—C18—H18C109.5
C9—O3—C10117.80 (18)H18A—C18—H18C109.5
O3—C10—H10A109.5H18B—C18—H18C109.5
O1—C1—C2—C3168.7 (2)C5—C4—C11—C92.3 (3)
C12—C1—C2—C37.7 (3)C3—C4—C11—C9175.44 (19)
C1—C2—C3—C4179.76 (19)O1—C1—C12—C1354.6 (3)
C2—C3—C4—C516.2 (3)C2—C1—C12—C13121.9 (2)
C2—C3—C4—C11161.5 (2)O1—C1—C12—C17124.0 (2)
C11—C4—C5—C60.2 (3)C2—C1—C12—C1759.4 (3)
C3—C4—C5—C6177.85 (19)C17—C12—C13—C141.3 (3)
C4—C5—C6—O2177.74 (18)C1—C12—C13—C14180.0 (2)
C4—C5—C6—C81.7 (3)C12—C13—C14—C151.2 (3)
C8—C6—O2—C72.4 (3)C13—C14—C15—C160.3 (3)
C5—C6—O2—C7178.19 (18)C14—C15—C16—C170.5 (3)
O2—C6—C8—C9178.67 (19)C15—C16—C17—O4177.12 (19)
C5—C6—C8—C90.7 (3)C15—C16—C17—C120.5 (3)
C6—C8—C9—O3178.56 (18)C13—C12—C17—O4176.49 (17)
C6—C8—C9—C111.9 (3)C1—C12—C17—O42.1 (3)
C11—C9—O3—C101.2 (3)C13—C12—C17—C160.4 (3)
C8—C9—O3—C10179.24 (19)C1—C12—C17—C16179.03 (19)
O3—C9—C11—C4177.11 (18)C16—C17—O4—C1821.6 (3)
C8—C9—C11—C43.4 (3)C12—C17—O4—C18161.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.513.457 (3)172
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H18O4
Mr298.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.0925 (18), 8.4460 (12), 15.109 (2)
β (°) 92.340 (3)
V3)1541.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11328, 3865, 1544
Rint0.053
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.132, 0.81
No. of reflections3865
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.513.457 (3)171.8
Symmetry code: (i) x+1, y, z+1.
 

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1560–o1561.  CSD CrossRef IUCr Journals Google Scholar
First citationHwang, D., Hyun, J., Jo, G., Koh, D. & Lim, Y. (2011). Magn. Reson. Chem. 49, 41–45.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLee, H.-J., Lim, Y. & Koh, D. (2012). Acta Cryst. E68, o3403.  CSD CrossRef IUCr Journals Google Scholar
First citationPrasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, S. Y., Ahn, S., Park, M. J., Yoon, H., Kim, M., Ji, S. Y., Koh, D., Lee, Y. H. & Lim, Y. (2012). J. Korean Soc. Appl. Biol. Chem. 55, 669–675.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds