organic compounds
N-(2-Methoxybenzyl)-9-(oxolan-2-yl)-9H-purin-6-amine
aDepartment of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic, and bDepartment of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
*Correspondence e-mail: zdenek.travnicek@upol.cz
The title compound, C17H19N5O2, features an almost planar purine skeleton (r.m.s. deviation = 0.009 Å) substituted by a tetrahydrofuran ring, which adopts an The purine and benzene rings subtend a dihedral angle of 66.70 (3)°. In the crystal, pairs of N—H⋯N hydrogen bonds connect adjacent molecules into inversion dimers. C—H⋯N, C—H⋯O, C—H⋯π and π–π interactions [pyrimidine ring centroid–centroid distance = 3.3909 (1) Å] connect the dimers into a three-dimensional architecture.
Related literature
For an alternative synthetic procedure and the biological activity of benzyl-substituted 6-benzylamino-9-tetrahydropyran-2-yl-9H-purine derivatives, see: Szüčová et al. (2009). For a related structure, see: Štarha et al. (2013).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813007721/ng5319sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813007721/ng5319Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813007721/ng5319Isup3.cml
N-(2-methoxybenzyl)-9-(oxolan-2-yl)-9H-purin-6-amine, a perspective ligand of the transition metal complexes, was synthesized by a modification of the recently reported method (Szüčová et al., 2009). 6-Chloropurine reacted with 2,3-dihydrofurane in a molar ratio of 1:2 for 15 min at laboratory temperature in a minimum volume of ethanol, followed by the addition of CF3COOH (1.30 molar equivalent of 6-chloropurine). The mixture was stirred at laboratory temperature for 24 h and after that it was neutralized by 10% NH4OH, evaporated to dryness, washed by distilled water, methanol and diethyl ether and dried in desiccator over P4O10. The obtained intermediate, i.e. 6-chloro-9-(oxolan-2-yl)-9H-purine interacted with 2-methoxybenzylamine and triethylamine (molar ratio of 1: 1.33: 1.67, respectively) in N,N`-dimethylformamide (90 °C, 150 min). Again, the solvents were partly evaporated and the obtained product was separated by filtration after it was suspended in distilled water. The title compound was washed with distilled water, methanol and diethyl ether and dried (in a desiccator over P4O10). Single-crystals were prepared by recrystallization of the product from ethanol. Analysis calculated for C17H19N5O2: C 62.8, H 5.9, N 21.5%; found: C 62.6, H 6.1, N 21.2%. Elemental analysis (C, H, N) was performed on a Thermo Scientific Flash 2000 CHNO-S Analyzer.
Non-hydrogen atoms were refined anisotropically and hydrogen atoms were located in difference maps and refined using the riding model with C—H = 0.95 (CH), C—H = 0.99 (CH2), C—H = 0.98 (CH3) Å, and N—H = 0.88 Å, with Uiso(H) = 1.2Ueq(CH, CH2, NH) and 1.5Ueq(CH3). The maximum and minimum residual electron density peaks of 0.37 and -0.23 e Å-3 were located 0.81 Å, and 0.72 Å from the H18A, and C17 atoms, respectively.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).C17H19N5O2 | F(000) = 688 |
Mr = 325.37 | Dx = 1.402 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 11022 reflections |
a = 8.87210 (19) Å | θ = 2.9–31.9° |
b = 8.37534 (17) Å | µ = 0.10 mm−1 |
c = 20.7445 (4) Å | T = 110 K |
β = 90.4360 (19)° | Prism, colourless |
V = 1541.42 (6) Å3 | 0.35 × 0.30 × 0.30 mm |
Z = 4 |
Agilent Xcalibur Sapphire2 diffractometer | 2719 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2415 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
Detector resolution: 8.3611 pixels mm-1 | θmax = 25.0°, θmin = 3.1° |
ω scans | h = −9→10 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −9→9 |
Tmin = 0.967, Tmax = 0.972 | l = −23→24 |
12687 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0396P)2 + 0.7716P] where P = (Fo2 + 2Fc2)/3 |
2719 reflections | (Δ/σ)max = 0.001 |
218 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C17H19N5O2 | V = 1541.42 (6) Å3 |
Mr = 325.37 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.87210 (19) Å | µ = 0.10 mm−1 |
b = 8.37534 (17) Å | T = 110 K |
c = 20.7445 (4) Å | 0.35 × 0.30 × 0.30 mm |
β = 90.4360 (19)° |
Agilent Xcalibur Sapphire2 diffractometer | 2719 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2415 reflections with I > 2σ(I) |
Tmin = 0.967, Tmax = 0.972 | Rint = 0.014 |
12687 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.37 e Å−3 |
2719 reflections | Δρmin = −0.23 e Å−3 |
218 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.08392 (13) | 0.72477 (14) | 0.53161 (5) | 0.0216 (3) | |
O1 | 0.39104 (11) | 1.15624 (12) | 0.40650 (5) | 0.0265 (2) | |
O2 | 0.14507 (12) | 0.19144 (12) | 0.72047 (5) | 0.0295 (3) | |
C2 | −0.02259 (15) | 0.65607 (17) | 0.56768 (6) | 0.0214 (3) | |
H2 | −0.1142 | 0.7142 | 0.5709 | 0.026* | |
N3 | −0.01895 (12) | 0.51849 (14) | 0.59968 (5) | 0.0208 (3) | |
C4 | 0.11411 (15) | 0.44422 (16) | 0.59082 (6) | 0.0184 (3) | |
C5 | 0.23360 (15) | 0.49756 (16) | 0.55428 (6) | 0.0188 (3) | |
N6 | 0.32579 (13) | 0.71553 (14) | 0.48978 (6) | 0.0241 (3) | |
H6 | 0.4078 | 0.6597 | 0.4822 | 0.029* | |
C6 | 0.21608 (15) | 0.64750 (16) | 0.52444 (6) | 0.0190 (3) | |
N7 | 0.35162 (13) | 0.38842 (14) | 0.55594 (6) | 0.0241 (3) | |
C8 | 0.30091 (16) | 0.27427 (18) | 0.59319 (7) | 0.0257 (3) | |
H8 | 0.3582 | 0.1818 | 0.6036 | 0.031* | |
N9 | 0.15811 (12) | 0.29976 (14) | 0.61589 (6) | 0.0216 (3) | |
C9 | 0.31619 (17) | 0.87629 (17) | 0.46427 (7) | 0.0247 (3) | |
H9A | 0.3913 | 0.9444 | 0.4867 | 0.030* | |
H9B | 0.2149 | 0.9201 | 0.4733 | 0.030* | |
C10 | 0.34376 (14) | 0.88340 (16) | 0.39253 (7) | 0.0197 (3) | |
C11 | 0.38461 (14) | 1.02956 (17) | 0.36481 (7) | 0.0203 (3) | |
C12 | 0.41548 (16) | 1.03960 (19) | 0.29956 (7) | 0.0257 (3) | |
H12 | 0.4460 | 1.1383 | 0.2812 | 0.031* | |
C13 | 0.40157 (16) | 0.90491 (19) | 0.26119 (7) | 0.0291 (4) | |
H13 | 0.4219 | 0.9119 | 0.2164 | 0.035* | |
C14 | 0.35861 (16) | 0.76098 (19) | 0.28742 (7) | 0.0270 (3) | |
H14 | 0.3484 | 0.6692 | 0.2608 | 0.032* | |
C15 | 0.33028 (15) | 0.75093 (17) | 0.35321 (7) | 0.0228 (3) | |
H15 | 0.3013 | 0.6515 | 0.3713 | 0.027* | |
C16 | 0.42614 (18) | 1.30910 (18) | 0.38005 (8) | 0.0307 (4) | |
H16A | 0.4216 | 1.3901 | 0.4141 | 0.046* | |
H16B | 0.3531 | 1.3354 | 0.3460 | 0.046* | |
H16C | 0.5278 | 1.3067 | 0.3619 | 0.046* | |
C17 | 0.06967 (16) | 0.20020 (17) | 0.66006 (7) | 0.0242 (3) | |
H17 | −0.0313 | 0.2506 | 0.6663 | 0.029* | |
C18 | 0.04761 (17) | 0.02969 (18) | 0.63684 (7) | 0.0278 (3) | |
H18A | 0.0622 | 0.0218 | 0.5897 | 0.033* | |
H18B | −0.0544 | −0.0098 | 0.6475 | 0.033* | |
C19 | 0.16852 (17) | −0.06373 (18) | 0.67324 (7) | 0.0275 (3) | |
H19A | 0.1373 | −0.1757 | 0.6805 | 0.033* | |
H19B | 0.2656 | −0.0625 | 0.6500 | 0.033* | |
C20 | 0.17883 (17) | 0.02796 (18) | 0.73579 (7) | 0.0292 (4) | |
H20A | 0.1055 | −0.0142 | 0.7672 | 0.035* | |
H20B | 0.2814 | 0.0190 | 0.7546 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0222 (6) | 0.0213 (6) | 0.0211 (6) | 0.0008 (5) | 0.0011 (5) | 0.0005 (5) |
O1 | 0.0342 (6) | 0.0177 (5) | 0.0276 (5) | −0.0020 (4) | 0.0020 (4) | 0.0026 (4) |
O2 | 0.0407 (6) | 0.0234 (6) | 0.0245 (5) | 0.0000 (5) | 0.0005 (5) | 0.0013 (4) |
C2 | 0.0208 (7) | 0.0209 (7) | 0.0224 (7) | 0.0018 (6) | 0.0021 (5) | −0.0016 (6) |
N3 | 0.0202 (6) | 0.0216 (6) | 0.0207 (6) | 0.0003 (5) | 0.0022 (5) | −0.0009 (5) |
C4 | 0.0198 (7) | 0.0182 (7) | 0.0171 (6) | −0.0017 (5) | −0.0017 (5) | −0.0016 (5) |
C5 | 0.0191 (7) | 0.0202 (7) | 0.0170 (7) | −0.0011 (5) | 0.0000 (5) | −0.0010 (5) |
N6 | 0.0225 (6) | 0.0234 (6) | 0.0265 (6) | 0.0029 (5) | 0.0064 (5) | 0.0077 (5) |
C6 | 0.0220 (7) | 0.0208 (7) | 0.0142 (6) | −0.0023 (6) | −0.0002 (5) | −0.0015 (5) |
N7 | 0.0204 (6) | 0.0221 (6) | 0.0298 (7) | 0.0009 (5) | 0.0041 (5) | 0.0043 (5) |
C8 | 0.0191 (7) | 0.0223 (8) | 0.0360 (8) | 0.0020 (6) | 0.0042 (6) | 0.0061 (6) |
N9 | 0.0181 (6) | 0.0202 (6) | 0.0266 (6) | −0.0002 (5) | 0.0023 (5) | 0.0046 (5) |
C9 | 0.0286 (8) | 0.0219 (8) | 0.0237 (7) | −0.0017 (6) | 0.0036 (6) | 0.0044 (6) |
C10 | 0.0137 (6) | 0.0223 (7) | 0.0232 (7) | 0.0020 (5) | 0.0012 (5) | 0.0039 (6) |
C11 | 0.0153 (6) | 0.0210 (7) | 0.0246 (7) | 0.0004 (5) | −0.0011 (5) | 0.0018 (6) |
C12 | 0.0228 (7) | 0.0290 (8) | 0.0254 (7) | −0.0026 (6) | 0.0003 (6) | 0.0092 (6) |
C13 | 0.0263 (8) | 0.0407 (9) | 0.0202 (7) | −0.0004 (7) | 0.0012 (6) | 0.0022 (7) |
C14 | 0.0234 (7) | 0.0309 (8) | 0.0267 (8) | 0.0001 (6) | −0.0017 (6) | −0.0049 (6) |
C15 | 0.0166 (7) | 0.0213 (7) | 0.0303 (8) | 0.0003 (5) | −0.0008 (6) | 0.0033 (6) |
C16 | 0.0365 (9) | 0.0194 (8) | 0.0363 (9) | −0.0038 (6) | −0.0038 (7) | 0.0071 (6) |
C17 | 0.0186 (7) | 0.0244 (8) | 0.0296 (8) | −0.0002 (6) | 0.0026 (6) | 0.0041 (6) |
C18 | 0.0262 (8) | 0.0239 (8) | 0.0334 (8) | −0.0044 (6) | −0.0024 (6) | 0.0023 (7) |
C19 | 0.0269 (8) | 0.0207 (8) | 0.0350 (8) | 0.0009 (6) | 0.0006 (6) | 0.0015 (6) |
C20 | 0.0298 (8) | 0.0242 (8) | 0.0334 (8) | 0.0004 (6) | −0.0019 (6) | 0.0043 (7) |
N1—C2 | 1.3396 (18) | C10—C15 | 1.382 (2) |
N1—C6 | 1.3485 (18) | C10—C11 | 1.4014 (19) |
O1—C11 | 1.3698 (17) | C11—C12 | 1.385 (2) |
O1—C16 | 1.4282 (17) | C12—C13 | 1.386 (2) |
O2—C17 | 1.4179 (18) | C12—H12 | 0.9500 |
O2—C20 | 1.4366 (18) | C13—C14 | 1.377 (2) |
C2—N3 | 1.3302 (18) | C13—H13 | 0.9500 |
C2—H2 | 0.9500 | C14—C15 | 1.392 (2) |
N3—C4 | 1.3482 (17) | C14—H14 | 0.9500 |
C4—N9 | 1.3725 (18) | C15—H15 | 0.9500 |
C4—C5 | 1.3821 (19) | C16—H16A | 0.9800 |
C5—N7 | 1.3902 (17) | C16—H16B | 0.9800 |
C5—C6 | 1.4082 (19) | C16—H16C | 0.9800 |
N6—C6 | 1.3414 (17) | C17—C18 | 1.519 (2) |
N6—C9 | 1.4490 (18) | C17—H17 | 1.0000 |
N6—H6 | 0.8800 | C18—C19 | 1.523 (2) |
N7—C8 | 1.3111 (19) | C18—H18A | 0.9900 |
C8—N9 | 1.3716 (18) | C18—H18B | 0.9900 |
C8—H8 | 0.9500 | C19—C20 | 1.510 (2) |
N9—C17 | 1.4701 (18) | C19—H19A | 0.9900 |
C9—C10 | 1.5111 (19) | C19—H19B | 0.9900 |
C9—H9A | 0.9900 | C20—H20A | 0.9900 |
C9—H9B | 0.9900 | C20—H20B | 0.9900 |
C2—N1—C6 | 118.24 (12) | C11—C12—H12 | 120.2 |
C11—O1—C16 | 117.38 (11) | C14—C13—C12 | 120.62 (13) |
C17—O2—C20 | 109.94 (11) | C14—C13—H13 | 119.7 |
N3—C2—N1 | 129.52 (13) | C12—C13—H13 | 119.7 |
N3—C2—H2 | 115.2 | C13—C14—C15 | 119.51 (14) |
N1—C2—H2 | 115.2 | C13—C14—H14 | 120.2 |
C2—N3—C4 | 110.46 (11) | C15—C14—H14 | 120.2 |
N3—C4—N9 | 127.00 (12) | C10—C15—C14 | 120.98 (13) |
N3—C4—C5 | 126.99 (13) | C10—C15—H15 | 119.5 |
N9—C4—C5 | 106.00 (12) | C14—C15—H15 | 119.5 |
C4—C5—N7 | 110.77 (12) | O1—C16—H16A | 109.5 |
C4—C5—C6 | 116.54 (12) | O1—C16—H16B | 109.5 |
N7—C5—C6 | 132.67 (12) | H16A—C16—H16B | 109.5 |
C6—N6—C9 | 123.33 (12) | O1—C16—H16C | 109.5 |
C6—N6—H6 | 118.3 | H16A—C16—H16C | 109.5 |
C9—N6—H6 | 118.3 | H16B—C16—H16C | 109.5 |
N6—C6—N1 | 119.37 (12) | O2—C17—N9 | 109.25 (11) |
N6—C6—C5 | 122.43 (12) | O2—C17—C18 | 106.88 (11) |
N1—C6—C5 | 118.20 (12) | N9—C17—C18 | 113.81 (12) |
C8—N7—C5 | 103.43 (11) | O2—C17—H17 | 108.9 |
N7—C8—N9 | 114.26 (13) | N9—C17—H17 | 108.9 |
N7—C8—H8 | 122.9 | C18—C17—H17 | 108.9 |
N9—C8—H8 | 122.9 | C17—C18—C19 | 103.72 (12) |
C8—N9—C4 | 105.54 (11) | C17—C18—H18A | 111.0 |
C8—N9—C17 | 128.64 (12) | C19—C18—H18A | 111.0 |
C4—N9—C17 | 125.77 (11) | C17—C18—H18B | 111.0 |
N6—C9—C10 | 112.76 (12) | C19—C18—H18B | 111.0 |
N6—C9—H9A | 109.0 | H18A—C18—H18B | 109.0 |
C10—C9—H9A | 109.0 | C20—C19—C18 | 101.68 (12) |
N6—C9—H9B | 109.0 | C20—C19—H19A | 111.4 |
C10—C9—H9B | 109.0 | C18—C19—H19A | 111.4 |
H9A—C9—H9B | 107.8 | C20—C19—H19B | 111.4 |
C15—C10—C11 | 118.73 (12) | C18—C19—H19B | 111.4 |
C15—C10—C9 | 122.39 (12) | H19A—C19—H19B | 109.3 |
C11—C10—C9 | 118.88 (12) | O2—C20—C19 | 106.47 (12) |
O1—C11—C12 | 124.21 (13) | O2—C20—H20A | 110.4 |
O1—C11—C10 | 115.28 (12) | C19—C20—H20A | 110.4 |
C12—C11—C10 | 120.51 (13) | O2—C20—H20B | 110.4 |
C13—C12—C11 | 119.63 (13) | C19—C20—H20B | 110.4 |
C13—C12—H12 | 120.2 | H20A—C20—H20B | 108.6 |
Cg is the centroid of the C10–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6···N7i | 0.88 | 2.32 | 3.145 (2) | 157 |
C8—H8···Cgi | 0.95 | 2.86 | 3.6214 (14) | 138 |
C12—H12···O2ii | 0.95 | 2.60 | 3.459 (2) | 150 |
C13—H13···N3ii | 0.95 | 2.55 | 3.489 (2) | 170 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C17H19N5O2 |
Mr | 325.37 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 110 |
a, b, c (Å) | 8.87210 (19), 8.37534 (17), 20.7445 (4) |
β (°) | 90.4360 (19) |
V (Å3) | 1541.42 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.35 × 0.30 × 0.30 |
Data collection | |
Diffractometer | Agilent Xcalibur Sapphire2 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.967, 0.972 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12687, 2719, 2415 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.087, 1.04 |
No. of reflections | 2719 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.23 |
Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).
Cg is the centroid of the C10–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6···N7i | 0.88 | 2.32 | 3.145 (2) | 157 |
C8—H8···Cgi | 0.95 | 2.86 | 3.6214 (14) | 138 |
C12—H12···O2ii | 0.95 | 2.60 | 3.459 (2) | 150 |
C13—H13···N3ii | 0.95 | 2.55 | 3.489 (2) | 170 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+3/2, z−1/2. |
Acknowledgements
This work was supported by Palacký University (grant No. PrF_2013_015). The authors wish to thank Mr Tomáš Šilha for performing the CHN elemental analysis.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Štarha, P., Popa, I., Dvořák, Z. & Trávníček, Z. (2013). Acta Cryst. E69, o533. CSD CrossRef IUCr Journals Google Scholar
Szüčová, L., Spíchal, L., Doležal, K., Zatloukal, M., Greplová, J., Galuszka, P., Kryštof, V., Voller, J., Popa, I., Massino, F. J., Jørgensen, J. E. & Strnad, M. (2009). Bioorg. Med. Chem. 17, 1938–1947. Web of Science PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The molecule of N-(2-methoxybenzyl)-9-(oxolan-2-yl)-9H-purin-6-amine consists of six-membered pyrimidine and five-membered imidazole rings merged to the essentially planar purine skeleton, which is substituted by 2-methoxybenzylamine and oxolan-2-yl at the C6, and N9 position, respectively (Figure 1). Two N6—H6···N7 hydrogen bonds (Table 1) connect the molecules into the centrosymmetric dimers (Figure 2) with coplanar purine moieties (dihedral angle of 0.00 (3)°). Except for the hydrogen bonds, the C—H···N, C—H···O, C—H···π and π–π interactions (Figure 2) also link the individual molecules within the crystal structure into a three-dimensional architecture. The planar pyrimidine (the most deviated atoms from the LSQ-plane fitted through its atoms: C5, 0.0122 (13) Å) and imidazole (the most deviated atom from the LSQ-plane fitted through its atoms: C8, -0.002 (2) Å) rings of the purine moiety form the dihedral angle of 0.72 (4)°. The planes fitted through the atoms of the purine and benzene rings form the dihedral angle of 66.70 (3)°.