metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m212-m213

Tris(2,2′-bi­pyridine)­copper(II) penta­cyanido­nitro­soferrate(II) methanol disolvate monohydrate

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska St, Kyiv 01601, Ukraine, and bInstitute for Scintillation Materials, "Institute for Single Crystals", National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine
*Correspondence e-mail: kozachuk_o@yahoo.com

(Received 27 February 2013; accepted 12 March 2013; online 16 March 2013)

The title complex [Cu(C10H8N2)3][Fe(CN)5(NO)]·2CH3OH·H2O, consists of discrete [Cu(bpy)3]2+ cations (bpy is 2,2′-bipyridine), [Fe(CN)5NO]2− anions and solvent mol­ecules of crystallization (two methanol mol­ecules and one water mol­ecules per asymmetric unit). The CuII ion adopts a distorted octa­hedral environment, coordinated by six N atoms from three bpy ligands. The cation charge is balanced by a nitro­prusside counter-anion, which has a slightly distorted octa­hedral coordination geometry. In the crystal, anions and solvent mol­ecules are involved in O—H⋯N and O—H⋯O hydrogen bonds, which form chains along [100]. The cations are located between these chains.

Related literature

For background to the direct synthesis of coordination compounds, see: Buvaylo et al. (2005[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976-4978.]); Babich et al. (1996[Babich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727-2731.]); Kovbasyuk et al. (1998[Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735-2738.]); Makhankova et al. (2002[Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253-4259.]); Nesterov et al. (2006[Nesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, A., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605-4607.]); Pryma et al. (2003[Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426-1432.]); Vinogradova et al. (2002[Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248-4252.]). For the structures of related complexes, see: Nikitina et al. (2008[Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426-2430.]); Vreshch et al. (2009a[Vreshch, O. V., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Cormary, B., Malfant, I. & Jezierska, J. (2009a). Z. Anorg. Allg. Chem. 635, 2316-2323.],b[Vreshch, O. V., Nesterova, O. V., Kokozay, V. N., Skelton, B. W., Garcia, C. J. G. & Jezierska, J. (2009b). Inorg. Chem. Commun. 12, 890-894.]); Shyu et al. (1997[Shyu, H. L., Wei, H. H. & Wang, Y. (1997). Inorg. Chim. Acta, 258, 81-86.]); Shyu & Wei (1999[Shyu, H. L. & Wei, H. H. (1999). J. Coord. Chem. 47, 319-330.]); Dong et al. (2003[Dong, W., Si, S.-F., Liao, D.-Z., Jiang, Z.-H. & Yan, A.-P. (2003). J. Coord. Chem. 56, 531-538.]); Wang et al. (2007[Wang, L., Yang, X.-Y. & Huang, W. (2007). Acta Cryst. E63, m835-m836.]); Zhang et al. (2004[Zhang, B.-F., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. & Shen, D.-Z. (2004). Acta Cryst. E60, m1293-m1295.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H8N2)3][Fe(CN)5(NO)]·2CH4O·H2O

  • Mr = 830.15

  • Monoclinic, P 21 /c

  • a = 11.1308 (8) Å

  • b = 14.7928 (9) Å

  • c = 23.1448 (17) Å

  • β = 90.916 (8)°

  • V = 3810.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: numerical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.74, Tmax = 0.91

  • 22593 measured reflections

  • 7368 independent reflections

  • 3799 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.110

  • S = 1.01

  • 7368 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3S—H3SB⋯N9 0.85 2.04 2.870 (5) 165
O3S—H3SA⋯N7i 0.85 2.25 3.058 (5) 158
O1S—H1S⋯N8ii 0.82 2.08 2.831 (5) 151
O2S—H2S⋯O3Siii 0.82 1.96 2.746 (7) 161
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

This work is a continuation of our research in the field of direct synthesis of coordination compounds (Buvaylo et al., 2005; Babich et al., 1996; Kovbasyuk et al., 1998; Makhankova et al., 2002; Nesterov et al., 2006; Pryma et al., 2003; Vinogradova et al., 2002). We have shown recently the possibility of using anionic complexes as a source of metalloligands in direct synthesis of heterometallic compounds (Nikitina et al., 2008; Vreshch et al., 2009a,b).

In this paper we present a novel Cu/Fe heterometallic ionic complex [Cu(bpy)3][Fe(CN)5NO].2CH3OH.H2O which consists of discrete [Cu(bpy)3]2+ and [Fe(CN)5NO]2- ions (Fig. 1). The CuII ion adopts a distorted octahedral environment by coordinating with six nitrogen atoms from three bpy ligands. The range of Cu—N bond distances of 1.999 (3) - 2.035 (3)Å is in good agreement with the previously reported values for analagous complexes (Shyu et al., 1999; Wang et al., 2007). The anion geometry is unremarkable and in good agreement with reported values for other nitroprussides (Shyu et al. 1997; 1999; Dong et al. 2003; Zhang et al., 2004). In the crystal, anions are involved in the formation of O—H···O hydrogen bonds with solvent molecules to form one-dimensional chains along [100] (Fig. 2). The complex cations are located between these chains.

Related literature top

For background to the direct synthesis of coordination compounds, see: Buvaylo et al. (2005); Babich et al. (1996); Kovbasyuk et al. (1998); Makhankova et al. (2002); Nesterov et al. (2006); Pryma et al. (2003); Vinogradova et al. (2002). For the structures of related complexes, see: Nikitina et al. (2008); Vreshch et al., (2009a,b); Shyu et al. (1997); Shyu & Wei (1999); Dong et al. (2003); Wang et al. (2007); Zhang et al. (2004).

Experimental top

Copper powder (0.04 g, 0.63 mmol), NH4HSO4 (0.145 g, 1.26 mmol), Na2[Fe(CN)5(NO)].2H2O (0.188 g, 0.63 mmol) and bpy (0.296 g, 1.89 mmol) in methanol (30 ml) were heated to 323-333K and stirred magnetically until total dissolution of copper was observed (30 min). Dark-red crystals suitable for X-ray crystallography was isolated from the resulting dark-red solution with addition of 2-propanol in six days. The crystals (0.1 g, yield 30%) were filtered off, washed with dry methanol, and finally dried in vacuo at room temperature.

Refinement top

H atoms were included in calculated positions with C—H = 0.93 - 0.96Å and O—H = 0.82 - 0.85Å. They were included in the refinement in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O,Cmethyl).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with cations omitted for clarity to show the one-dimensional hydrogen-bonded (dashed lines) chains formed by the anions and solvent molecules.
Tris(2,2'-bipyridine)copper(II) pentacyanidonitrosoferrate(II) methanol disolvate monohydrate top
Crystal data top
[Cu(C10H8N2)3][Fe(CN)5(NO)]·2CH4O·H2OF(000) = 1708
Mr = 830.15Dx = 1.447 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5205 reflections
a = 11.1308 (8) Åθ = 2.6–32.2°
b = 14.7928 (9) ŵ = 1.00 mm1
c = 23.1448 (17) ÅT = 293 K
β = 90.916 (8)°Block, dark red
V = 3810.4 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
7368 independent reflections
Radiation source: fine-focus sealed tube3799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 26.4°, θmin = 2.8°
Absorption correction: numerical
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1311
Tmin = 0.74, Tmax = 0.91k = 1818
22593 measured reflectionsl = 2824
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.042P)2]
where P = (Fo2 + 2Fc2)/3
7368 reflections(Δ/σ)max = 0.001
496 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Cu(C10H8N2)3][Fe(CN)5(NO)]·2CH4O·H2OV = 3810.4 (5) Å3
Mr = 830.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1308 (8) ŵ = 1.00 mm1
b = 14.7928 (9) ÅT = 293 K
c = 23.1448 (17) Å0.30 × 0.20 × 0.10 mm
β = 90.916 (8)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
7368 independent reflections
Absorption correction: numerical
(CrysAlis PRO; Oxford Diffraction, 2010)
3799 reflections with I > 2σ(I)
Tmin = 0.74, Tmax = 0.91Rint = 0.053
22593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.01Δρmax = 0.59 e Å3
7368 reflectionsΔρmin = 0.63 e Å3
496 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.54777 (5)0.85655 (4)0.08468 (3)0.03893 (16)
Cu10.91414 (4)0.80913 (3)0.32784 (2)0.04640 (16)
N11.0220 (3)0.7802 (2)0.26108 (16)0.0497 (9)
N21.0506 (3)0.8936 (2)0.34517 (16)0.0495 (9)
N30.7880 (3)0.7182 (2)0.30682 (14)0.0382 (8)
N40.9782 (3)0.7012 (2)0.37086 (13)0.0378 (8)
N50.8102 (3)0.8510 (2)0.39425 (14)0.0416 (8)
N60.8275 (3)0.9133 (2)0.29055 (14)0.0372 (8)
N70.2746 (3)0.8839 (2)0.06854 (17)0.0620 (11)
N80.5926 (3)1.0615 (2)0.09581 (18)0.0622 (11)
N90.8113 (4)0.8198 (3)0.11772 (19)0.0731 (12)
N100.5011 (3)0.6536 (3)0.10134 (18)0.0637 (11)
N110.4997 (3)0.8746 (2)0.21488 (17)0.0534 (10)
N120.5814 (3)0.8554 (2)0.01612 (17)0.0492 (9)
C11.0021 (4)0.7186 (3)0.2195 (2)0.0605 (12)
H1A0.92920.68790.21920.073*
C21.0812 (5)0.6988 (3)0.1786 (2)0.0694 (14)
H2A1.06340.65540.15070.083*
C31.1885 (5)0.7432 (4)0.1783 (2)0.0765 (16)
H3A1.24490.73090.15010.092*
C41.2113 (4)0.8055 (4)0.2197 (2)0.0739 (15)
H4A1.28430.83610.22030.089*
C51.1273 (4)0.8241 (3)0.2611 (2)0.0502 (11)
C61.1399 (4)0.8914 (3)0.3066 (2)0.0551 (12)
C7A0.3757 (4)0.8748 (3)0.07377 (18)0.0445 (10)
C71.2363 (5)0.9509 (4)0.3111 (3)0.0795 (16)
H7A1.30020.94700.28580.095*
C8A0.5745 (3)0.9855 (3)0.09130 (19)0.0474 (11)
C81.2348 (5)1.0162 (4)0.3542 (3)0.0928 (19)
H8A1.29701.05800.35720.111*
C9A0.7126 (4)0.8341 (3)0.10677 (19)0.0474 (11)
C91.1436 (5)1.0192 (4)0.3915 (3)0.0841 (17)
H9A1.14161.06310.42030.101*
C10A0.5162 (3)0.7285 (3)0.09489 (19)0.0456 (11)
C101.0541 (4)0.9564 (3)0.3865 (2)0.0634 (13)
H10A0.99250.95760.41310.076*
C11A0.5175 (3)0.8666 (3)0.1664 (2)0.0415 (10)
C110.6953 (4)0.7304 (3)0.2706 (2)0.0497 (11)
H11A0.69080.78420.24990.060*
C120.6073 (4)0.6684 (3)0.2625 (2)0.0546 (12)
H12A0.54420.67940.23670.066*
C130.6126 (4)0.5887 (3)0.2931 (2)0.0586 (13)
H13A0.55210.54570.28910.070*
C140.7075 (4)0.5742 (3)0.32919 (19)0.0499 (11)
H14A0.71300.52070.35010.060*
C150.7955 (3)0.6383 (3)0.33483 (17)0.0409 (10)
C160.9060 (4)0.6278 (3)0.37029 (17)0.0413 (10)
C170.9377 (4)0.5503 (3)0.39901 (19)0.0548 (12)
H17A0.88660.50050.39850.066*
C181.0445 (4)0.5465 (3)0.4283 (2)0.0587 (13)
H18A1.06730.49400.44770.070*
C191.1185 (4)0.6208 (3)0.42895 (19)0.0575 (12)
H19A1.19180.61970.44870.069*
C201.0814 (4)0.6969 (3)0.39965 (18)0.0476 (11)
H20A1.13110.74750.40010.057*
C210.8078 (4)0.8163 (3)0.44769 (18)0.0479 (11)
H21A0.86310.77160.45770.058*
C220.7276 (4)0.8438 (3)0.48790 (19)0.0544 (12)
H22A0.72770.81760.52440.065*
C230.6471 (4)0.9102 (3)0.4740 (2)0.0600 (12)
H23A0.59120.92940.50080.072*
C240.6497 (4)0.9482 (3)0.41990 (19)0.0535 (12)
H24A0.59570.99370.40970.064*
C250.7321 (3)0.9188 (2)0.38118 (18)0.0399 (10)
C260.7462 (3)0.9554 (2)0.32274 (18)0.0383 (9)
C270.6835 (3)1.0305 (3)0.30261 (19)0.0479 (11)
H27A0.62811.05950.32590.058*
C280.7047 (4)1.0611 (3)0.2478 (2)0.0556 (12)
H28A0.66301.11080.23330.067*
C290.7865 (4)1.0186 (3)0.21512 (19)0.0535 (11)
H29A0.80241.03940.17810.064*
C300.8463 (4)0.9441 (3)0.23692 (18)0.0472 (11)
H30A0.90120.91430.21380.057*
O10.6132 (3)0.8586 (3)0.03055 (15)0.0856 (11)
O1S0.3532 (3)0.7337 (3)0.3573 (2)0.1165 (16)
H1S0.35160.69040.37940.175*
C1S0.4416 (5)0.7904 (4)0.3736 (3)0.105 (2)
H1SA0.44240.84160.34820.158*
H1SB0.51730.75950.37200.158*
H1SC0.42820.81040.41250.158*
O2S0.0815 (7)0.8683 (4)0.5202 (3)0.178 (2)
H2S0.05610.82200.53530.267*
C2S0.2053 (8)0.8635 (5)0.5160 (4)0.156 (4)
H2SA0.23490.91750.49820.234*
H2SB0.22620.81210.49300.234*
H2SC0.24050.85730.55400.234*
O3S1.0227 (3)0.8062 (2)0.04880 (15)0.0899 (11)
H3SA1.08270.83650.06130.135*
H3SB0.96900.81290.07420.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0380 (3)0.0344 (3)0.0444 (3)0.0019 (3)0.0002 (3)0.0001 (3)
Cu10.0481 (3)0.0407 (3)0.0504 (3)0.0027 (2)0.0019 (3)0.0039 (3)
N10.045 (2)0.045 (2)0.059 (2)0.0040 (17)0.006 (2)0.008 (2)
N20.049 (2)0.046 (2)0.054 (2)0.0050 (18)0.011 (2)0.014 (2)
N30.0303 (18)0.0397 (18)0.045 (2)0.0001 (15)0.0026 (17)0.0103 (17)
N40.0359 (19)0.0405 (18)0.0371 (18)0.0027 (15)0.0009 (17)0.0014 (17)
N50.044 (2)0.0390 (18)0.041 (2)0.0027 (16)0.0012 (17)0.0017 (18)
N60.0386 (19)0.0361 (17)0.0368 (19)0.0056 (15)0.0055 (17)0.0013 (17)
N70.047 (2)0.065 (2)0.073 (3)0.006 (2)0.008 (2)0.007 (2)
N80.064 (2)0.041 (2)0.081 (3)0.0053 (19)0.002 (2)0.005 (2)
N90.048 (2)0.091 (3)0.081 (3)0.015 (2)0.003 (2)0.016 (3)
N100.070 (3)0.041 (2)0.080 (3)0.004 (2)0.009 (2)0.004 (2)
N110.061 (2)0.051 (2)0.049 (2)0.0053 (18)0.004 (2)0.005 (2)
N120.055 (2)0.0411 (19)0.051 (2)0.0139 (18)0.0027 (19)0.004 (2)
C10.062 (3)0.060 (3)0.060 (3)0.009 (3)0.000 (3)0.002 (3)
C20.086 (4)0.063 (3)0.060 (3)0.010 (3)0.002 (3)0.000 (3)
C30.089 (4)0.077 (4)0.065 (4)0.017 (3)0.023 (3)0.013 (3)
C40.053 (3)0.084 (4)0.085 (4)0.006 (3)0.009 (3)0.028 (4)
C50.035 (2)0.059 (3)0.057 (3)0.001 (2)0.001 (2)0.021 (3)
C60.044 (3)0.052 (3)0.069 (3)0.011 (2)0.010 (3)0.019 (3)
C7A0.051 (3)0.040 (2)0.042 (2)0.000 (2)0.000 (2)0.003 (2)
C70.062 (3)0.087 (4)0.089 (4)0.029 (3)0.011 (3)0.020 (4)
C8A0.042 (2)0.046 (3)0.054 (3)0.000 (2)0.001 (2)0.009 (2)
C80.084 (4)0.078 (4)0.116 (5)0.043 (4)0.024 (4)0.016 (4)
C9A0.051 (3)0.042 (2)0.049 (3)0.000 (2)0.009 (2)0.006 (2)
C90.092 (4)0.068 (3)0.092 (4)0.022 (3)0.020 (4)0.003 (3)
C10A0.039 (2)0.045 (2)0.053 (3)0.006 (2)0.001 (2)0.007 (2)
C100.065 (3)0.054 (3)0.071 (3)0.014 (3)0.009 (3)0.001 (3)
C11A0.031 (2)0.030 (2)0.063 (3)0.0012 (17)0.001 (2)0.004 (2)
C110.043 (3)0.041 (2)0.065 (3)0.004 (2)0.002 (3)0.009 (2)
C120.039 (2)0.054 (3)0.070 (3)0.006 (2)0.012 (2)0.005 (3)
C130.051 (3)0.044 (3)0.080 (4)0.014 (2)0.006 (3)0.005 (3)
C140.051 (3)0.038 (2)0.060 (3)0.004 (2)0.001 (3)0.008 (2)
C150.041 (2)0.037 (2)0.046 (2)0.002 (2)0.008 (2)0.002 (2)
C160.043 (2)0.040 (2)0.041 (2)0.0016 (19)0.006 (2)0.005 (2)
C170.058 (3)0.041 (2)0.065 (3)0.002 (2)0.001 (3)0.012 (2)
C180.066 (3)0.054 (3)0.057 (3)0.019 (3)0.001 (3)0.014 (3)
C190.045 (3)0.080 (3)0.047 (3)0.018 (3)0.001 (2)0.000 (3)
C200.042 (3)0.050 (3)0.050 (3)0.002 (2)0.006 (2)0.001 (2)
C210.055 (3)0.043 (2)0.045 (3)0.005 (2)0.003 (2)0.006 (2)
C220.075 (3)0.045 (3)0.043 (3)0.015 (2)0.002 (3)0.003 (2)
C230.077 (3)0.052 (3)0.052 (3)0.002 (3)0.021 (3)0.006 (3)
C240.059 (3)0.043 (2)0.059 (3)0.004 (2)0.009 (3)0.004 (2)
C250.044 (2)0.033 (2)0.044 (2)0.0062 (19)0.003 (2)0.002 (2)
C260.033 (2)0.035 (2)0.046 (2)0.0043 (18)0.008 (2)0.002 (2)
C270.044 (2)0.043 (2)0.057 (3)0.007 (2)0.003 (2)0.002 (2)
C280.054 (3)0.046 (3)0.066 (3)0.005 (2)0.010 (3)0.013 (3)
C290.060 (3)0.053 (3)0.047 (3)0.004 (2)0.005 (2)0.017 (2)
C300.047 (3)0.050 (3)0.044 (3)0.005 (2)0.003 (2)0.002 (2)
O10.110 (3)0.098 (3)0.050 (2)0.035 (2)0.013 (2)0.014 (2)
O1S0.088 (3)0.082 (3)0.179 (5)0.010 (2)0.029 (3)0.043 (3)
C1S0.088 (4)0.071 (4)0.156 (6)0.005 (3)0.022 (4)0.000 (4)
O2S0.218 (6)0.121 (4)0.195 (6)0.030 (5)0.014 (6)0.055 (4)
C2S0.176 (8)0.128 (6)0.161 (8)0.077 (7)0.073 (7)0.047 (6)
O3S0.079 (2)0.111 (3)0.081 (3)0.002 (2)0.013 (2)0.002 (2)
Geometric parameters (Å, º) top
Fe1—N121.636 (4)C11—C121.353 (5)
Fe1—C9A1.926 (5)C11—H11A0.9300
Fe1—C11A1.932 (5)C12—C131.376 (6)
Fe1—C8A1.936 (4)C12—H12A0.9300
Fe1—C10A1.942 (5)C13—C141.353 (6)
Fe1—C7A1.947 (5)C13—H13A0.9300
Cu1—N31.999 (3)C14—C151.368 (5)
Cu1—N22.002 (3)C14—H14A0.9300
Cu1—N62.006 (3)C15—C161.476 (5)
Cu1—N42.006 (3)C16—C171.370 (5)
Cu1—N12.018 (4)C17—C181.360 (6)
Cu1—N52.035 (3)C17—H17A0.9300
N1—C51.340 (5)C18—C191.374 (6)
N1—C11.341 (5)C18—H18A0.9300
N2—C101.333 (5)C19—C201.374 (6)
N2—C61.347 (5)C19—H19A0.9300
N3—C111.331 (5)C20—H20A0.9300
N3—C151.349 (5)C21—C221.362 (6)
N4—C201.321 (5)C21—H21A0.9300
N4—C161.350 (5)C22—C231.364 (6)
N5—C211.340 (5)C22—H22A0.9300
N5—C251.359 (5)C23—C241.374 (6)
N6—C261.336 (5)C23—H23A0.9300
N6—C301.342 (5)C24—C251.364 (5)
N7—C7A1.138 (5)C24—H24A0.9300
N8—C8A1.147 (5)C25—C261.467 (5)
N9—C9A1.144 (5)C26—C271.389 (5)
N10—C10A1.130 (5)C27—C281.371 (6)
N11—C11A1.149 (5)C27—H27A0.9300
N12—O11.143 (4)C28—C291.349 (6)
C1—C21.337 (6)C28—H28A0.9300
C1—H1A0.9300C29—C301.379 (5)
C2—C31.363 (7)C29—H29A0.9300
C2—H2A0.9300C30—H30A0.9300
C3—C41.351 (7)O1S—C1S1.342 (6)
C3—H3A0.9300O1S—H1S0.8200
C4—C51.377 (6)C1S—H1SA0.9600
C4—H4A0.9300C1S—H1SB0.9600
C5—C61.455 (6)C1S—H1SC0.9602
C6—C71.390 (6)O2S—C2S1.384 (8)
C7—C81.389 (8)O2S—H2S0.8201
C7—H7A0.9300C2S—H2SA0.9599
C8—C91.345 (8)C2S—H2SB0.9601
C8—H8A0.9300C2S—H2SC0.9601
C9—C101.365 (6)O3S—H3SA0.8500
C9—H9A0.9300O3S—H3SB0.8499
C10—H10A0.9300
N12—Fe1—C9A91.36 (17)N2—C10—C9123.3 (5)
N12—Fe1—C11A175.03 (17)N2—C10—H10A118.4
C9A—Fe1—C11A86.19 (17)C9—C10—H10A118.4
N12—Fe1—C8A92.83 (18)N11—C11A—Fe1178.5 (4)
C9A—Fe1—C8A90.23 (16)N3—C11—C12123.1 (4)
C11A—Fe1—C8A82.87 (17)N3—C11—H11A118.4
N12—Fe1—C10A98.79 (18)C12—C11—H11A118.4
C9A—Fe1—C10A88.45 (16)C11—C12—C13119.0 (4)
C11A—Fe1—C10A85.48 (17)C11—C12—H12A120.5
C8A—Fe1—C10A168.33 (19)C13—C12—H12A120.5
N12—Fe1—C7A96.65 (17)C14—C13—C12118.6 (4)
C9A—Fe1—C7A171.75 (17)C14—C13—H13A120.7
C11A—Fe1—C7A85.97 (16)C12—C13—H13A120.7
C8A—Fe1—C7A91.33 (16)C13—C14—C15120.0 (4)
C10A—Fe1—C7A88.39 (16)C13—C14—H14A120.0
N3—Cu1—N2175.02 (14)C15—C14—H14A120.0
N3—Cu1—N694.69 (12)N3—C15—C14121.5 (4)
N2—Cu1—N687.97 (12)N3—C15—C16113.8 (3)
N3—Cu1—N480.07 (13)C14—C15—C16124.7 (4)
N2—Cu1—N497.75 (13)N4—C16—C17121.4 (4)
N6—Cu1—N4171.67 (13)N4—C16—C15114.3 (3)
N3—Cu1—N195.46 (13)C17—C16—C15124.3 (4)
N2—Cu1—N180.02 (15)C18—C17—C16119.5 (4)
N6—Cu1—N196.94 (13)C18—C17—H17A120.2
N4—Cu1—N190.04 (12)C16—C17—H17A120.2
N3—Cu1—N589.03 (13)C17—C18—C19119.4 (4)
N2—Cu1—N595.60 (14)C17—C18—H18A120.3
N6—Cu1—N579.41 (13)C19—C18—H18A120.3
N4—Cu1—N593.94 (13)C18—C19—C20118.4 (4)
N1—Cu1—N5174.46 (13)C18—C19—H19A120.8
C5—N1—C1117.7 (4)C20—C19—H19A120.8
C5—N1—Cu1115.4 (3)N4—C20—C19122.7 (4)
C1—N1—Cu1126.8 (3)N4—C20—H20A118.6
C10—N2—C6118.6 (4)C19—C20—H20A118.6
C10—N2—Cu1126.3 (3)N5—C21—C22122.6 (4)
C6—N2—Cu1114.7 (3)N5—C21—H21A118.7
C11—N3—C15117.6 (3)C22—C21—H21A118.7
C11—N3—Cu1126.6 (3)C21—C22—C23119.3 (4)
C15—N3—Cu1115.8 (3)C21—C22—H22A120.4
C20—N4—C16118.6 (3)C23—C22—H22A120.4
C20—N4—Cu1126.0 (3)C22—C23—C24119.1 (4)
C16—N4—Cu1115.4 (3)C22—C23—H23A120.5
C21—N5—C25117.8 (3)C24—C23—H23A120.5
C21—N5—Cu1126.9 (3)C25—C24—C23119.5 (4)
C25—N5—Cu1115.2 (3)C25—C24—H24A120.2
C26—N6—C30118.3 (3)C23—C24—H24A120.2
C26—N6—Cu1116.3 (3)N5—C25—C24121.6 (4)
C30—N6—Cu1125.3 (3)N5—C25—C26113.6 (3)
O1—N12—Fe1174.4 (4)C24—C25—C26124.8 (4)
C2—C1—N1123.6 (5)N6—C26—C27121.8 (4)
C2—C1—H1A118.2N6—C26—C25115.2 (3)
N1—C1—H1A118.2C27—C26—C25123.0 (4)
C1—C2—C3119.1 (5)C28—C27—C26118.8 (4)
C1—C2—H2A120.5C28—C27—H27A120.6
C3—C2—H2A120.5C26—C27—H27A120.6
C4—C3—C2118.7 (5)C29—C28—C27119.5 (4)
C4—C3—H3A120.7C29—C28—H28A120.2
C2—C3—H3A120.7C27—C28—H28A120.2
C3—C4—C5120.5 (5)C28—C29—C30119.6 (4)
C3—C4—H4A119.7C28—C29—H29A120.2
C5—C4—H4A119.7C30—C29—H29A120.2
N1—C5—C4120.5 (5)N6—C30—C29121.9 (4)
N1—C5—C6113.9 (4)N6—C30—H30A119.0
C4—C5—C6125.6 (5)C29—C30—H30A119.0
N2—C6—C7120.9 (5)C1S—O1S—H1S109.6
N2—C6—C5115.6 (4)O1S—C1S—H1SA109.6
C7—C6—C5123.5 (5)O1S—C1S—H1SB109.4
N7—C7A—Fe1178.1 (4)H1SA—C1S—H1SB109.5
C8—C7—C6118.4 (5)O1S—C1S—H1SC109.4
C8—C7—H7A120.8H1SA—C1S—H1SC109.5
C6—C7—H7A120.8H1SB—C1S—H1SC109.5
N8—C8A—Fe1178.6 (4)C2S—O2S—H2S109.7
C9—C8—C7120.2 (5)O2S—C2S—H2SA109.7
C9—C8—H8A119.9O2S—C2S—H2SB109.3
C7—C8—H8A119.9H2SA—C2S—H2SB109.5
N9—C9A—Fe1177.3 (4)O2S—C2S—H2SC109.4
C8—C9—C10118.7 (6)H2SA—C2S—H2SC109.5
C8—C9—H9A120.7H2SB—C2S—H2SC109.5
C10—C9—H9A120.7H3SA—O3S—H3SB105.2
N10—C10A—Fe1178.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3S—H3SB···N90.852.042.870 (5)165
O3S—H3SA···N7i0.852.253.058 (5)158
O1S—H1S···N8ii0.822.082.831 (5)151
O2S—H2S···O3Siii0.821.962.746 (7)161
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H8N2)3][Fe(CN)5(NO)]·2CH4O·H2O
Mr830.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.1308 (8), 14.7928 (9), 23.1448 (17)
β (°) 90.916 (8)
V3)3810.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionNumerical
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.74, 0.91
No. of measured, independent and
observed [I > 2σ(I)] reflections
22593, 7368, 3799
Rint0.053
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.110, 1.01
No. of reflections7368
No. of parameters496
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.63

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3S—H3SB···N90.852.042.870 (5)165.2
O3S—H3SA···N7i0.852.253.058 (5)158.1
O1S—H1S···N8ii0.822.082.831 (5)151.4
O2S—H2S···O3Siii0.821.962.746 (7)160.6
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x1, y+3/2, z+1/2.
 

References

First citationBabich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727–2731.  CSD CrossRef CAS Web of Science Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978.  Web of Science CSD CrossRef Google Scholar
First citationDong, W., Si, S.-F., Liao, D.-Z., Jiang, Z.-H. & Yan, A.-P. (2003). J. Coord. Chem. 56, 531–538.  Web of Science CSD CrossRef CAS Google Scholar
First citationKovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735–2738.  Web of Science CSD CrossRef Google Scholar
First citationMakhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259.  Web of Science CSD CrossRef Google Scholar
First citationNesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, A., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605–4607.  Web of Science CSD CrossRef Google Scholar
First citationNikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPryma, O. V., Petrusenko, S. R., Kokozay, V. N., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShyu, H. L. & Wei, H. H. (1999). J. Coord. Chem. 47, 319–330.  Web of Science CrossRef CAS Google Scholar
First citationShyu, H. L., Wei, H. H. & Wang, Y. (1997). Inorg. Chim. Acta, 258, 81–86.  CSD CrossRef CAS Web of Science Google Scholar
First citationVinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248–4252.  Web of Science CSD CrossRef Google Scholar
First citationVreshch, O. V., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Cormary, B., Malfant, I. & Jezierska, J. (2009a). Z. Anorg. Allg. Chem. 635, 2316–2323.  Web of Science CSD CrossRef CAS Google Scholar
First citationVreshch, O. V., Nesterova, O. V., Kokozay, V. N., Skelton, B. W., Garcia, C. J. G. & Jezierska, J. (2009b). Inorg. Chem. Commun. 12, 890–894.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, L., Yang, X.-Y. & Huang, W. (2007). Acta Cryst. E63, m835–m836.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B.-F., Xie, C.-Z., Wang, X.-Q., Shen, G.-Q. & Shen, D.-Z. (2004). Acta Cryst. E60, m1293–m1295.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m212-m213
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds