organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Chloro­benzoyl)(4-chloro­phenyl)amino 3-(2-nitro­phenyl)propanoate

aLanzhou Maternal and Child Health Care Hospital, Lanzhou 730000, Gansu Province, People's Republic of China, and bThe Peoples First Hospital of Lanzhou, Lanzhou 730000, Gansu Province, People's Republic of China
*Correspondence e-mail: shaochangjiang1020@126.com

(Received 28 February 2013; accepted 15 March 2013; online 23 March 2013)

In the title hydroxamic acid derivate, C22H16Cl2N2O5, the nitro-substituted benzene ring forms dihedral angles of 14.11 (15) and 16.08 (15)°, with the 4-chloro­benzoyl and 4-chloro­phenyl benzene rings, respectively. The dihedral angle between the chloro-substituted benzene rings is 2.28 (13)°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming chains along [100].

Related literature

For applications of hydroxamic acid derivatives, see: Noh et al. (2009[Noh, E. J., Lim, D. S., Jeong, G. & Lee, J. S. (2009). Biochem. Biophys. Res. Commun. 378, 326-331.]); Zeng et al. (2003[Zeng, W., Zeng, G. Y. & Qin, S. Y. (2003). Chin. J. Org. Chem. 23, 1213-1218.]). For the synthesis, see: Ayyangark et al. (1986[Ayyangark, N. R., Hrailme, C., Kalkotf, U. R. & Srinivasan, K. V. (1986). Synth. Commun. pp. 938-941.]). For related structures, see: Zhang et al. (2012[Zhang, H., Qu, D. & Ma, J. (2012). Acta Cryst. E68, o2904.]); Ma et al. (2012[Ma, J., Ma, Y. & He, D. (2012). Acta Cryst. E68, o3067.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16Cl2N2O5

  • Mr = 459.27

  • Triclinic, [P \overline 1]

  • a = 6.1710 (3) Å

  • b = 12.8881 (7) Å

  • c = 13.3490 (8) Å

  • α = 89.933 (5)°

  • β = 76.959 (5)°

  • γ = 82.114 (4)°

  • V = 1024.03 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 294 K

  • 0.32 × 0.28 × 0.25 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero) Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Aglient Technologies Ltd, Yarnton, England.]) Tmin = 0.757, Tmax = 1.000

  • 7506 measured reflections

  • 4578 independent reflections

  • 3269 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.02

  • 4578 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.40 3.177 (2) 140
C17—H17B⋯O4ii 0.97 2.55 3.515 (3) 171
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Aglient Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Hydroxamic acid derivatives have received considerable attention in recent years as the result of the discovery of their role in the biochemical toxicology of many drugs and other chemicals (Noh et al., 2009; Zeng et al., 2003). We have performed the crystal structure determination of the title hydroxamic acid derivative.

The molecular structure of the title compound is shown in Fig. 1. The nitro-substituted benzene ring (C18-C23) forms dihedral angles of 14.11 (15) and 16.08 (15)°, with the p-chloro (C9-C14) and p-chloro-substituted (C1-C6) benzene rings, respectively. The dihedral angle between the two chloro-substituted benzene rings is 2.28 (13) °. In the crystal, molecules are linked by weak C—H···O hydrogen bonds to form chains along [100]. Closely related structures appear in the literature (Zhang et al., 2012; Ma et al., 2012).

Related literature top

For applications of hydroxamic acid derivatives, see: Noh et al. (2009); Zeng et al. (2003). For the synthesis, see: Ayyangark et al. (1986). For related structures, see: Zhang et al. (2012); Ma et al. (2012).

Experimental top

The title compound (I) was prepared according to the method described by Ayyangark et al. (1986). Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution of (I) in dichloromethane-methanol (1:3 v/v).

