organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro­benzyl 2-meth­­oxy­benzoate

aNational Institute of Technology-Karnataka, Department of Chemistry, Surathkal, Mangalore 575 025, India, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 26 February 2013; accepted 4 March 2013; online 9 March 2013)

In the title compound, C15H12Cl2O3, the aromatic rings make a dihedral angle of 10.78 (4)°. In the molecule, there is a short C—H⋯O contact. In the crystal, C—H⋯O contacts connect the mol­ecules into C(7)C(8) chains along the b axis. The shortest inter­centroid distance between two benzoic acid aromatic systems is 3.7416 (8) Å.

Related literature

For pharmacological properties of phenyl benzoates, see: Oxford et al. (2005[Oxford, J. S., Lambkin, R., Gibb, I., Balasingam, S., Chan, C. & Catchpole, A. (2005). Antivir. Chem. Chemother. 16, 129-134.]); Ostergaard (1994[Ostergaard, E. (1994). Acta Odontol. Scand. 52, 335-345.]). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Cl2O3

  • Mr = 311.15

  • Monoclinic, P 21 /c

  • a = 12.1816 (5) Å

  • b = 15.2481 (6) Å

  • c = 7.4207 (4) Å

  • β = 99.299 (2)°

  • V = 1360.25 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 200 K

  • 0.38 × 0.37 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.847, Tmax = 0.982

  • 12933 measured reflections

  • 3379 independent reflections

  • 2868 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.03

  • 3379 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.98 2.59 3.5433 (18) 165
C15—H15⋯O2i 0.95 2.51 3.3945 (15) 154
C16—H16⋯O3 0.95 2.48 3.3989 (15) 163
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

For decades, phenyl benzoate derivatives have found ample application in the identification of organic acids. 2,4-Dichlorobenzyl derivatives show pharmacological activity such as acting as mild antiseptics and showing the ability to kill bacteria and viruses associated with mouth and throat infections (Oxford et al., 2005; Ostergaard 1994). In continuation of our research focused on the crystal structures of medical compounds, the title compound was synthesized.

The molecule is essentially flat. The atom deviating most from the least-squares plane defined by all non-hydrogen atoms is the chlorine atom in para position to the benzyloxy moiety with a deviation of 0.237 (1) Å. The least-squares planes defined by the respective carbon atoms of the aromatic systems intersect at an angle of 10.78 (4) ° (Fig. 1).

In the crystal, intermolecular C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii are observed. These are established between one of the hydrogen atoms of the methoxy group as well as one of the two hydrogen atoms in ortho position to the chlorine atom in para position to the benzyloxy group and chelate the ketonic oxygen atom of the ester moiety. In total, the molecules are connected to chains along the crystallographic b axis. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is C11(7)C11(8) on the unary level. Information about metrical parameters as well as the symmetry of those contacts has been summarized in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 3.7416 (8) Å and is apparent between the benzoic acid moiety and its symmetry-generated equivalent (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For pharmacological properties of phenyl benzoates, see: Oxford et al. (2005); Ostergaard (1994). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

A mixture of 1-(bromomethyl)-2,4-dichlorobenzene (0.1 g, 0.0004 mol), potassium carbonate (0.062 g, 0.00045 mol) and 2-methoxybenzoic acid (0.068 g, 0.00045 mol) in dimethylformamide (5 ml) was stirred at 60 °C for 2 h. After completion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered, washed with water and recrystallized from ethanol (yield: 0.120 g, 93.0%).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms and C–H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density with U(H) set to 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 0 1]. Symmetry operators: i -x + 1, y + 1/2, -z + 1/2; ii -x + 1, y - 1/2, -z + 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
2,4-Dichlorobenzyl 2-methoxybenzoate top
Crystal data top
C15H12Cl2O3F(000) = 640
Mr = 311.15Dx = 1.519 Mg m3
Monoclinic, P21/cMelting point = 376–374 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.1816 (5) ÅCell parameters from 6565 reflections
b = 15.2481 (6) Åθ = 2.7–28.3°
c = 7.4207 (4) ŵ = 0.48 mm1
β = 99.299 (2)°T = 200 K
V = 1360.25 (11) Å3Block, colourless
Z = 40.38 × 0.37 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
3379 independent reflections
Radiation source: fine-focus sealed tube2868 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.847, Tmax = 0.982k = 2020
12933 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.3593P]
where P = (Fo2 + 2Fc2)/3
3379 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H12Cl2O3V = 1360.25 (11) Å3
Mr = 311.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1816 (5) ŵ = 0.48 mm1
b = 15.2481 (6) ÅT = 200 K
c = 7.4207 (4) Å0.38 × 0.37 × 0.15 mm
β = 99.299 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3379 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2868 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.982Rint = 0.015
12933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
3379 reflectionsΔρmin = 0.23 e Å3
182 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.83729 (2)0.13621 (2)0.22173 (5)0.03453 (10)
Cl20.93726 (3)0.47791 (2)0.20393 (6)0.05086 (12)
O10.50796 (7)0.23368 (5)0.32072 (13)0.0302 (2)
O20.42680 (8)0.10301 (6)0.32410 (15)0.0417 (2)
O30.39479 (7)0.37220 (5)0.34997 (14)0.0354 (2)
C10.60253 (9)0.19251 (7)0.26253 (17)0.0260 (2)
H1A0.58020.16290.14350.031*
H1B0.63540.14830.35320.031*
C20.42351 (9)0.18141 (7)0.34359 (16)0.0250 (2)
C30.37406 (13)0.46402 (9)0.3289 (2)0.0465 (4)
H3A0.43630.49200.28230.070*
H3B0.36640.48960.44730.070*
H3C0.30530.47350.24250.070*
C110.68490 (9)0.26426 (7)0.24577 (15)0.0234 (2)
C120.79427 (9)0.24488 (7)0.22730 (16)0.0244 (2)
C130.87222 (10)0.30935 (8)0.21331 (17)0.0291 (3)
H130.94640.29450.20120.035*
C140.83948 (10)0.39622 (8)0.21735 (17)0.0303 (3)
C150.73151 (10)0.41879 (8)0.23178 (18)0.0306 (3)
H150.70970.47860.23190.037*
C160.65539 (10)0.35254 (8)0.24611 (17)0.0274 (2)
H160.58100.36780.25640.033*
C210.32638 (9)0.22915 (7)0.39497 (16)0.0249 (2)
C220.31284 (9)0.32091 (8)0.39762 (16)0.0268 (2)
C230.21596 (10)0.35594 (9)0.44706 (18)0.0327 (3)
H230.20660.41770.45050.039*
C240.13359 (10)0.30135 (10)0.49094 (18)0.0355 (3)
H240.06860.32600.52610.043*
C250.14469 (10)0.21127 (10)0.48428 (18)0.0351 (3)
H250.08700.17400.51130.042*
C260.24091 (10)0.17634 (8)0.43777 (17)0.0296 (3)
H260.24910.11440.43490.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02915 (16)0.02768 (16)0.0483 (2)0.00585 (11)0.01086 (13)0.00228 (12)
Cl20.03554 (19)0.03606 (19)0.0846 (3)0.00991 (14)0.02065 (18)0.00427 (17)
O10.0219 (4)0.0242 (4)0.0472 (5)0.0005 (3)0.0138 (4)0.0033 (3)
O20.0334 (5)0.0234 (4)0.0723 (7)0.0010 (4)0.0204 (5)0.0008 (4)
O30.0301 (4)0.0218 (4)0.0571 (6)0.0015 (3)0.0155 (4)0.0014 (4)
C10.0220 (5)0.0230 (5)0.0345 (6)0.0021 (4)0.0090 (4)0.0009 (5)
C20.0220 (5)0.0251 (5)0.0280 (6)0.0011 (4)0.0040 (4)0.0020 (4)
C30.0460 (8)0.0234 (6)0.0740 (11)0.0030 (6)0.0218 (8)0.0014 (6)
C110.0219 (5)0.0261 (5)0.0227 (5)0.0005 (4)0.0048 (4)0.0003 (4)
C120.0244 (5)0.0259 (5)0.0235 (5)0.0033 (4)0.0052 (4)0.0005 (4)
C130.0218 (5)0.0350 (6)0.0318 (6)0.0008 (5)0.0086 (4)0.0001 (5)
C140.0282 (6)0.0295 (6)0.0347 (6)0.0058 (5)0.0092 (5)0.0012 (5)
C150.0311 (6)0.0252 (6)0.0372 (7)0.0006 (5)0.0102 (5)0.0013 (5)
C160.0231 (5)0.0276 (6)0.0329 (6)0.0023 (4)0.0085 (5)0.0009 (5)
C210.0220 (5)0.0277 (6)0.0250 (6)0.0003 (4)0.0036 (4)0.0007 (4)
C220.0224 (5)0.0291 (6)0.0290 (6)0.0003 (4)0.0044 (4)0.0006 (5)
C230.0274 (6)0.0362 (7)0.0346 (7)0.0064 (5)0.0053 (5)0.0045 (5)
C240.0238 (6)0.0517 (8)0.0318 (6)0.0049 (5)0.0068 (5)0.0059 (6)
C250.0245 (6)0.0493 (8)0.0328 (7)0.0062 (5)0.0089 (5)0.0022 (6)
C260.0271 (6)0.0330 (6)0.0293 (6)0.0041 (5)0.0063 (5)0.0003 (5)
Geometric parameters (Å, º) top
Cl1—C121.7403 (12)C13—C141.3849 (17)
Cl2—C141.7374 (12)C13—H130.9500
O1—C21.3337 (13)C14—C151.3804 (17)
O1—C11.4383 (13)C15—C161.3869 (17)
O2—C21.2057 (15)C15—H150.9500
O3—C221.3592 (14)C16—H160.9500
O3—C31.4267 (15)C21—C261.3929 (16)
C1—C111.5033 (15)C21—C221.4093 (16)
C1—H1A0.9900C22—C231.3973 (16)
C1—H1B0.9900C23—C241.3826 (19)
C2—C211.4902 (16)C23—H230.9500
C3—H3A0.9800C24—C251.382 (2)
C3—H3B0.9800C24—H240.9500
C3—H3C0.9800C25—C261.3811 (17)
C11—C121.3929 (16)C25—H250.9500
C11—C161.3933 (16)C26—H260.9500
C12—C131.3823 (17)
C2—O1—C1116.68 (9)C15—C14—Cl2119.76 (10)
C22—O3—C3117.96 (10)C13—C14—Cl2118.81 (9)
O1—C1—C11106.55 (9)C14—C15—C16118.79 (11)
O1—C1—H1A110.4C14—C15—H15120.6
C11—C1—H1A110.4C16—C15—H15120.6
O1—C1—H1B110.4C15—C16—C11121.85 (11)
C11—C1—H1B110.4C15—C16—H16119.1
H1A—C1—H1B108.6C11—C16—H16119.1
O2—C2—O1122.41 (11)C26—C21—C22118.51 (11)
O2—C2—C21123.93 (11)C26—C21—C2115.44 (10)
O1—C2—C21113.66 (10)C22—C21—C2126.02 (10)
O3—C3—H3A109.5O3—C22—C23122.36 (11)
O3—C3—H3B109.5O3—C22—C21118.37 (10)
H3A—C3—H3B109.5C23—C22—C21119.27 (11)
O3—C3—H3C109.5C24—C23—C22120.50 (12)
H3A—C3—H3C109.5C24—C23—H23119.8
H3B—C3—H3C109.5C22—C23—H23119.8
C12—C11—C16117.15 (11)C25—C24—C23120.74 (12)
C12—C11—C1121.04 (10)C25—C24—H24119.6
C16—C11—C1121.81 (10)C23—C24—H24119.6
C13—C12—C11122.41 (11)C26—C25—C24118.96 (12)
C13—C12—Cl1117.53 (9)C26—C25—H25120.5
C11—C12—Cl1120.05 (9)C24—C25—H25120.5
C12—C13—C14118.35 (11)C25—C26—C21121.99 (12)
C12—C13—H13120.8C25—C26—H26119.0
C14—C13—H13120.8C21—C26—H26119.0
C15—C14—C13121.43 (11)
C2—O1—C1—C11179.67 (10)O2—C2—C21—C266.06 (18)
C1—O1—C2—O22.90 (17)O1—C2—C21—C26173.90 (10)
C1—O1—C2—C21177.14 (10)O2—C2—C21—C22171.70 (12)
O1—C1—C11—C12167.09 (10)O1—C2—C21—C228.34 (16)
O1—C1—C11—C1613.58 (15)C3—O3—C22—C237.76 (18)
C16—C11—C12—C131.25 (18)C3—O3—C22—C21171.63 (12)
C1—C11—C12—C13179.38 (11)C26—C21—C22—O3177.87 (11)
C16—C11—C12—Cl1178.92 (9)C2—C21—C22—O30.17 (18)
C1—C11—C12—Cl10.44 (16)C26—C21—C22—C231.53 (17)
C11—C12—C13—C140.22 (18)C2—C21—C22—C23179.23 (11)
Cl1—C12—C13—C14179.96 (9)O3—C22—C23—C24178.65 (12)
C12—C13—C14—C151.10 (19)C21—C22—C23—C240.73 (18)
C12—C13—C14—Cl2178.88 (9)C22—C23—C24—C250.9 (2)
C13—C14—C15—C161.3 (2)C23—C24—C25—C261.7 (2)
Cl2—C14—C15—C16178.68 (10)C24—C25—C26—C210.90 (19)
C14—C15—C16—C110.19 (19)C22—C21—C26—C250.73 (18)
C12—C11—C16—C151.04 (18)C2—C21—C26—C25178.67 (11)
C1—C11—C16—C15179.60 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.982.593.5433 (18)165
C15—H15···O2i0.952.513.3945 (15)154
C16—H16···O30.952.483.3989 (15)163
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12Cl2O3
Mr311.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.1816 (5), 15.2481 (6), 7.4207 (4)
β (°) 99.299 (2)
V3)1360.25 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.38 × 0.37 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.847, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
12933, 3379, 2868
Rint0.015
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.03
No. of reflections3379
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.982.593.5433 (18)165.0
C15—H15···O2i0.952.513.3945 (15)154.4
C16—H16···O30.952.483.3989 (15)163.1
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

AMI thanks Professor Swapan Bhattacharya, Director of the National Institute of Technology Karnataka, Surathkal, India, for encouragement and for providing research facilities. He also thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOstergaard, E. (1994). Acta Odontol. Scand. 52, 335–345.  CAS PubMed Web of Science Google Scholar
First citationOxford, J. S., Lambkin, R., Gibb, I., Balasingam, S., Chan, C. & Catchpole, A. (2005). Antivir. Chem. Chemother. 16, 129–134.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds