metal-organic compounds
Chlorido[1-(2-oxidophenyl)ethylidene][tris(3,5-dimethylpyrazol-1-yl)hydroborato]iridium(III) chloroform monosolvate
aInstituto de Investigaciones Químicas (IIQ) and Departamento de Química Inorgánica, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at
In the title compound, [Ir(C15H22BN6)(C8H7O)Cl]·CHCl3, the Ir atom is formally trivalent and is coordinated in a slightly distorted octahedral geometry by three facial N atoms, one C atom, one O atom and one Cl atom. The Ir=Ccarbene bond is strong and short and exerts a notable effect on the trans-Ir—N bond, which is about 0.10 Å longer than the two other Ir—N bonds. The chloroform solvent molecule is anchored via a weak C—H⋯Cl hydrogen bond to the Cl atom of the Ir complex molecule. In the crystal, the constituents adopt a layer-like arrangement parallel to (010) and are held together by weak intermolecular C—H⋯Cl hydrogen bonds, as well as weak Cl⋯Cl [3.498 (2) Å] and Cl⋯π [3.360 (4) Å] interactions. A weak intramolecular C—H⋯O hydrogen bond is also observed.
Related literature
The title compound represents a well crystallizing air-stable chloroform solvate of a mononuclear iridium complex based on the (hydrogen tris(3,5-dimethylpyrazolyl)borate-N,N′,N′′)-iridium moiety Ir[TpMe2]. Its formation from [(TpMe2)Ir(C6H5)2(k1-N2)] (C6H5 = phenyl, N2 = dinitrogen) and ethoxybenzene involved multiple C—C,H,O,Cl bond transformations by the outstanding activity of the Ir[TpMe2] moiety. For general information on C—H and C—C activation, see: Lin & Yamamoto (1999); Dyker (1999); Labinger & Bercaw (2002). For C—H bond activation reactions of by Ir[TpMe2] complexes, see: Lara et al. (2009); Conejero et al. (2010); Santos et al. (2013). For the synthesis of the complex and related crystal structures, see: Gutiérrez-Puebla et al. (1998); Lara et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813007344/lh5594sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813007344/lh5594Isup2.hkl
A solution of 2 (0.030 g, 0.049 mmol; see Fig. 3; for synthesis see Lara et al., 2009) in CHCl3 (3 ml) was stirred at 353K for 4 days. After this time the solvent was removed under reduced pressure. NMR spectra of the crude product revealed the presence of complex 1 in 70% spectroscopic yield. Crystallization from pentane/CH2Cl2/CHCl3 at 253K gave compound 1 as a dark green microcrystalline solid. 1H NMR (CDCl3, 298 K) δ 7.47, 7.28, 7.19, 6.60 (dd, ddd, d, ddd, 1 H each, 3JHH ≈ 8.5, 4JHH ≈1 Hz, 4 CHar), 5.89, 5.88, 5.50 (s, 1 H each, 3 CHpz), 3.07 (s, 3 H, Ir═CCH3), 2.77, 2.49, 2.40, 2.36, 2.32, 1.32 (s, 3 H each, 6 Mepz). 13C{1H} NMR (CDCl3, 25 °C) δ 273.2(Ir═C), 192.5 (Ir—O—C), 154.7, 153.8, 153.3, 152.3, 144.6, 144.2, 144.1 (Ir ═ C-C + Cqpz), 141.0, 124.2, 119.7, 115.7 (CHar), 108.4, 108.3, 108.2 (CHpz), 34.0 (Ir=CCH3), 16.4, 14.1, 13.1, 13.0, 12.4, 12.2 (Mepz). Crystals of 1.CHCl3 for X-ray diffraction were obtained by recrystallization from CHCl3/pentane.
H atoms were placed in calculated positions and thereafter treated as riding, C—H = 0.95–1.00 Å, B—H = 1.00 Å, Uiso(H) = 1.2–1.5Ueq(C,B), using AFIX 137 of program SHELXL97 (Sheldrick, 2008) for the methyl groups.
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).[Ir(C15H22BN6)(C8H7O)Cl]·CHCl3 | F(000) = 1496 |
Mr = 763.35 | Dx = 1.825 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8986 reflections |
a = 10.1271 (4) Å | θ = 2.3–30.0° |
b = 19.1711 (8) Å | µ = 5.22 mm−1 |
c = 14.3154 (6) Å | T = 173 K |
β = 91.956 (2)° | Irregular, dark green |
V = 2777.7 (2) Å3 | 0.32 × 0.15 × 0.10 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 8053 independent reflections |
Radiation source: fine-focus sealed tube | 6999 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω and ϕ scans | θmax = 30.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −14→14 |
Tmin = 0.343, Tmax = 0.593 | k = −26→26 |
52411 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.038P)2 + 4.5744P] where P = (Fo2 + 2Fc2)/3 |
8053 reflections | (Δ/σ)max = 0.001 |
341 parameters | Δρmax = 1.29 e Å−3 |
0 restraints | Δρmin = −1.43 e Å−3 |
[Ir(C15H22BN6)(C8H7O)Cl]·CHCl3 | V = 2777.7 (2) Å3 |
Mr = 763.35 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.1271 (4) Å | µ = 5.22 mm−1 |
b = 19.1711 (8) Å | T = 173 K |
c = 14.3154 (6) Å | 0.32 × 0.15 × 0.10 mm |
β = 91.956 (2)° |
Bruker SMART APEX CCD diffractometer | 8053 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 6999 reflections with I > 2σ(I) |
Tmin = 0.343, Tmax = 0.593 | Rint = 0.037 |
52411 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.02 | Δρmax = 1.29 e Å−3 |
8053 reflections | Δρmin = −1.43 e Å−3 |
341 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ir1 | 0.436291 (10) | 0.157920 (6) | 0.682819 (7) | 0.01911 (4) | |
Cl1 | 0.23334 (8) | 0.20336 (4) | 0.62640 (6) | 0.02847 (15) | |
B1 | 0.6944 (4) | 0.16488 (19) | 0.5669 (3) | 0.0262 (7) | |
H0B | 0.7782 | 0.1680 | 0.5322 | 0.031* | |
N1 | 0.6159 (3) | 0.11309 (14) | 0.71808 (18) | 0.0227 (5) | |
N2 | 0.7168 (3) | 0.12094 (14) | 0.65687 (19) | 0.0247 (5) | |
N3 | 0.5334 (3) | 0.24641 (14) | 0.64204 (18) | 0.0234 (5) | |
N4 | 0.6481 (3) | 0.23785 (15) | 0.59388 (19) | 0.0257 (5) | |
N5 | 0.4663 (3) | 0.11764 (14) | 0.54460 (18) | 0.0225 (5) | |
N6 | 0.5867 (3) | 0.12870 (14) | 0.50605 (18) | 0.0236 (5) | |
O1 | 0.3316 (2) | 0.07061 (11) | 0.72065 (14) | 0.0216 (4) | |
C1 | 0.5825 (4) | 0.0473 (2) | 0.8677 (3) | 0.0357 (8) | |
H1A | 0.5529 | 0.0884 | 0.9018 | 0.054* | |
H1B | 0.6378 | 0.0181 | 0.9095 | 0.054* | |
H1C | 0.5055 | 0.0205 | 0.8451 | 0.054* | |
C2 | 0.6607 (3) | 0.06994 (17) | 0.7866 (2) | 0.0267 (6) | |
C3 | 0.7896 (3) | 0.05026 (19) | 0.7680 (3) | 0.0323 (7) | |
H3 | 0.8448 | 0.0201 | 0.8048 | 0.039* | |
C4 | 0.8217 (3) | 0.08277 (18) | 0.6863 (2) | 0.0281 (7) | |
C5 | 0.9489 (3) | 0.0795 (2) | 0.6354 (3) | 0.0380 (8) | |
H5A | 0.9295 | 0.0740 | 0.5683 | 0.057* | |
H5B | 1.0014 | 0.0397 | 0.6583 | 0.057* | |
H5C | 0.9989 | 0.1227 | 0.6464 | 0.057* | |
C6 | 0.3925 (4) | 0.34615 (18) | 0.6934 (3) | 0.0340 (7) | |
H6A | 0.3425 | 0.3095 | 0.7241 | 0.051* | |
H6B | 0.3359 | 0.3689 | 0.6456 | 0.051* | |
H6C | 0.4224 | 0.3807 | 0.7399 | 0.051* | |
C7 | 0.5096 (4) | 0.31472 (17) | 0.6486 (2) | 0.0277 (6) | |
C8 | 0.6101 (4) | 0.35093 (18) | 0.6050 (3) | 0.0337 (8) | |
H8 | 0.6178 | 0.4001 | 0.5992 | 0.040* | |
C9 | 0.6957 (4) | 0.30165 (18) | 0.5719 (2) | 0.0308 (7) | |
C10 | 0.8185 (4) | 0.3117 (2) | 0.5176 (3) | 0.0454 (10) | |
H10A | 0.8053 | 0.2917 | 0.4550 | 0.068* | |
H10B | 0.8929 | 0.2884 | 0.5501 | 0.068* | |
H10C | 0.8374 | 0.3617 | 0.5124 | 0.068* | |
C11 | 0.2581 (3) | 0.05407 (19) | 0.5004 (3) | 0.0308 (7) | |
H11A | 0.2475 | 0.0463 | 0.5674 | 0.046* | |
H11B | 0.2415 | 0.0104 | 0.4664 | 0.046* | |
H11C | 0.1952 | 0.0897 | 0.4781 | 0.046* | |
C12 | 0.3956 (3) | 0.07824 (16) | 0.4843 (2) | 0.0232 (6) | |
C13 | 0.4714 (4) | 0.06377 (17) | 0.4063 (2) | 0.0280 (6) | |
H13 | 0.4455 | 0.0369 | 0.3530 | 0.034* | |
C14 | 0.5906 (3) | 0.09640 (17) | 0.4225 (2) | 0.0263 (6) | |
C15 | 0.7068 (4) | 0.1003 (2) | 0.3615 (3) | 0.0387 (9) | |
H15A | 0.7034 | 0.0615 | 0.3169 | 0.058* | |
H15B | 0.7884 | 0.0973 | 0.4001 | 0.058* | |
H15C | 0.7049 | 0.1446 | 0.3274 | 0.058* | |
C16 | 0.2741 (3) | 0.08151 (19) | 0.7994 (2) | 0.0280 (6) | |
C17 | 0.1875 (4) | 0.0306 (2) | 0.8350 (3) | 0.0377 (8) | |
H17 | 0.1654 | −0.0100 | 0.7999 | 0.045* | |
C18 | 0.1364 (4) | 0.0413 (3) | 0.9210 (3) | 0.0500 (11) | |
H18 | 0.0767 | 0.0077 | 0.9443 | 0.060* | |
C19 | 0.1686 (4) | 0.1001 (3) | 0.9767 (3) | 0.0493 (11) | |
H19 | 0.1324 | 0.1054 | 1.0366 | 0.059* | |
C20 | 0.2535 (4) | 0.1500 (2) | 0.9430 (3) | 0.0384 (8) | |
H20 | 0.2762 | 0.1896 | 0.9799 | 0.046* | |
C21 | 0.3070 (3) | 0.14175 (19) | 0.8528 (2) | 0.0282 (7) | |
C22 | 0.4044 (3) | 0.18475 (18) | 0.8105 (2) | 0.0263 (6) | |
C23 | 0.4790 (4) | 0.2367 (2) | 0.8696 (3) | 0.0356 (8) | |
H23A | 0.4192 | 0.2741 | 0.8877 | 0.053* | |
H23B | 0.5510 | 0.2563 | 0.8340 | 0.053* | |
H23C | 0.5156 | 0.2136 | 0.9258 | 0.053* | |
C24 | 0.0420 (5) | 0.2910 (2) | 0.7869 (4) | 0.0508 (11) | |
H24 | 0.1171 | 0.2666 | 0.7573 | 0.061* | |
Cl2 | −0.10099 (13) | 0.24331 (7) | 0.76482 (9) | 0.0592 (3) | |
Cl3 | 0.07774 (17) | 0.29868 (9) | 0.90450 (11) | 0.0756 (4) | |
Cl4 | 0.02838 (17) | 0.37582 (8) | 0.73962 (13) | 0.0804 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.01915 (6) | 0.01930 (6) | 0.01887 (6) | −0.00133 (4) | 0.00052 (4) | −0.00196 (4) |
Cl1 | 0.0237 (3) | 0.0308 (4) | 0.0307 (4) | 0.0028 (3) | −0.0012 (3) | −0.0030 (3) |
B1 | 0.0226 (16) | 0.0281 (18) | 0.0280 (17) | −0.0040 (13) | 0.0031 (13) | 0.0005 (14) |
N1 | 0.0205 (12) | 0.0230 (12) | 0.0247 (12) | −0.0017 (10) | 0.0005 (9) | 0.0001 (10) |
N2 | 0.0187 (12) | 0.0266 (13) | 0.0285 (13) | −0.0012 (10) | −0.0002 (10) | 0.0004 (10) |
N3 | 0.0240 (12) | 0.0219 (12) | 0.0245 (12) | −0.0032 (10) | 0.0014 (10) | 0.0012 (10) |
N4 | 0.0244 (13) | 0.0256 (13) | 0.0273 (13) | −0.0041 (10) | 0.0022 (10) | 0.0008 (10) |
N5 | 0.0227 (12) | 0.0223 (12) | 0.0225 (12) | −0.0025 (10) | 0.0020 (9) | −0.0005 (10) |
N6 | 0.0229 (12) | 0.0247 (13) | 0.0234 (12) | 0.0006 (10) | 0.0048 (10) | −0.0001 (10) |
O1 | 0.0229 (10) | 0.0216 (10) | 0.0207 (10) | −0.0041 (8) | 0.0053 (8) | −0.0022 (8) |
C1 | 0.0391 (19) | 0.0357 (19) | 0.0325 (18) | 0.0050 (15) | 0.0022 (14) | 0.0104 (15) |
C2 | 0.0289 (16) | 0.0243 (15) | 0.0264 (15) | 0.0011 (12) | −0.0046 (12) | 0.0003 (12) |
C3 | 0.0267 (16) | 0.0341 (18) | 0.0355 (18) | 0.0043 (13) | −0.0072 (13) | 0.0021 (14) |
C4 | 0.0199 (14) | 0.0273 (16) | 0.0370 (17) | −0.0013 (12) | −0.0032 (12) | −0.0029 (13) |
C5 | 0.0191 (15) | 0.046 (2) | 0.049 (2) | 0.0000 (14) | −0.0007 (14) | −0.0016 (17) |
C6 | 0.046 (2) | 0.0254 (17) | 0.0305 (17) | 0.0046 (14) | −0.0010 (15) | −0.0034 (13) |
C7 | 0.0384 (18) | 0.0210 (14) | 0.0234 (15) | −0.0032 (13) | −0.0034 (12) | −0.0021 (12) |
C8 | 0.048 (2) | 0.0218 (16) | 0.0310 (17) | −0.0099 (14) | −0.0032 (15) | 0.0013 (13) |
C9 | 0.0359 (18) | 0.0272 (16) | 0.0291 (16) | −0.0121 (14) | −0.0015 (13) | 0.0022 (13) |
C10 | 0.044 (2) | 0.042 (2) | 0.051 (2) | −0.0161 (18) | 0.0114 (19) | 0.0053 (19) |
C11 | 0.0297 (16) | 0.0307 (17) | 0.0316 (17) | −0.0065 (13) | −0.0040 (13) | −0.0030 (13) |
C12 | 0.0288 (15) | 0.0188 (13) | 0.0217 (14) | −0.0005 (11) | −0.0032 (11) | 0.0002 (11) |
C13 | 0.0404 (18) | 0.0228 (15) | 0.0208 (14) | 0.0020 (13) | 0.0007 (12) | −0.0010 (11) |
C14 | 0.0353 (17) | 0.0212 (14) | 0.0226 (14) | 0.0042 (12) | 0.0051 (12) | 0.0015 (11) |
C15 | 0.050 (2) | 0.037 (2) | 0.0302 (17) | 0.0049 (17) | 0.0179 (16) | 0.0016 (15) |
C16 | 0.0252 (15) | 0.0328 (17) | 0.0261 (15) | −0.0011 (13) | 0.0027 (12) | 0.0016 (13) |
C17 | 0.0366 (19) | 0.042 (2) | 0.0348 (19) | −0.0111 (16) | 0.0075 (15) | 0.0016 (16) |
C18 | 0.042 (2) | 0.069 (3) | 0.041 (2) | −0.014 (2) | 0.0164 (18) | 0.005 (2) |
C19 | 0.042 (2) | 0.065 (3) | 0.042 (2) | −0.001 (2) | 0.0193 (18) | 0.004 (2) |
C20 | 0.039 (2) | 0.049 (2) | 0.0279 (17) | 0.0034 (17) | 0.0046 (14) | −0.0053 (16) |
C21 | 0.0296 (16) | 0.0322 (17) | 0.0227 (15) | 0.0043 (13) | 0.0003 (12) | −0.0021 (12) |
C22 | 0.0260 (15) | 0.0267 (15) | 0.0261 (15) | 0.0035 (12) | −0.0019 (12) | −0.0018 (12) |
C23 | 0.047 (2) | 0.0311 (18) | 0.0280 (17) | −0.0063 (15) | −0.0033 (15) | −0.0064 (14) |
C24 | 0.044 (2) | 0.038 (2) | 0.070 (3) | 0.0005 (18) | 0.014 (2) | −0.014 (2) |
Cl2 | 0.0559 (7) | 0.0624 (7) | 0.0594 (7) | −0.0145 (6) | 0.0056 (5) | −0.0200 (6) |
Cl3 | 0.0868 (10) | 0.0707 (9) | 0.0678 (9) | −0.0084 (8) | −0.0188 (8) | −0.0070 (7) |
Cl4 | 0.0887 (11) | 0.0508 (8) | 0.1044 (12) | 0.0061 (7) | 0.0424 (9) | 0.0156 (7) |
Ir1—C22 | 1.937 (3) | C8—C9 | 1.377 (6) |
Ir1—N3 | 2.056 (3) | C8—H8 | 0.9500 |
Ir1—N1 | 2.059 (3) | C9—C10 | 1.500 (5) |
Ir1—O1 | 2.063 (2) | C10—H10A | 0.9800 |
Ir1—N5 | 2.155 (3) | C10—H10B | 0.9800 |
Ir1—Cl1 | 2.3500 (8) | C10—H10C | 0.9800 |
B1—N4 | 1.529 (5) | C11—C12 | 1.492 (5) |
B1—N6 | 1.538 (5) | C11—H11A | 0.9800 |
B1—N2 | 1.549 (5) | C11—H11B | 0.9800 |
B1—H0B | 1.0000 | C11—H11C | 0.9800 |
N1—C2 | 1.350 (4) | C12—C13 | 1.405 (4) |
N1—N2 | 1.376 (4) | C13—C14 | 1.373 (5) |
N2—C4 | 1.346 (4) | C13—H13 | 0.9500 |
N3—C7 | 1.336 (4) | C14—C15 | 1.490 (5) |
N3—N4 | 1.380 (4) | C15—H15A | 0.9800 |
N4—C9 | 1.356 (4) | C15—H15B | 0.9800 |
N5—C12 | 1.337 (4) | C15—H15C | 0.9800 |
N5—N6 | 1.372 (3) | C16—C21 | 1.418 (5) |
N6—C14 | 1.348 (4) | C16—C17 | 1.419 (5) |
O1—C16 | 1.303 (4) | C17—C18 | 1.366 (5) |
C1—C2 | 1.492 (5) | C17—H17 | 0.9500 |
C1—H1A | 0.9800 | C18—C19 | 1.414 (7) |
C1—H1B | 0.9800 | C18—H18 | 0.9500 |
C1—H1C | 0.9800 | C19—C20 | 1.383 (6) |
C2—C3 | 1.393 (5) | C19—H19 | 0.9500 |
C3—C4 | 1.374 (5) | C20—C21 | 1.425 (5) |
C3—H3 | 0.9500 | C20—H20 | 0.9500 |
C4—C5 | 1.503 (5) | C21—C22 | 1.435 (5) |
C5—H5A | 0.9800 | C22—C23 | 1.494 (5) |
C5—H5B | 0.9800 | C23—H23A | 0.9800 |
C5—H5C | 0.9800 | C23—H23B | 0.9800 |
C6—C7 | 1.494 (5) | C23—H23C | 0.9800 |
C6—H6A | 0.9800 | C24—Cl3 | 1.716 (6) |
C6—H6B | 0.9800 | C24—Cl2 | 1.732 (5) |
C6—H6C | 0.9800 | C24—Cl4 | 1.765 (5) |
C7—C8 | 1.397 (5) | C24—H24 | 1.0000 |
C22—Ir1—N3 | 98.38 (13) | N3—C7—C6 | 125.0 (3) |
C22—Ir1—N1 | 93.09 (12) | C8—C7—C6 | 126.3 (3) |
N3—Ir1—N1 | 89.24 (10) | C9—C8—C7 | 106.8 (3) |
C22—Ir1—O1 | 82.18 (12) | C9—C8—H8 | 126.6 |
N3—Ir1—O1 | 177.55 (9) | C7—C8—H8 | 126.6 |
N1—Ir1—O1 | 93.12 (9) | N4—C9—C8 | 107.8 (3) |
C22—Ir1—N5 | 174.27 (12) | N4—C9—C10 | 122.9 (3) |
N3—Ir1—N5 | 87.20 (10) | C8—C9—C10 | 129.2 (3) |
N1—Ir1—N5 | 85.68 (10) | C9—C10—H10A | 109.5 |
O1—Ir1—N5 | 92.29 (9) | C9—C10—H10B | 109.5 |
C22—Ir1—Cl1 | 93.09 (10) | H10A—C10—H10B | 109.5 |
N3—Ir1—Cl1 | 91.03 (8) | C9—C10—H10C | 109.5 |
N1—Ir1—Cl1 | 173.71 (8) | H10A—C10—H10C | 109.5 |
O1—Ir1—Cl1 | 86.56 (6) | H10B—C10—H10C | 109.5 |
N5—Ir1—Cl1 | 88.06 (7) | C12—C11—H11A | 109.5 |
N4—B1—N6 | 109.7 (3) | C12—C11—H11B | 109.5 |
N4—B1—N2 | 108.9 (3) | H11A—C11—H11B | 109.5 |
N6—B1—N2 | 107.8 (3) | C12—C11—H11C | 109.5 |
N4—B1—H0B | 110.1 | H11A—C11—H11C | 109.5 |
N6—B1—H0B | 110.1 | H11B—C11—H11C | 109.5 |
N2—B1—H0B | 110.1 | N5—C12—C13 | 109.3 (3) |
C2—N1—N2 | 107.0 (3) | N5—C12—C11 | 123.9 (3) |
C2—N1—Ir1 | 134.9 (2) | C13—C12—C11 | 126.9 (3) |
N2—N1—Ir1 | 117.83 (19) | C14—C13—C12 | 106.1 (3) |
C4—N2—N1 | 109.6 (3) | C14—C13—H13 | 127.0 |
C4—N2—B1 | 130.4 (3) | C12—C13—H13 | 127.0 |
N1—N2—B1 | 119.9 (3) | N6—C14—C13 | 107.9 (3) |
C7—N3—N4 | 108.0 (3) | N6—C14—C15 | 123.0 (3) |
C7—N3—Ir1 | 134.4 (2) | C13—C14—C15 | 129.1 (3) |
N4—N3—Ir1 | 117.6 (2) | C14—C15—H15A | 109.5 |
C9—N4—N3 | 108.7 (3) | C14—C15—H15B | 109.5 |
C9—N4—B1 | 130.7 (3) | H15A—C15—H15B | 109.5 |
N3—N4—B1 | 120.4 (3) | C14—C15—H15C | 109.5 |
C12—N5—N6 | 106.9 (2) | H15A—C15—H15C | 109.5 |
C12—N5—Ir1 | 135.0 (2) | H15B—C15—H15C | 109.5 |
N6—N5—Ir1 | 117.95 (19) | O1—C16—C21 | 119.6 (3) |
C14—N6—N5 | 109.8 (3) | O1—C16—C17 | 120.1 (3) |
C14—N6—B1 | 131.9 (3) | C21—C16—C17 | 120.2 (3) |
N5—N6—B1 | 117.7 (2) | C18—C17—C16 | 118.6 (4) |
C16—O1—Ir1 | 110.2 (2) | C18—C17—H17 | 120.7 |
C2—C1—H1A | 109.5 | C16—C17—H17 | 120.7 |
C2—C1—H1B | 109.5 | C17—C18—C19 | 122.7 (4) |
H1A—C1—H1B | 109.5 | C17—C18—H18 | 118.7 |
C2—C1—H1C | 109.5 | C19—C18—H18 | 118.7 |
H1A—C1—H1C | 109.5 | C20—C19—C18 | 119.3 (4) |
H1B—C1—H1C | 109.5 | C20—C19—H19 | 120.4 |
N1—C2—C3 | 108.7 (3) | C18—C19—H19 | 120.4 |
N1—C2—C1 | 124.7 (3) | C19—C20—C21 | 120.0 (4) |
C3—C2—C1 | 126.5 (3) | C19—C20—H20 | 120.0 |
C4—C3—C2 | 106.9 (3) | C21—C20—H20 | 120.0 |
C4—C3—H3 | 126.6 | C16—C21—C20 | 119.3 (3) |
C2—C3—H3 | 126.6 | C16—C21—C22 | 113.1 (3) |
N2—C4—C3 | 107.9 (3) | C20—C21—C22 | 127.3 (3) |
N2—C4—C5 | 123.4 (3) | C21—C22—C23 | 119.1 (3) |
C3—C4—C5 | 128.7 (3) | C21—C22—Ir1 | 112.6 (2) |
C4—C5—H5A | 109.5 | C23—C22—Ir1 | 127.8 (3) |
C4—C5—H5B | 109.5 | C22—C23—H23A | 109.5 |
H5A—C5—H5B | 109.5 | C22—C23—H23B | 109.5 |
C4—C5—H5C | 109.5 | H23A—C23—H23B | 109.5 |
H5A—C5—H5C | 109.5 | C22—C23—H23C | 109.5 |
H5B—C5—H5C | 109.5 | H23A—C23—H23C | 109.5 |
C7—C6—H6A | 109.5 | H23B—C23—H23C | 109.5 |
C7—C6—H6B | 109.5 | Cl3—C24—Cl2 | 111.8 (3) |
H6A—C6—H6B | 109.5 | Cl3—C24—Cl4 | 108.0 (3) |
C7—C6—H6C | 109.5 | Cl2—C24—Cl4 | 111.2 (3) |
H6A—C6—H6C | 109.5 | Cl3—C24—H24 | 108.6 |
H6B—C6—H6C | 109.5 | Cl2—C24—H24 | 108.6 |
N3—C7—C8 | 108.6 (3) | Cl4—C24—H24 | 108.6 |
C22—Ir1—N1—C2 | 45.2 (3) | C1—C2—C3—C4 | 179.5 (3) |
N3—Ir1—N1—C2 | 143.5 (3) | N1—N2—C4—C3 | −0.6 (4) |
O1—Ir1—N1—C2 | −37.2 (3) | B1—N2—C4—C3 | −176.4 (3) |
N5—Ir1—N1—C2 | −129.2 (3) | N1—N2—C4—C5 | 179.9 (3) |
C22—Ir1—N1—N2 | −142.2 (2) | B1—N2—C4—C5 | 4.2 (5) |
N3—Ir1—N1—N2 | −43.9 (2) | C2—C3—C4—N2 | 0.3 (4) |
O1—Ir1—N1—N2 | 135.5 (2) | C2—C3—C4—C5 | 179.7 (3) |
N5—Ir1—N1—N2 | 43.4 (2) | N4—N3—C7—C8 | −0.4 (4) |
C2—N1—N2—C4 | 0.6 (3) | Ir1—N3—C7—C8 | −178.1 (2) |
Ir1—N1—N2—C4 | −173.9 (2) | N4—N3—C7—C6 | 178.2 (3) |
C2—N1—N2—B1 | 176.9 (3) | Ir1—N3—C7—C6 | 0.5 (5) |
Ir1—N1—N2—B1 | 2.4 (4) | N3—C7—C8—C9 | −0.1 (4) |
N4—B1—N2—C4 | −129.0 (3) | C6—C7—C8—C9 | −178.7 (3) |
N6—B1—N2—C4 | 111.9 (4) | N3—N4—C9—C8 | −0.8 (4) |
N4—B1—N2—N1 | 55.6 (4) | B1—N4—C9—C8 | 173.4 (3) |
N6—B1—N2—N1 | −63.4 (4) | N3—N4—C9—C10 | −178.9 (3) |
C22—Ir1—N3—C7 | −48.8 (3) | B1—N4—C9—C10 | −4.6 (6) |
N1—Ir1—N3—C7 | −141.8 (3) | C7—C8—C9—N4 | 0.6 (4) |
N5—Ir1—N3—C7 | 132.5 (3) | C7—C8—C9—C10 | 178.4 (4) |
Cl1—Ir1—N3—C7 | 44.5 (3) | N6—N5—C12—C13 | 0.1 (3) |
C22—Ir1—N3—N4 | 133.7 (2) | Ir1—N5—C12—C13 | −175.2 (2) |
N1—Ir1—N3—N4 | 40.7 (2) | N6—N5—C12—C11 | 179.6 (3) |
N5—Ir1—N3—N4 | −45.0 (2) | Ir1—N5—C12—C11 | 4.4 (5) |
Cl1—Ir1—N3—N4 | −133.0 (2) | N5—C12—C13—C14 | −0.1 (4) |
C7—N3—N4—C9 | 0.8 (4) | C11—C12—C13—C14 | −179.6 (3) |
Ir1—N3—N4—C9 | 178.9 (2) | N5—N6—C14—C13 | −0.1 (4) |
C7—N3—N4—B1 | −174.2 (3) | B1—N6—C14—C13 | 170.8 (3) |
Ir1—N3—N4—B1 | 4.0 (4) | N5—N6—C14—C15 | 178.1 (3) |
N6—B1—N4—C9 | −115.4 (4) | B1—N6—C14—C15 | −11.1 (5) |
N2—B1—N4—C9 | 126.7 (3) | C12—C13—C14—N6 | 0.1 (4) |
N6—B1—N4—N3 | 58.3 (4) | C12—C13—C14—C15 | −177.9 (3) |
N2—B1—N4—N3 | −59.6 (4) | Ir1—O1—C16—C21 | −10.4 (4) |
N3—Ir1—N5—C12 | −143.5 (3) | Ir1—O1—C16—C17 | 174.7 (3) |
N1—Ir1—N5—C12 | 127.0 (3) | O1—C16—C17—C18 | 175.3 (4) |
O1—Ir1—N5—C12 | 34.1 (3) | C21—C16—C17—C18 | 0.4 (6) |
Cl1—Ir1—N5—C12 | −52.4 (3) | C16—C17—C18—C19 | −1.4 (7) |
N3—Ir1—N5—N6 | 41.6 (2) | C17—C18—C19—C20 | 1.1 (7) |
N1—Ir1—N5—N6 | −47.8 (2) | C18—C19—C20—C21 | 0.3 (7) |
O1—Ir1—N5—N6 | −140.8 (2) | O1—C16—C21—C20 | −174.0 (3) |
Cl1—Ir1—N5—N6 | 132.8 (2) | C17—C16—C21—C20 | 0.9 (5) |
C12—N5—N6—C14 | 0.0 (3) | O1—C16—C21—C22 | 0.0 (5) |
Ir1—N5—N6—C14 | 176.2 (2) | C17—C16—C21—C22 | 174.8 (3) |
C12—N5—N6—B1 | −172.3 (3) | C19—C20—C21—C16 | −1.2 (6) |
Ir1—N5—N6—B1 | 3.9 (3) | C19—C20—C21—C22 | −174.2 (4) |
N4—B1—N6—C14 | 128.6 (3) | C16—C21—C22—C23 | −161.3 (3) |
N2—B1—N6—C14 | −112.9 (4) | C20—C21—C22—C23 | 12.0 (5) |
N4—B1—N6—N5 | −61.1 (4) | C16—C21—C22—Ir1 | 11.4 (4) |
N2—B1—N6—N5 | 57.4 (4) | C20—C21—C22—Ir1 | −175.3 (3) |
C22—Ir1—O1—C16 | 13.0 (2) | N3—Ir1—C22—C21 | 164.6 (2) |
N1—Ir1—O1—C16 | 105.7 (2) | N1—Ir1—C22—C21 | −105.8 (2) |
N5—Ir1—O1—C16 | −168.5 (2) | O1—Ir1—C22—C21 | −13.0 (2) |
Cl1—Ir1—O1—C16 | −80.6 (2) | Cl1—Ir1—C22—C21 | 73.1 (2) |
N2—N1—C2—C3 | −0.4 (4) | N3—Ir1—C22—C23 | −23.6 (3) |
Ir1—N1—C2—C3 | 172.8 (2) | N1—Ir1—C22—C23 | 66.1 (3) |
N2—N1—C2—C1 | −179.9 (3) | O1—Ir1—C22—C23 | 158.9 (3) |
Ir1—N1—C2—C1 | −6.7 (5) | Cl1—Ir1—C22—C23 | −115.1 (3) |
N1—C2—C3—C4 | 0.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C24—H24···Cl1 | 1.00 | 2.55 | 3.488 (5) | 156 |
C11—H11A···O1 | 0.98 | 2.37 | 3.230 (4) | 146 |
C11—H11C···Cl3i | 0.98 | 2.65 | 3.609 (4) | 166 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ir(C15H22BN6)(C8H7O)Cl]·CHCl3 |
Mr | 763.35 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 10.1271 (4), 19.1711 (8), 14.3154 (6) |
β (°) | 91.956 (2) |
V (Å3) | 2777.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.22 |
Crystal size (mm) | 0.32 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.343, 0.593 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 52411, 8053, 6999 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.071, 1.02 |
No. of reflections | 8053 |
No. of parameters | 341 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.29, −1.43 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Ir1—C22 | 1.937 (3) | Ir1—O1 | 2.063 (2) |
Ir1—N3 | 2.056 (3) | Ir1—N5 | 2.155 (3) |
Ir1—N1 | 2.059 (3) | Ir1—Cl1 | 2.3500 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C24—H24···Cl1 | 1.00 | 2.55 | 3.488 (5) | 155.6 |
C11—H11A···O1 | 0.98 | 2.37 | 3.230 (4) | 145.7 |
C11—H11C···Cl3i | 0.98 | 2.65 | 3.609 (4) | 166.0 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Acknowledgements
Financial support (FEDER) from the Spanish Ministry of Science (projects CTQ2010–17476 and Consolider-Ingenio 2010 CSD2007–00006) and the Junta de Andalucía (grant FQM-119 and project P09-FQM-4832) is acknowedged.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Conejero, S., Paneque, M., Poveda, M. L., Santos, L. L. & Carmona, E. (2010). Acc. Chem. Res. 43, 572–580. Web of Science CrossRef CAS PubMed Google Scholar
Dyker, G. (1999). Angew. Chem. Int. Ed. 38, 1698–1712. CrossRef Google Scholar
Gutiérrez-Puebla, E., Monge, A., Nicasio, M. C., Pérez, P. J., Poveda, M. L. & Carmona, E. (1998). Chem. Eur. J. 4, 2225–2236. Google Scholar
Labinger, J. A. & Bercaw, J. E. (2002). Nature, 417, 507–514. Web of Science CrossRef PubMed CAS Google Scholar
Lara, P., Paneque, M., Poveda, M. L., Santos, L. L., Valpuesta, J. E. V., Carmona, E., Moncho, S., Ujaque, G., Lledós, A., Álvarez, E. & Mereiter, K. (2009). Chem. Eur. J. 15, 9034–9045. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lin, Y.-S. & Yamamoto, A. (1999). In Activation of Unreactive Bonds and Organic Synthesis, edited by S. Murai. Berlin: Springer. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Santos, L. L., Mereiter, K. & Paneque, M. (2013). Organometallics, 32, 565–569. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal compounds capable of inducing C—H bond activation and subsequent C—C bond formation have important applications in the synthesis of complex organic molecules from simple, commonly available substrates (Lin & Yamamoto, 1999; Dyker, 1999; Labinger & Bercaw, 2002). Iridium complexes with hydrogen-tris(pyrazolyl)borate as a stabilizing ligand and labile coordination sites have been found to show an outstanding potential at this respect (Conejero et al., 2010). Part of our work in this field has derived from the study of reactions of ethers with reactive Ir complexes coordinated by the hydrogen-tris(3,5-dimethylpyrazolyl)borate ligand (TpMe2) (Lara et al., 2009; Conejero et al., 2010; Santos et al., 2013). When the complex [(TpMe2)Ir(C6H5)2(k1-N2)] (C6H5 = phenyl, N2 = dinitrogen; Gutiérrez-Puebla et al., 1998) and C6H5OCH2CH3 (ethoxybenzene) are heated to 333K in cyclohexane a mixture of three compounds is formed (see reaction scheme Fig. 3). The major reaction product is 2, the precursor of the title complex 1. Compound 2 is a hydride-alkylidene whose formation requires multiple C—H bond activations, C—O bond cleavage and C—C bond formation. The other reaction products are a heteroatom-stabilized hydride-carbene 3 derived from three C—H activations of the organic product, and the minor reaction product 4 (ca 5%), which is the hydride-alkene tautomer of 2. Compound 2 could be prepared independently in nearly quantitative yield (~95%) by the reaction of [(TpMe2)Ir(C6H5)2(k1-N2)] with 2-ethylphenol (Lara et al., 2009). Compound 2 is stable at room temperature but at higher temperatures is in equilibrium with compound 4. On the other hand, if 2 is heated in chloroform at 353K for 4 days, a C—Cl bond activation takes place whereby the hydride is exchanged against a Cl atom under concomitant formation of dichloromethane. The resulting complex 1 (Fig. 3) crystallizes from the excess of CHCl3 under formation of the title compound, an air-stable solvate 1.CHCl3, (I). In 1 the iridium atom exhibits a relatively regular octahedral coordination by three pyrazole nitrogen atoms, the carbene atom C22, the phenolate oxygen O1, and the chloride ligand Cl1 (Fig. 1). The cis bond angles about Ir vary from 82.18 (12)° (C22—Ir1—O1) to 98.38 (13)° (C22—Ir1—N3) and the trans bond angles from 173.11 (8)° to 177.55 (9)° (N3—Ir1—O1). The metal-carbene bond Ir1—C22 = 1.937 (3) Å is characteristically short and in good accord with Ir-carbene bonds of well refined crystal structures in the Cambridge Structural Database (version 5.33; Allen, 2002), which gave a mean value of 1.942 (64) Å for 57 crystal structures with 69 bonds. The Ir—N bonds (Table 1) show a typical elongation of ca 0.1 Å for the bond Ir1—N5 trans to the carbene ligand. The Ir—O and Ir—Cl bonds adopt normal values (Allen et al., 1987). Bond lengths and angles in the TpMe2 ligand compare well with related complexes (e.g.: Lara et al., 2009; Santos et al., 2013). The chelate ring formed by the carbene ligand has a flat envelope conformation with O1—C16—C21—C22 perfectly planar (r.m.s. deviation from planarity 0.0002 Å) and Ir1 displaced from this plane by -0.352 (5) Å whereas the terminal methyl carbon C23 is 0.419 (7) Å off from this plane. The carbene atom C22 has a very flat pyramidal coordination and deviates by -0.064 (4) Å from the plane defined by Ir1, C21, and C23. In the crystal structure the Ir complexes 1 and the CHCl3 molecules are organized in a layer-like fashion parallel to (010) as shown in Fig. 2. Such layers are centered at y ≈ 1/4; and y ≈ 3/4;. The CHCl3 molecule is anchored in the structure via a pronounced C—H···Cl hydrogen bond (C···Cl = 3.360 (4) Å) to the Cl1 atom of the Ir complex (Fig. 1 and Table 2). It is moreover fixed by the interaction C11—H11c···Cl3 [C11(x,1/2 - y,1/2 + z)···Cl3 = 3.608 (4) Å], by the halogen-halogen contact Cl3···Cl1(x,1/2 - y,1/2 + z) = 3.498 (2) Å, and two side-on contacts between the π-orbitals of arene rings and Cl [Cl2 with pyrazole ring 1 and the shortest contact distance Cl2···C4(x - 1,y,z) = 3.360 (4) Å; Cl3 with the phenyl ring and the shortest contact distance Cl3···C20 = 3.396 (4) Å]. These interactions are included in Fig. 2. Interactions between the Ir complexes are unremarkable and consist essentially of van der Waals contacts. The interaction C11—H11a···O3 is intramolecular.