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 and 0.97Å and included in a riding-model approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement dllipsoids. H atoms are shown as small spheres of arbitrary radius.
(4-Chlorobenzoyl)(4-chlorophenyl)amino 3-(2-nitrophenyl)propanoate top
Crystal data top
C22H16Cl2N2O5Z = 2
Mr = 459.27F(000) = 472
Triclinic, P1Dx = 1.489 Mg m3
a = 6.1710 (3) ÅMo Kα radiation, λ = 0.7107 Å
b = 12.8881 (7) ÅCell parameters from 2661 reflections
c = 13.3490 (8) Åθ = 3.1–28.4°
α = 89.933 (5)°µ = 0.36 mm1
β = 76.959 (5)°T = 294 K
γ = 82.114 (4)°Block, colourless
V = 1024.03 (10) Å30.32 × 0.28 × 0.25 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero) Eos
diffractometer
4578 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3269 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 16.0733 pixels mm-1θmax = 28.5°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1616
Tmin = 0.757, Tmax = 1.000l = 1714
7506 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.2287P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.17 e Å3
4578 reflectionsΔρmin = 0.28 e Å3
280 parameters
Crystal data top
C22H16Cl2N2O5γ = 82.114 (4)°
Mr = 459.27V = 1024.03 (10) Å3
Triclinic, P1Z = 2
a = 6.1710 (3) ÅMo Kα radiation
b = 12.8881 (7) ŵ = 0.36 mm1
c = 13.3490 (8) ÅT = 294 K
α = 89.933 (5)°0.32 × 0.28 × 0.25 mm
β = 76.959 (5)°
Data collection top
Agilent SuperNova (Dual, Cu at zero) Eos
diffractometer
4578 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3269 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 1.000Rint = 0.021
7506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
4578 reflectionsΔρmin = 0.28 e Å3
280 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18649 (10)0.33888 (6)0.87407 (5)0.0768 (2)
Cl21.31097 (10)0.36534 (5)0.04403 (5)0.0728 (2)
O10.3913 (2)0.46847 (10)0.41480 (11)0.0514 (4)
O20.6701 (2)0.23063 (9)0.47616 (10)0.0446 (3)
O30.4204 (3)0.15481 (12)0.41153 (13)0.0669 (5)
O41.2426 (3)0.06198 (14)0.30600 (14)0.0745 (5)
O51.4243 (3)0.09770 (15)0.14952 (16)0.0870 (6)
N10.5125 (3)0.32286 (12)0.48837 (13)0.0488 (4)
N21.2639 (3)0.05271 (14)0.21312 (17)0.0567 (5)
C10.3969 (3)0.28616 (15)0.66805 (16)0.0467 (5)
H10.54330.25550.66610.056*
C20.2353 (3)0.28899 (16)0.75827 (16)0.0500 (5)
H20.27190.26030.81730.060*
C30.0195 (3)0.33459 (15)0.76041 (15)0.0451 (5)
C40.0374 (3)0.37795 (15)0.67448 (16)0.0485 (5)
H40.18370.40930.67720.058*
C50.1242 (3)0.37473 (15)0.58384 (15)0.0475 (5)
H50.08660.40350.52500.057*
C60.3422 (3)0.32880 (13)0.58035 (14)0.0402 (4)
C70.5349 (3)0.39283 (14)0.41068 (14)0.0408 (4)
C90.9520 (3)0.33060 (15)0.32673 (15)0.0455 (5)
H90.97730.30170.38770.055*
C101.1284 (3)0.32752 (16)0.24154 (16)0.0487 (5)
H101.27190.29690.24500.058*
C111.0896 (3)0.37022 (16)0.15145 (16)0.0475 (5)
C120.8791 (3)0.41665 (16)0.14499 (16)0.0498 (5)
H120.85510.44510.08370.060*
C130.7042 (3)0.42046 (15)0.23050 (15)0.0441 (4)
H130.56210.45290.22680.053*
C140.7361 (3)0.37675 (13)0.32217 (14)0.0390 (4)
C150.5977 (3)0.14812 (15)0.43340 (15)0.0451 (5)
C160.7738 (3)0.05388 (14)0.42254 (16)0.0472 (5)
H16A0.74540.01370.48450.057*
H16B0.91990.07660.41520.057*
C170.7776 (3)0.01623 (15)0.32980 (16)0.0479 (5)
H17A0.86850.08290.33450.057*
H17B0.62600.02960.33140.057*
C180.8705 (3)0.03217 (14)0.22905 (15)0.0429 (4)
C191.0947 (3)0.01729 (15)0.17520 (16)0.0450 (5)
C201.1712 (4)0.06501 (18)0.08326 (18)0.0589 (6)
H201.32210.05220.04980.071*
C211.0231 (5)0.13115 (18)0.04204 (19)0.0665 (6)
H211.07290.16470.01880.080*
C220.8000 (4)0.14722 (17)0.09175 (19)0.0640 (6)
H220.69820.19150.06390.077*
C230.7258 (4)0.09832 (16)0.18248 (18)0.0542 (5)
H230.57350.10980.21390.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0613 (4)0.0970 (5)0.0541 (4)0.0046 (3)0.0148 (3)0.0189 (3)
Cl20.0545 (3)0.0921 (5)0.0570 (4)0.0001 (3)0.0116 (3)0.0122 (3)
O10.0516 (8)0.0480 (8)0.0467 (8)0.0080 (6)0.0041 (7)0.0103 (6)
O20.0459 (7)0.0344 (7)0.0468 (8)0.0041 (5)0.0020 (6)0.0021 (6)
O30.0497 (9)0.0645 (10)0.0839 (12)0.0104 (7)0.0210 (9)0.0156 (9)
O40.0601 (10)0.0904 (13)0.0709 (13)0.0111 (9)0.0239 (9)0.0071 (10)
O50.0570 (10)0.0872 (13)0.0979 (15)0.0279 (9)0.0008 (10)0.0043 (11)
N10.0554 (10)0.0346 (8)0.0430 (9)0.0104 (7)0.0065 (8)0.0069 (7)
N20.0405 (9)0.0541 (10)0.0727 (14)0.0027 (8)0.0128 (9)0.0007 (10)
C10.0417 (10)0.0455 (10)0.0475 (12)0.0044 (8)0.0054 (9)0.0090 (9)
C20.0524 (12)0.0527 (12)0.0411 (11)0.0004 (9)0.0074 (9)0.0115 (9)
C30.0450 (11)0.0441 (10)0.0399 (11)0.0027 (8)0.0009 (9)0.0033 (8)
C40.0391 (10)0.0528 (12)0.0491 (12)0.0025 (9)0.0057 (9)0.0069 (9)
C50.0474 (11)0.0526 (11)0.0400 (11)0.0016 (9)0.0097 (9)0.0079 (9)
C60.0452 (10)0.0339 (9)0.0366 (10)0.0018 (8)0.0013 (8)0.0006 (7)
C70.0464 (10)0.0388 (10)0.0360 (10)0.0029 (8)0.0087 (8)0.0018 (8)
C90.0461 (11)0.0508 (11)0.0412 (11)0.0072 (9)0.0134 (9)0.0090 (9)
C100.0385 (10)0.0549 (12)0.0514 (12)0.0048 (9)0.0084 (9)0.0070 (9)
C110.0426 (10)0.0511 (11)0.0437 (12)0.0063 (9)0.0003 (9)0.0011 (9)
C120.0523 (12)0.0556 (12)0.0385 (11)0.0022 (9)0.0075 (9)0.0092 (9)
C130.0418 (10)0.0475 (11)0.0405 (11)0.0008 (8)0.0076 (9)0.0061 (8)
C140.0425 (10)0.0362 (9)0.0384 (10)0.0066 (8)0.0088 (8)0.0014 (7)
C150.0465 (11)0.0416 (10)0.0408 (11)0.0017 (8)0.0016 (9)0.0032 (8)
C160.0497 (11)0.0379 (10)0.0496 (12)0.0045 (8)0.0086 (9)0.0038 (8)
C170.0442 (10)0.0376 (10)0.0594 (13)0.0014 (8)0.0093 (10)0.0013 (9)
C180.0439 (10)0.0349 (9)0.0497 (12)0.0014 (8)0.0126 (9)0.0057 (8)
C190.0432 (10)0.0400 (10)0.0506 (12)0.0010 (8)0.0120 (9)0.0043 (9)
C200.0560 (13)0.0579 (13)0.0571 (14)0.0051 (11)0.0024 (11)0.0039 (11)
C210.0851 (18)0.0564 (13)0.0553 (15)0.0061 (12)0.0128 (13)0.0077 (11)
C220.0783 (17)0.0532 (13)0.0615 (16)0.0066 (11)0.0276 (14)0.0049 (11)
C230.0488 (11)0.0522 (12)0.0604 (14)0.0063 (9)0.0179 (11)0.0040 (10)
Geometric parameters (Å, º) top
Cl1—C31.7411 (19)C10—C111.378 (3)
Cl2—C111.738 (2)C10—H100.9300
O1—C71.216 (2)C11—C121.374 (3)
O2—C151.379 (2)C12—C131.378 (3)
O2—N11.4131 (18)C12—H120.9300
O3—C151.187 (2)C13—C141.389 (3)
O4—N21.224 (2)C13—H130.9300
O5—N21.225 (2)C15—C161.498 (3)
N1—C71.369 (2)C16—C171.528 (3)
N1—C61.419 (2)C16—H16A0.9700
N2—C191.463 (3)C16—H16B0.9700
C1—C21.376 (3)C17—C181.508 (3)
C1—C61.383 (3)C17—H17A0.9700
C1—H10.9300C17—H17B0.9700
C2—C31.374 (3)C18—C191.395 (3)
C2—H20.9300C18—C231.397 (3)
C3—C41.370 (3)C19—C201.387 (3)
C4—C51.380 (3)C20—C211.370 (3)
C4—H40.9300C20—H200.9300
C5—C61.384 (3)C21—C221.374 (3)
C5—H50.9300C21—H210.9300
C7—C141.500 (3)C22—C231.379 (3)
C9—C101.382 (3)C22—H220.9300
C9—C141.397 (3)C23—H230.9300
C9—H90.9300
C15—O2—N1112.51 (14)C12—C13—C14121.23 (18)
C7—N1—O2117.80 (15)C12—C13—H13119.4
C7—N1—C6127.85 (16)C14—C13—H13119.4
O2—N1—C6114.30 (14)C13—C14—C9118.39 (17)
O4—N2—O5123.0 (2)C13—C14—C7115.43 (16)
O4—N2—C19119.16 (18)C9—C14—C7125.93 (17)
O5—N2—C19117.8 (2)O3—C15—O2122.88 (18)
C2—C1—C6120.22 (18)O3—C15—C16127.89 (19)
C2—C1—H1119.9O2—C15—C16109.23 (16)
C6—C1—H1119.9C15—C16—C17112.10 (17)
C3—C2—C1119.43 (19)C15—C16—H16A109.2
C3—C2—H2120.3C17—C16—H16A109.2
C1—C2—H2120.3C15—C16—H16B109.2
C4—C3—C2121.17 (18)C17—C16—H16B109.2
C4—C3—Cl1118.92 (15)H16A—C16—H16B107.9
C2—C3—Cl1119.91 (16)C18—C17—C16112.42 (15)
C3—C4—C5119.45 (18)C18—C17—H17A109.1
C3—C4—H4120.3C16—C17—H17A109.1
C5—C4—H4120.3C18—C17—H17B109.1
C4—C5—C6120.08 (18)C16—C17—H17B109.1
C4—C5—H5120.0H17A—C17—H17B107.9
C6—C5—H5120.0C19—C18—C23114.77 (19)
C1—C6—C5119.65 (18)C19—C18—C17125.79 (18)
C1—C6—N1118.58 (17)C23—C18—C17119.44 (18)
C5—C6—N1121.76 (17)C20—C19—C18123.28 (19)
O1—C7—N1119.37 (17)C20—C19—N2115.92 (19)
O1—C7—C14120.50 (17)C18—C19—N2120.79 (18)
N1—C7—C14120.13 (16)C21—C20—C19119.6 (2)
C10—C9—C14120.58 (18)C21—C20—H20120.2
C10—C9—H9119.7C19—C20—H20120.2
C14—C9—H9119.7C20—C21—C22119.1 (2)
C11—C10—C9119.39 (18)C20—C21—H21120.4
C11—C10—H10120.3C22—C21—H21120.4
C9—C10—H10120.3C21—C22—C23120.6 (2)
C12—C11—C10121.25 (18)C21—C22—H22119.7
C12—C11—Cl2119.40 (16)C23—C22—H22119.7
C10—C11—Cl2119.35 (16)C22—C23—C18122.5 (2)
C11—C12—C13119.15 (19)C22—C23—H23118.7
C11—C12—H12120.4C18—C23—H23118.7
C13—C12—H12120.4
C15—O2—N1—C792.94 (19)C10—C9—C14—C130.8 (3)
C15—O2—N1—C684.64 (19)C10—C9—C14—C7174.88 (17)
C6—C1—C2—C30.1 (3)O1—C7—C14—C1327.1 (3)
C1—C2—C3—C40.5 (3)N1—C7—C14—C13153.69 (17)
C1—C2—C3—Cl1179.90 (15)O1—C7—C14—C9147.14 (19)
C2—C3—C4—C50.7 (3)N1—C7—C14—C932.1 (3)
Cl1—C3—C4—C5179.79 (15)N1—O2—C15—O31.3 (3)
C3—C4—C5—C60.5 (3)N1—O2—C15—C16179.71 (14)
C2—C1—C6—C50.2 (3)O3—C15—C16—C1732.6 (3)
C2—C1—C6—N1178.98 (17)O2—C15—C16—C17148.51 (16)
C4—C5—C6—C10.1 (3)C15—C16—C17—C1871.5 (2)
C4—C5—C6—N1179.25 (17)C16—C17—C18—C1992.1 (2)
C7—N1—C6—C1148.3 (2)C16—C17—C18—C2387.9 (2)
O2—N1—C6—C134.4 (2)C23—C18—C19—C200.9 (3)
C7—N1—C6—C532.5 (3)C17—C18—C19—C20179.16 (19)
O2—N1—C6—C5144.76 (17)C23—C18—C19—N2178.00 (17)
O2—N1—C7—O1173.77 (16)C17—C18—C19—N22.0 (3)
C6—N1—C7—O13.4 (3)O4—N2—C19—C20149.1 (2)
O2—N1—C7—C147.0 (3)O5—N2—C19—C2029.2 (3)
C6—N1—C7—C14175.80 (17)O4—N2—C19—C1831.9 (3)
C14—C9—C10—C110.2 (3)O5—N2—C19—C18149.7 (2)
C9—C10—C11—C120.6 (3)C18—C19—C20—C210.6 (3)
C9—C10—C11—Cl2179.47 (15)N2—C19—C20—C21179.52 (19)
C10—C11—C12—C130.1 (3)C19—C20—C21—C221.3 (3)
Cl2—C11—C12—C13179.89 (15)C20—C21—C22—C230.6 (3)
C11—C12—C13—C141.1 (3)C21—C22—C23—C181.0 (3)
C12—C13—C14—C91.5 (3)C19—C18—C23—C221.7 (3)
C12—C13—C14—C7176.16 (17)C17—C18—C23—C22178.38 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.403.177 (2)140
C17—H17B···O4ii0.972.553.515 (3)171
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC22H16Cl2N2O5
Mr459.27
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)6.1710 (3), 12.8881 (7), 13.3490 (8)
α, β, γ (°)89.933 (5), 76.959 (5), 82.114 (4)
V3)1024.03 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.32 × 0.28 × 0.25
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero) Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.757, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7506, 4578, 3269
Rint0.021
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.02
No. of reflections4578
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.28

Computer programs: CrysAlis PRO (Agilent, 2011), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.403.177 (2)140
C17—H17B···O4ii0.972.553.515 (3)171
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Fund Projects of Gansu Province (0710RJZA124).

References

First citationAgilent (2011). CrysAlis PRO. Aglient Technologies Ltd, Yarnton, England.  Google Scholar
First citationAyyangark, N. R., Hrailme, C., Kalkotf, U. R. & Srinivasan, K. V. (1986). Synth. Commun. pp. 938–941.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMa, J., Ma, Y. & He, D. (2012). Acta Cryst. E68, o3067.  CSD CrossRef IUCr Journals Google Scholar
First citationNoh, E. J., Lim, D. S., Jeong, G. & Lee, J. S. (2009). Biochem. Biophys. Res. Commun. 378, 326–331.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, W., Zeng, G. Y. & Qin, S. Y. (2003). Chin. J. Org. Chem. 23, 1213–1218.  CAS Google Scholar
First citationZhang, H., Qu, D. & Ma, J. (2012). Acta Cryst. E68, o2904.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds