organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-6-methyl­pyridinium 4-hy­dr­oxy­benzoate

aDepartment of Physics, M.A.M. School of Engineering, Siruganur, Tiruchirappalli 621 105, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Anna University, BIT Campus, Tiruchirappalli 620 024, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 6 November 2012; accepted 21 March 2013; online 28 March 2013)

In the title mol­ecular salt, C6H9N2+·C7H5O3, the dihedral angle between the benzene ring and the CO2 group in the anion is 6.1 (2)°. In the crystal, the cation and anion are linked by N—H⋯O and C—H⋯O hydrogen bonds, and the anions are connected by O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For general background to methyl­pyridinium derivatives, see: Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]); Brahadeeswaran et al. (2006[Brahadeeswaran, S., Onduka, S., Takagi, M., Takahashi, Y., Adachi, H., Yoshimura, M., Mori, Y. & Sasaki, T. (2006). J. Cryst. Growth, 292, 441-444.]); Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]); Kvenvolden et al. (1971[Kvenvolden, K. A., Lawless, J. G. & Ponnamperuma, C. (1971). Proc. Natl Acad. Sci. USA, 68, 486-490.]); Tomaru et al. (1991[Tomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Oobara, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583-2585.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H5O3

  • Mr = 246.26

  • Monoclinic, P 21 /c

  • a = 11.9488 (3) Å

  • b = 9.2952 (3) Å

  • c = 12.4067 (3) Å

  • β = 117.116 (2)°

  • V = 1226.51 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.984

  • 11403 measured reflections

  • 3084 independent reflections

  • 2471 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.122

  • S = 1.04

  • 3084 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.00 2.8499 (13) 169
N2—H2A⋯O2i 0.86 1.94 2.7879 (14) 168
N2—H2B⋯O1ii 0.86 2.18 2.9902 (14) 157
O3—H3A⋯O2iii 0.97 (2) 1.67 (2) 2.6281 (14) 168.5 (19)
C4—H4⋯O3iv 0.93 2.51 3.4134 (17) 163
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine heterocycles and their derivatives are present in many large molecules having photo chemical, electro chemical and catalytic applications. Pyridine derivatives possess nonlinear optical (NLO) properties(Tomaru et al., 1991). 4–N,N–dimethylamino–4'–N'–methyl stilbazolium tosylate (DAST) is used in generating and detecting terahertz (THz) frequencies (Brahadeeswaran et al.,2006). Carboxylic acids are believed to have existed in the prebiotic earth (Kvenvolden et al., 1971) and form aggregation patterns. An attempt is made to solve the pyridine based crystal structures to explore the NLO behaviour.

The crystal structure of the title compound (Fig.1) consists of aminomethylpyridinium cation and hydroxybenzoate anion connected via N—H···O & C—H···O hydrogen bonds (Blessing,1986; Brown, 1976). The pyridinium ring is essentially planar, with a maximum deviation of -0.005 (1) Å for atom N1. The dihedral angle between the pyridinium ring in the cation and the benzene ring in the anion is 78.32 (7)°.

In the crystal structure (Fig. 2), the cation and anion are linked by N—H···O and C—H···O hydrogen bonds (Table 1), and the anions are connected by O—H···O hydrogen bonds (Table 1), forming a three–dimensional network.

Related literature top

For general background to methylpyridinium derivatives, see: Blessing (1986); Brahadeeswaran et al. (2006); Brown (1976); Kvenvolden et al. (1971); Tomaru et al. (1991).

Experimental top

Methanol solutions of 2–amino–6–methylpyridine (54 mg) and 4–hydroxybenzoic acid (69 mg) were mixed together and stirred for about 1 h to get a homogeneous mixture. The resulting solution was allowed to evaporate at 303 K slowly in a water bath which has a temperature accuracy of ± 0.01° C at ambient atmosphere. Brownish crystals with developed morphology of title compound were obtained after 15 days.

Refinement top

Especially about N—H & O—H according to RES. H atoms were positioned geometrically (N—H = 0.85–0.90 Å, O—H = 0.95–0.97 and C—H = 0.93–0.98Å) and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N—H···O, C—H···O and O—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen–bonding were omitted for clarity. [Symmetry code: (i) - x + 1, - y + 2, - z + 1; (ii) - x + 1 , y - 1/2, - z + 1/2; (iii) - x + 2, y - 1/2, - z + 3/2; (iv) - x + 2, - y + 1, - z + 1; (v) - x + 1, - y + 2, - z + 1; (vi) - x + 1, y + 1/2, - z + 1/2; (vii) - x + 2, y + 1/2, - z + 3/2.]
2-Amino-6-methylpyridinium 4-hydroxybenzoate top
Crystal data top
C6H9N2+·C7H5O3F(000) = 520
Mr = 246.26Dx = 1.334 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2671 reflections
a = 11.9488 (3) Åθ = 1.9–28.4°
b = 9.2952 (3) ŵ = 0.10 mm1
c = 12.4067 (3) ÅT = 293 K
β = 117.116 (2)°Block, white crystalline
V = 1226.51 (6) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3084 independent reflections
Radiation source: fine-focus sealed tube2471 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1615
Tmin = 0.981, Tmax = 0.984k = 1012
11403 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.2532P]
where P = (Fo2 + 2Fc2)/3
3084 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C6H9N2+·C7H5O3V = 1226.51 (6) Å3
Mr = 246.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9488 (3) ŵ = 0.10 mm1
b = 9.2952 (3) ÅT = 293 K
c = 12.4067 (3) Å0.20 × 0.18 × 0.17 mm
β = 117.116 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3084 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2471 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.023
11403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
3084 reflectionsΔρmin = 0.20 e Å3
168 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.63520 (11)0.65353 (14)0.57200 (11)0.0399 (3)
C30.72343 (13)0.56067 (17)0.57177 (14)0.0528 (3)
H30.79470.53930.64340.063*
C40.70557 (14)0.49803 (16)0.46291 (15)0.0562 (4)
H40.76520.43420.46230.067*
C50.60208 (14)0.52912 (14)0.35780 (13)0.0486 (3)
H50.59120.48680.28570.058*
C60.51139 (12)0.62547 (13)0.35806 (11)0.0384 (3)
C70.64299 (12)0.72809 (17)0.68095 (12)0.0490 (3)
H7A0.57760.69340.69880.074*
H7B0.63310.82980.66600.074*
H7C0.72340.70940.74850.074*
C80.81847 (10)0.98339 (13)0.59471 (10)0.0370 (3)
C90.90757 (11)0.92379 (15)0.70239 (11)0.0415 (3)
H90.90700.94890.77470.050*
C100.99711 (12)0.82801 (15)0.70462 (11)0.0433 (3)
H101.05560.78910.77780.052*
C110.99954 (11)0.79001 (15)0.59772 (11)0.0435 (3)
C120.91149 (14)0.84879 (19)0.48968 (12)0.0592 (4)
H120.91240.82420.41750.071*
C130.82247 (13)0.94363 (18)0.48875 (12)0.0542 (4)
H130.76370.98190.41540.065*
C140.72117 (10)1.08629 (13)0.59372 (10)0.0369 (3)
N10.53173 (9)0.68267 (11)0.46589 (8)0.0359 (2)
H10.47630.74050.46740.043*
N20.40790 (11)0.66254 (13)0.26020 (9)0.0482 (3)
H2A0.35550.72160.26610.058*
H2B0.39300.62760.19080.058*
O10.63458 (8)1.12882 (11)0.49535 (8)0.0503 (3)
O20.73063 (8)1.12516 (11)0.69528 (8)0.0474 (2)
O31.08494 (10)0.69729 (13)0.59355 (10)0.0598 (3)
H3A1.145 (2)0.672 (2)0.675 (2)0.089 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0376 (6)0.0431 (7)0.0414 (6)0.0007 (5)0.0200 (5)0.0035 (5)
C30.0437 (7)0.0584 (9)0.0572 (8)0.0125 (6)0.0239 (6)0.0110 (7)
C40.0607 (8)0.0492 (8)0.0751 (10)0.0178 (7)0.0453 (8)0.0095 (7)
C50.0657 (8)0.0392 (7)0.0571 (8)0.0039 (6)0.0422 (7)0.0004 (6)
C60.0463 (6)0.0351 (6)0.0416 (6)0.0035 (5)0.0269 (5)0.0008 (5)
C70.0444 (7)0.0597 (8)0.0395 (6)0.0010 (6)0.0162 (5)0.0015 (6)
C80.0327 (5)0.0395 (6)0.0367 (6)0.0008 (5)0.0140 (5)0.0002 (5)
C90.0417 (6)0.0474 (7)0.0345 (6)0.0047 (5)0.0165 (5)0.0002 (5)
C100.0390 (6)0.0483 (7)0.0358 (6)0.0072 (5)0.0110 (5)0.0041 (5)
C110.0372 (6)0.0472 (7)0.0430 (6)0.0062 (5)0.0156 (5)0.0027 (5)
C120.0563 (8)0.0815 (11)0.0350 (6)0.0240 (8)0.0167 (6)0.0031 (7)
C130.0485 (7)0.0720 (10)0.0339 (6)0.0205 (7)0.0117 (5)0.0031 (6)
C140.0328 (5)0.0392 (6)0.0391 (6)0.0015 (5)0.0168 (5)0.0015 (5)
N10.0373 (5)0.0366 (5)0.0379 (5)0.0027 (4)0.0208 (4)0.0000 (4)
N20.0516 (6)0.0566 (7)0.0380 (5)0.0035 (5)0.0217 (5)0.0052 (5)
O10.0431 (5)0.0630 (6)0.0413 (5)0.0166 (4)0.0162 (4)0.0076 (4)
O20.0415 (5)0.0576 (6)0.0425 (5)0.0060 (4)0.0188 (4)0.0047 (4)
O30.0539 (6)0.0729 (7)0.0498 (6)0.0261 (5)0.0212 (5)0.0006 (5)
Geometric parameters (Å, º) top
C2—N11.3606 (15)C8—C141.5013 (16)
C2—C31.3634 (18)C9—C101.3825 (17)
C2—C71.4837 (18)C9—H90.9300
C3—C41.395 (2)C10—C111.3855 (17)
C3—H30.9300C10—H100.9300
C4—C51.358 (2)C11—O31.3546 (15)
C4—H40.9300C11—C121.3844 (18)
C5—C61.4070 (17)C12—C131.3775 (19)
C5—H50.9300C12—H120.9300
C6—N21.3241 (16)C13—H130.9300
C6—N11.3547 (15)C14—O11.2511 (14)
C7—H7A0.9600C14—O21.2653 (14)
C7—H7B0.9600N1—H10.8600
C7—H7C0.9600N2—H2A0.8600
C8—C131.3873 (17)N2—H2B0.8600
C8—C91.3887 (16)O3—H3A0.97 (2)
N1—C2—C3119.11 (12)C10—C9—H9119.2
N1—C2—C7116.13 (11)C8—C9—H9119.2
C3—C2—C7124.75 (12)C9—C10—C11119.92 (11)
C2—C3—C4119.27 (13)C9—C10—H10120.0
C2—C3—H3120.4C11—C10—H10120.0
C4—C3—H3120.4O3—C11—C12117.87 (12)
C5—C4—C3120.77 (12)O3—C11—C10122.92 (11)
C5—C4—H4119.6C12—C11—C10119.21 (12)
C3—C4—H4119.6C13—C12—C11120.25 (12)
C4—C5—C6119.91 (12)C13—C12—H12119.9
C4—C5—H5120.0C11—C12—H12119.9
C6—C5—H5120.0C12—C13—C8121.50 (12)
N2—C6—N1118.40 (11)C12—C13—H13119.2
N2—C6—C5124.19 (12)C8—C13—H13119.2
N1—C6—C5117.41 (12)O1—C14—O2122.68 (11)
C2—C7—H7A109.5O1—C14—C8120.15 (11)
C2—C7—H7B109.5O2—C14—C8117.16 (10)
H7A—C7—H7B109.5C6—N1—C2123.52 (10)
C2—C7—H7C109.5C6—N1—H1118.2
H7A—C7—H7C109.5C2—N1—H1118.2
H7B—C7—H7C109.5C6—N2—H2A120.0
C13—C8—C9117.58 (11)C6—N2—H2B120.0
C13—C8—C14121.54 (11)H2A—N2—H2B120.0
C9—C8—C14120.88 (11)C11—O3—H3A109.1 (12)
C10—C9—C8121.54 (11)
N1—C2—C3—C40.1 (2)C10—C11—C12—C130.1 (3)
C7—C2—C3—C4179.57 (13)C11—C12—C13—C80.3 (3)
C2—C3—C4—C50.3 (2)C9—C8—C13—C120.1 (2)
C3—C4—C5—C60.0 (2)C14—C8—C13—C12179.76 (14)
C4—C5—C6—N2179.79 (13)C13—C8—C14—O16.19 (19)
C4—C5—C6—N10.64 (19)C9—C8—C14—O1173.41 (12)
C13—C8—C9—C100.1 (2)C13—C8—C14—O2174.60 (12)
C14—C8—C9—C10179.48 (12)C9—C8—C14—O25.80 (18)
C8—C9—C10—C110.3 (2)N2—C6—N1—C2179.31 (11)
C9—C10—C11—O3179.75 (13)C5—C6—N1—C21.10 (17)
C9—C10—C11—C120.1 (2)C3—C2—N1—C60.82 (18)
O3—C11—C12—C13179.97 (15)C7—C2—N1—C6178.85 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.002.8499 (13)169
N2—H2A···O2i0.861.942.7879 (14)168
N2—H2B···O1ii0.862.182.9902 (14)157
O3—H3A···O2iii0.97 (2)1.67 (2)2.6281 (14)168.5 (19)
C4—H4···O3iv0.932.513.4134 (17)163
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+3/2; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H5O3
Mr246.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.9488 (3), 9.2952 (3), 12.4067 (3)
β (°) 117.116 (2)
V3)1226.51 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.981, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
11403, 3084, 2471
Rint0.023
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.04
No. of reflections3084
No. of parameters168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.002.8499 (13)169.2
N2—H2A···O2i0.861.942.7879 (14)167.8
N2—H2B···O1ii0.862.182.9902 (14)157.2
O3—H3A···O2iii0.97 (2)1.67 (2)2.6281 (14)168.5 (19)
C4—H4···O3iv0.932.513.4134 (17)163.3
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+3/2; (iv) x+2, y+1, z+1.
 

Acknowledgements

VK and SB are grateful to the Department of Science and Technology (DST), New Delhi, India, for financial support through grant SR/FTP/PS-53/2007 Dt. 22–08-08.

References

First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrahadeeswaran, S., Onduka, S., Takagi, M., Takahashi, Y., Adachi, H., Yoshimura, M., Mori, Y. & Sasaki, T. (2006). J. Cryst. Growth, 292, 441–444.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKvenvolden, K. A., Lawless, J. G. & Ponnamperuma, C. (1971). Proc. Natl Acad. Sci. USA, 68, 486–490.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomaru, S., Matsumoto, S., Kurihara, T., Suzuki, H., Oobara, N. & Kaino, T. (1991). Appl. Phys. Lett. 58, 2583–2585.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds