organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o616-o617

9-(2-Hy­dr­oxy-6-oxo­cyclo­hex-1-en-1-yl)-2,3,4,9-tetra­hydro-1H-xanthen-1-one

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and dDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: shaabankamel@yahoo.com_and_akkurt@erciyes.edu.tr

(Received 22 February 2013; accepted 22 March 2013; online 28 March 2013)

In the xanthene ring system in the title compound, C19H18O4, the 4H-pyran ring has a maximum deviation of 0.110 (2) Å from planarity and the cyclo­hexene ring exhibits a puckered conformation [puckering parameters QT = 0.452 (3) Å, θ = 57.0 (4) and φ = 131.7 (4)°]. The cyclo­hexene ring attached to the xanthene system adopts an envelope conformation, with the middle of the three methylene C atoms as the flap atom. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds form infinite chains of R12(6) ring motifs along [100] with the xanthene groups arranged in an alternating zigzag manner.

Related literature

For the bioactivity of xanthene compounds, see: Mohamed et al. (2012a[Mohamed, S. K., Abdelhamid, A. A., Moharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012a). J. Chem. Pharm. Res. 4, 955-965.]); Mo et al. (2010[Mo, Y., Zang, H.-J. & Cheng, B.-W. (2010). Acta Cryst. E66, o2129.]) and for their fluorescence properties, see: Menchen et al. (2003[Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. U. S. (2003). US Patent 6 583 168.]). For similar structures see: Mohamed et al. (2011[Mohamed, S. K., Abdelhamid, A. A., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o850-o851.], 2012b[Mohamed, S. K., Akkurt, M., Abdelhamid, A. A., Fanwick, P. E. & Potgeiter, H. (2012b). Acta Cryst. E68, o1710.]); Kurbanova et al. (2012[Kurbanova, M. M., Gurbanov, A. V., Mahmudov, K. T., Maharramov, A. M. & Ng, S. W. (2012). Acta Cryst. E68, o1606.]); Abdelhamid et al. (2011[Abdelhamid, A. A., Mohamed, S. K., Allahverdiyev, M. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o785.]); Reddy et al. (2009[Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18O4

  • Mr = 310.33

  • Orthorhombic, P n a 21

  • a = 13.4420 (18) Å

  • b = 8.0015 (10) Å

  • c = 14.2416 (18) Å

  • V = 1531.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 130 K

  • 0.37 × 0.24 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.986

  • 13880 measured reflections

  • 1901 independent reflections

  • 1799 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.06

  • 1901 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 1.76 2.582 (2) 164
C5—H5A⋯O1i 0.99 2.42 3.034 (3) 119
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

Due to the great spectroscopic and biological applications of xanthene molecules, they attracted an excessive interest of researchers in different fields of medicinal and applied chemistry. Such derivatives have exhibited fluorescence properties (Menchen et al., 2003) in addition to their fungicidal, bactericidal and anti-inflammatory possessions (Mohamed et al., 2012a; Mo et al., 2010). As part of our on-going study on synthesis of potential biologically active molecules based xanthene core structure compounds, herein we report the synthesis and structural study of the title compound.

The title compound (I) is shown in Fig. 1. In the xanthene ring system (O3/C7–C19) of (I), the 4H-pyran ring (O3/C7/C8/C13/C14/C19) is nearly planar [maximum deviation = 0.110 (2) Å] and the cyclohexene ring (C14–C19) is puckered with the puckering parameters (Cremer & Pople, 1975) of QT = 0.452 (3) Å, θ = 57.0 (4) ° and ϕ = 131.7 (4) °. The cyclohexene ring (C1–C6) attached to the xanthene system adopts an envelope conformation with the puckering parameters of QT = 0.477 (3) Å, θ = 60.5 (2) ° and ϕ = 178.1 (3) °. The bond lengths and bond angles fall within a normal range and are comparable with those of the similar structures previously reported (Mohamed et al., 2012b; Kurbanova et al., 2012; Abdelhamid et al., 2011; Mohamed et al., 2011; Reddy et al., 2009).

Intermolecular O2—H···O1i and C5—H5A···O1i [(i): x - 0.5, -y + 1.5, z; Table 1] hydrogen bonds form infinite chains of R21(6)ring motifs (Bernstein et al., 1995; Fig. 2) along the a axis with xanthen groups in alternating zigzag manner.

Related literature top

For the bioactivity of xanthene compounds, see: Mohamed et al. (2012a); Mo et al. (2010) and for their fluorescence properties, see: Menchen et al. (2003). For similar structures see: Mohamed et al. (2011, 2012b); Kurbanova et al. (2012); Abdelhamid et al. (2011); Reddy et al. (2009). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was obtained as a major product from a three component reaction of 112 mg (1 mmol) cyclohexane-1,3-dione, 112 mg(1 mmol)salicylaldehyde and 137 mg (1 mmol) 1-(3-aminophenyl)ethanol in 50 ml ethanol [the amino alcohol in this reaction has not been reacted instead acted as a Lewis base catalyst]. The reaction mixture was refluxed for 3 h at 350 K, then cooled at room temperature in fume cupboard where the excess solvent was evaporated. The solid that formed was filtered off, washed with cold ethanol and dried under vacuum. On crystallization from ethanol shiny crystals (m.p. 503 K) were collected in an excellent yield (92%). Crystals suitable for X-ray diffraction were grown by slow evaporation method over two days using ethanol solution.

Refinement top

All H atoms were positioned geometrically and refined as riding on their parent atoms with O—H = 0.84 Å, C—H = 0.95–1.00 Å and Uiso(H) = 1.5Ueq(O) for hydroxyl H or 1.2Ueq(C) for other H atoms. The H atom of the hydroxyl group was placed using the rotating group refinement option (AFIX 147). Missing symmetry was checked using ADDSYM feature in PLATON (Spek, 2009). Friedel pairs were merged by using MERG 3 instruction.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The intermolecular hydrogen bonds in (I) indicated as dashed lines along [001]. H-atoms not involved in hydrogen bonding are omitted.
9-(2-Hydroxy-6-oxocyclohex-1-en-1-yl)-2,3,4,9-tetrahydro-1H-xanthen-1-one top
Crystal data top
C19H18O4F(000) = 656
Mr = 310.33Dx = 1.346 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3393 reflections
a = 13.4420 (18) Åθ = 2.9–27.9°
b = 8.0015 (10) ŵ = 0.09 mm1
c = 14.2416 (18) ÅT = 130 K
V = 1531.8 (3) Å3Prism, pale-yellow
Z = 40.37 × 0.24 × 0.15 mm
Data collection top
Bruker SMART APEX
diffractometer
1901 independent reflections
Radiation source: sealed tube1799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 27.9°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1717
Tmin = 0.966, Tmax = 0.986k = 1010
13880 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.3774P]
where P = (Fo2 + 2Fc2)/3
1901 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C19H18O4V = 1531.8 (3) Å3
Mr = 310.33Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.4420 (18) ŵ = 0.09 mm1
b = 8.0015 (10) ÅT = 130 K
c = 14.2416 (18) Å0.37 × 0.24 × 0.15 mm
Data collection top
Bruker SMART APEX
diffractometer
1901 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1799 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.986Rint = 0.032
13880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 0.39 e Å3
1901 reflectionsΔρmin = 0.18 e Å3
209 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28192 (10)0.69820 (18)0.43470 (13)0.0184 (4)
O20.06046 (11)0.61746 (18)0.43776 (14)0.0212 (4)
O30.32497 (11)0.31450 (18)0.43000 (13)0.0201 (4)
O40.06177 (15)0.4417 (3)0.63635 (14)0.0332 (6)
C10.11167 (14)0.6473 (2)0.44797 (16)0.0146 (5)
C20.19662 (15)0.7556 (2)0.44266 (16)0.0148 (5)
C30.18243 (15)0.9436 (2)0.4447 (2)0.0213 (6)
C40.08584 (18)0.9945 (3)0.4923 (2)0.0287 (7)
C50.00064 (16)0.9004 (3)0.4487 (2)0.0282 (7)
C60.01837 (15)0.7154 (2)0.44477 (17)0.0170 (5)
C70.12663 (14)0.4583 (2)0.44760 (16)0.0143 (5)
C80.16996 (17)0.3960 (3)0.35574 (16)0.0169 (6)
C90.1140 (2)0.4019 (3)0.27230 (18)0.0245 (7)
C100.1531 (2)0.3453 (3)0.18896 (19)0.0309 (8)
C110.2489 (3)0.2819 (3)0.18615 (19)0.0337 (8)
C120.3059 (2)0.2744 (3)0.26740 (19)0.0273 (7)
C130.26539 (18)0.3314 (3)0.35123 (17)0.0189 (6)
C140.28205 (18)0.3342 (3)0.51564 (16)0.0175 (6)
C150.35058 (18)0.2726 (3)0.59122 (19)0.0247 (7)
C160.3183 (2)0.3350 (3)0.6870 (2)0.0312 (8)
C170.2073 (2)0.3126 (4)0.70056 (19)0.0329 (9)
C180.14584 (19)0.3913 (3)0.62272 (17)0.0226 (6)
C190.18972 (17)0.3968 (3)0.52852 (15)0.0159 (6)
H20.112200.673700.447700.0320*
H3A0.182700.986800.379600.0260*
H3B0.239000.995300.478500.0260*
H4A0.089600.969200.560200.0340*
H4B0.075501.116300.484900.0340*
H5A0.061600.921600.485900.0340*
H5B0.012200.942700.384300.0340*
H7A0.059400.406000.454600.0170*
H9A0.048400.445700.273600.0290*
H10A0.114300.349700.133200.0370*
H11A0.275800.243400.128400.0400*
H12A0.371600.230900.265700.0330*
H15A0.419100.311500.578100.0300*
H15B0.351000.148800.591200.0300*
H16A0.354400.272700.736400.0370*
H16B0.335500.454800.693200.0370*
H17A0.187800.363000.761300.0390*
H17B0.192100.191700.703600.0390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0111 (6)0.0182 (6)0.0260 (8)0.0017 (5)0.0003 (7)0.0003 (7)
O20.0101 (7)0.0176 (7)0.0358 (9)0.0000 (5)0.0006 (8)0.0019 (8)
O30.0144 (7)0.0194 (7)0.0265 (9)0.0032 (5)0.0007 (7)0.0003 (7)
O40.0272 (10)0.0447 (11)0.0278 (10)0.0020 (8)0.0065 (8)0.0008 (8)
C10.0129 (9)0.0127 (8)0.0181 (10)0.0003 (7)0.0004 (8)0.0004 (8)
C20.0138 (9)0.0145 (8)0.0160 (9)0.0005 (7)0.0019 (8)0.0003 (9)
C30.0165 (9)0.0131 (8)0.0343 (12)0.0026 (7)0.0002 (10)0.0005 (10)
C40.0197 (11)0.0170 (10)0.0493 (16)0.0001 (9)0.0003 (11)0.0086 (11)
C50.0158 (10)0.0142 (9)0.0547 (17)0.0031 (7)0.0026 (12)0.0034 (12)
C60.0153 (9)0.0142 (8)0.0214 (10)0.0000 (7)0.0018 (9)0.0018 (9)
C70.0119 (8)0.0119 (7)0.0192 (10)0.0011 (7)0.0014 (8)0.0009 (8)
C80.0220 (11)0.0110 (10)0.0177 (10)0.0013 (8)0.0006 (9)0.0005 (8)
C90.0336 (13)0.0180 (11)0.0218 (11)0.0016 (10)0.0075 (10)0.0001 (9)
C100.0510 (17)0.0207 (11)0.0210 (12)0.0021 (11)0.0086 (12)0.0012 (10)
C110.0585 (19)0.0233 (12)0.0192 (12)0.0008 (12)0.0094 (12)0.0019 (10)
C120.0342 (14)0.0179 (11)0.0297 (13)0.0035 (10)0.0118 (11)0.0002 (10)
C130.0235 (11)0.0133 (10)0.0198 (10)0.0012 (8)0.0033 (9)0.0005 (8)
C140.0198 (10)0.0121 (9)0.0207 (11)0.0017 (8)0.0039 (9)0.0018 (8)
C150.0230 (12)0.0209 (11)0.0303 (13)0.0016 (9)0.0069 (10)0.0052 (10)
C160.0371 (15)0.0303 (13)0.0262 (13)0.0039 (11)0.0113 (11)0.0021 (11)
C170.0446 (17)0.0358 (15)0.0184 (12)0.0025 (12)0.0003 (11)0.0070 (11)
C180.0266 (12)0.0210 (10)0.0201 (11)0.0048 (9)0.0027 (10)0.0017 (9)
C190.0198 (10)0.0119 (9)0.0159 (10)0.0019 (8)0.0016 (8)0.0013 (8)
Geometric parameters (Å, º) top
O1—C21.240 (2)C14—C151.500 (3)
O2—C61.322 (2)C15—C161.516 (4)
O3—C131.385 (3)C16—C171.515 (4)
O3—C141.358 (3)C17—C181.519 (4)
O4—C181.216 (3)C18—C191.466 (3)
O2—H20.8400C3—H3A0.9900
C1—C61.368 (3)C3—H3B0.9900
C1—C71.526 (2)C4—H4A0.9900
C1—C21.436 (3)C4—H4B0.9900
C2—C31.517 (2)C5—H5A0.9900
C3—C41.520 (3)C5—H5B0.9900
C4—C51.518 (3)C7—H7A1.0000
C5—C61.503 (3)C9—H9A0.9500
C7—C191.513 (3)C10—H10A0.9500
C7—C81.516 (3)C11—H11A0.9500
C8—C91.407 (3)C12—H12A0.9500
C8—C131.385 (3)C15—H15A0.9900
C9—C101.375 (4)C15—H15B0.9900
C10—C111.385 (5)C16—H16A0.9900
C11—C121.389 (4)C16—H16B0.9900
C12—C131.389 (4)C17—H17A0.9900
C14—C191.351 (3)C17—H17B0.9900
C13—O3—C14118.06 (18)C2—C3—H3B109.00
C6—O2—H2109.00C4—C3—H3A109.00
C2—C1—C7119.56 (16)C4—C3—H3B109.00
C6—C1—C7121.03 (16)H3A—C3—H3B108.00
C2—C1—C6119.14 (15)C3—C4—H4A110.00
O1—C2—C3119.03 (17)C3—C4—H4B110.00
C1—C2—C3119.85 (17)C5—C4—H4A110.00
O1—C2—C1121.11 (15)C5—C4—H4B110.00
C2—C3—C4112.44 (17)H4A—C4—H4B108.00
C3—C4—C5109.8 (2)C4—C5—H5A109.00
C4—C5—C6111.93 (19)C4—C5—H5B109.00
O2—C6—C5116.77 (17)C6—C5—H5A109.00
C1—C6—C5123.15 (17)C6—C5—H5B109.00
O2—C6—C1120.08 (15)H5A—C5—H5B108.00
C1—C7—C19113.18 (17)C1—C7—H7A107.00
C8—C7—C19109.57 (17)C8—C7—H7A107.00
C1—C7—C8112.30 (18)C19—C7—H7A107.00
C7—C8—C13121.2 (2)C8—C9—H9A120.00
C9—C8—C13118.0 (2)C10—C9—H9A120.00
C7—C8—C9120.8 (2)C9—C10—H10A120.00
C8—C9—C10120.9 (2)C11—C10—H10A120.00
C9—C10—C11120.1 (3)C10—C11—H11A120.00
C10—C11—C12120.3 (3)C12—C11—H11A120.00
C11—C12—C13119.0 (3)C11—C12—H12A121.00
O3—C13—C12115.9 (2)C13—C12—H12A120.00
C8—C13—C12121.7 (2)C14—C15—H15A109.00
O3—C13—C8122.3 (2)C14—C15—H15B109.00
O3—C14—C15110.2 (2)C16—C15—H15A109.00
O3—C14—C19123.7 (2)C16—C15—H15B109.00
C15—C14—C19126.1 (2)H15A—C15—H15B108.00
C14—C15—C16111.2 (2)C15—C16—H16A109.00
C15—C16—C17111.0 (2)C15—C16—H16B109.00
C16—C17—C18113.2 (2)C17—C16—H16A109.00
O4—C18—C19120.7 (2)C17—C16—H16B109.00
C17—C18—C19117.5 (2)H16A—C16—H16B108.00
O4—C18—C17121.8 (2)C16—C17—H17A109.00
C7—C19—C18118.8 (2)C16—C17—H17B109.00
C14—C19—C18118.9 (2)C18—C17—H17A109.00
C7—C19—C14122.2 (2)C18—C17—H17B109.00
C2—C3—H3A109.00H17A—C17—H17B108.00
C14—O3—C13—C811.8 (3)C8—C7—C19—C1415.1 (3)
C14—O3—C13—C12166.1 (2)C8—C7—C19—C18159.4 (2)
C13—O3—C14—C15166.70 (19)C7—C8—C9—C10179.9 (2)
C13—O3—C14—C1911.8 (3)C13—C8—C9—C100.1 (4)
C6—C1—C2—O1171.8 (2)C7—C8—C13—O32.3 (3)
C6—C1—C2—C36.9 (3)C7—C8—C13—C12179.8 (2)
C7—C1—C2—O12.4 (3)C9—C8—C13—O3177.5 (2)
C7—C1—C2—C3178.9 (2)C9—C8—C13—C120.3 (4)
C2—C1—C6—O2171.6 (2)C8—C9—C10—C110.2 (4)
C2—C1—C6—C58.3 (4)C9—C10—C11—C120.3 (4)
C7—C1—C6—O22.5 (4)C10—C11—C12—C130.0 (4)
C7—C1—C6—C5177.6 (2)C11—C12—C13—O3177.7 (2)
C2—C1—C7—C865.0 (3)C11—C12—C13—C80.3 (4)
C2—C1—C7—C1959.7 (3)O3—C14—C15—C16164.41 (19)
C6—C1—C7—C8109.0 (2)C19—C14—C15—C1617.2 (3)
C6—C1—C7—C19126.3 (2)O3—C14—C19—C72.7 (4)
O1—C2—C3—C4157.1 (2)O3—C14—C19—C18171.8 (2)
C1—C2—C3—C424.2 (3)C15—C14—C19—C7179.1 (2)
C2—C3—C4—C552.2 (3)C15—C14—C19—C186.4 (4)
C3—C4—C5—C650.8 (3)C14—C15—C16—C1746.1 (3)
C4—C5—C6—O2158.5 (2)C15—C16—C17—C1854.0 (3)
C4—C5—C6—C121.6 (3)C16—C17—C18—O4151.9 (3)
C1—C7—C8—C968.2 (3)C16—C17—C18—C1931.2 (3)
C1—C7—C8—C13111.9 (2)O4—C18—C19—C73.0 (4)
C19—C7—C8—C9165.1 (2)O4—C18—C19—C14177.7 (2)
C19—C7—C8—C1314.7 (3)C17—C18—C19—C7173.9 (2)
C1—C7—C19—C14111.1 (2)C17—C18—C19—C140.8 (3)
C1—C7—C19—C1874.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.762.582 (2)164
C5—H5A···O1i0.992.423.034 (3)119
C7—H7A···O21.002.352.822 (2)108
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC19H18O4
Mr310.33
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)130
a, b, c (Å)13.4420 (18), 8.0015 (10), 14.2416 (18)
V3)1531.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.24 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.966, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
13880, 1901, 1799
Rint0.032
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.06
No. of reflections1901
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.84001.76002.582 (2)164.00
C5—H5A···O1i0.99002.42003.034 (3)119.00
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

Manchester Metropolitan University, Universität Paderborn, Erciyes University and Quaid-I-Azam University are gratefully acknowledged for supporting this study.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Allahverdiyev, M. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKurbanova, M. M., Gurbanov, A. V., Mahmudov, K. T., Maharramov, A. M. & Ng, S. W. (2012). Acta Cryst. E68, o1606.  CSD CrossRef IUCr Journals Google Scholar
First citationMenchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. U. S. (2003). US Patent 6 583 168.  Google Scholar
First citationMo, Y., Zang, H.-J. & Cheng, B.-W. (2010). Acta Cryst. E66, o2129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o850–o851.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Moharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012a). J. Chem. Pharm. Res. 4, 955–965.  CAS Google Scholar
First citationMohamed, S. K., Akkurt, M., Abdelhamid, A. A., Fanwick, P. E. & Potgeiter, H. (2012b). Acta Cryst. E68, o1710.  CSD CrossRef IUCr Journals Google Scholar
First citationReddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o616-o617
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds