organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzyl­sulfanyl-N-(1,3-di­methyl­imidazolidin-2-yl­­idene)aniline

aUniversität Paderborn, Fakultät für Naturwissenschaften, Department Chemie, Warburger Strasse 100, 33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de

(Received 8 March 2013; accepted 14 March 2013; online 20 March 2013)

The mol­ecular structure of the title compound, C18H21N3S, shows a twisted conformation with a dihedral angle of 67.45 (4)° between the aromatic ring planes and an N—C—C—S torsion angle of −5.01 (13)°. The imidazolidine ring and the aniline moiety make a dihedral angle of 56.03 (4)° and the asscociated C—N—C angle is 125.71 (10)°. The guanidine-like C=N double bond is clearly localized, with a bond length of 1.2879 (14) Å. The C—S—C angle is 102.12 (5)° and the S—C(aromatic) and S—C bond lengths are 1.7643 (11) and 1.8159 (12) Å.

Related literature

For a related structure, see: Neuba et al. (2007[Neuba, A., Flörke, U. & Henkel, G. (2007). Acta Cryst. E63, o3476-o3477.]). For the synthesis, see: Herres-Pawlis et al. (2005[Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879-4890.]); Lindoy & Livingstone (1968[Lindoy, L. F. & Livingstone, S. E. (1968). Inorg. Chem. 7, 1149-1154.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N3S

  • Mr = 311.44

  • Triclinic, [P \overline 1]

  • a = 7.9814 (5) Å

  • b = 8.1158 (5) Å

  • c = 13.9440 (9) Å

  • α = 97.232 (1)°

  • β = 102.721 (1)°

  • γ = 107.915 (1)°

  • V = 819.89 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 120 K

  • 0.47 × 0.36 × 0.31 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 0.941

  • 7869 measured reflections

  • 3959 independent reflections

  • 3652 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.04

  • 3959 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Related literature top

For a related structure, see: Neuba et al. (2007). For the synthesis, see: Herres-Pawlis et al. (2005); Lindoy & Livingstone (1968).

Experimental top

The title compound was prepared as follows: a solution of N,N,N',N'-dimethylethylenechlorformamidinium chloride (5.07 g, 30 mmol) in dry MeCN was added dropwise to an ice-cooled solution of 2-(benzylthio)aniline (6.45 g, 30 mmol) and triethylamine (4.18 ml, 3.03 g, 30 mmol) in dry MeCN. After 3 h under reflux, a solution of NaOH (1.2 g, 30 mmol) in water was added. The solvents and NEt3 were then evaporated under vacuum. In order to deprotonate the mono-hydrochloride, 50 wt% KOH (aqueous, 15 ml) was added and the free base was extracted into the MeCN phase (3 x 80 ml). The organic phase was dried with Na2SO4. After filtration, the solvent was evaporated under reduced pressure. The title compound was obtained as white powder (yield 60%, 5.6 g). Colourless crystals suitable for X-ray diffraction were obtained by slow cooling of a hot saturated MeCN solution.

Spectroscopic data: 1H-NMR (500 MHz, CDCl3, 25°C, δ [p.p.m.]): 2.63 (s, 6H, CH3), 3.25 (s, 4H, CH2), 4.11 (s, 2H, CH2), 6.80 (m, 2H, CH), 7.01 (t, 1H, CH), 7.14 (d, 1H, CH), 7.21 (t, 1H, CH), 7.28 (t, 2H, CH), 7.38 (d, 2H, CH). 13C-NMR (125 MHz, CDCl3, 25°C, δ [p.p.m.]): 34.8 (CH3), 36.6 (CH2),48.5 (CH2) 120.5 (CH), 125.7 (CH), 126.8 (CH), 127.2 (CH), 128.3 (CH), 129.1 (CH), 129.1 (Cquat), 137.9 (Cquat), 148.6 (Cquat), 155.2 (Cgua). IR (KBr, ν [cm-1]): 3053 (w), 3030 (w),3003 (vw), 2933 (m), 2920 (m), 2868 (m), 2839 (m), 1954 (vw), 1973 (vw), 1635 (versus) (ν (C=N)), 1572 (s) (ν (C=N)),1493 (m), 1469 (m), 1437 (s), 1410 (m), 1394 (m), 1309 (w), 1281 (m), 1236 (m), 1192 (m), 1155 (vw), 1140 (w), 1126 (m),1070 (m), 1032 (s), 1003 (w), 991 (w), 970 (m), 920 (w), 858(w), 845(w), 816 (vw), 783 (m), 764 (m), 735 (s), 717 (s), 698 (m), 648 (m), 596 (w), 586 (w), 571 (w), 545 (w). EI—MS (m/z (%)): 311.2 (100) [M+], 278.2 (89), 220.2 (62) [M+—CH2Ph], 202.2 (43), 187.2 (96), 177.2 (40), 165.1 (83), 150.1 (29), 136.0 (52), 126.2 (47), 109.1 (33), 91.1 (55) [CH2Ph+], 70.1 (28), 56.1 (95).

Refinement top

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) or 1.5U(–CH3) and C–H 0.95–0.99 Å. The hydrogen atoms of C(2) methyl group are disordered over two positions with half occupation each and refined with AFIX 123 command. All CH3 hydrogen atoms were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with anisotropic displacement ellipsoids drawn at the 50% probability level.
2-Benzylsulfanyl-N-(1,3-dimethylimidazolidin-2-ylidene)aniline top
Crystal data top
C18H21N3SZ = 2
Mr = 311.44F(000) = 332
Triclinic, P1Dx = 1.262 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9814 (5) ÅCell parameters from 5075 reflections
b = 8.1158 (5) Åθ = 2.7–28.3°
c = 13.9440 (9) ŵ = 0.20 mm1
α = 97.232 (1)°T = 120 K
β = 102.721 (1)°Block, colourless
γ = 107.915 (1)°0.47 × 0.36 × 0.31 mm
V = 819.89 (9) Å3
Data collection top
Bruker SMART APEX
diffractometer
3959 independent reflections
Radiation source: sealed tube3652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 28.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.913, Tmax = 0.941k = 109
7869 measured reflectionsl = 1718
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.2615P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3959 reflectionsΔρmax = 0.30 e Å3
201 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (3)
Crystal data top
C18H21N3Sγ = 107.915 (1)°
Mr = 311.44V = 819.89 (9) Å3
Triclinic, P1Z = 2
a = 7.9814 (5) ÅMo Kα radiation
b = 8.1158 (5) ŵ = 0.20 mm1
c = 13.9440 (9) ÅT = 120 K
α = 97.232 (1)°0.47 × 0.36 × 0.31 mm
β = 102.721 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3959 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3652 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.941Rint = 0.016
7869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3959 reflectionsΔρmin = 0.21 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.91501 (4)0.15915 (4)0.28380 (2)0.02459 (10)
N10.69447 (13)0.30383 (13)0.15949 (7)0.0238 (2)
N20.37320 (13)0.20615 (13)0.06598 (7)0.0244 (2)
N30.59367 (13)0.25970 (14)0.01322 (7)0.0264 (2)
C10.55992 (15)0.25990 (14)0.07961 (8)0.0215 (2)
C20.28581 (18)0.10816 (18)0.13298 (10)0.0338 (3)
H2A0.23940.01890.10350.051*0.50
H2B0.18390.14580.14230.051*0.50
H2C0.37540.13170.19820.051*0.50
H2D0.29310.19130.19250.051*0.50
H2E0.34850.02660.15370.051*0.50
H2F0.15710.04070.09780.051*0.50
C30.28106 (17)0.14313 (18)0.04173 (9)0.0303 (3)
H3A0.17000.17530.06040.036*
H3B0.24700.01320.06190.036*
C40.42680 (17)0.24024 (18)0.08879 (9)0.0312 (3)
H4A0.41790.16940.15410.037*
H4B0.41880.35670.09830.037*
C50.76742 (18)0.37378 (19)0.02149 (10)0.0347 (3)
H5A0.76450.49360.02150.052*
H5B0.78920.32770.08430.052*
H5C0.86610.37720.03570.052*
C60.68392 (14)0.34089 (15)0.25800 (8)0.0211 (2)
C70.59065 (15)0.44700 (16)0.29025 (9)0.0246 (2)
H7A0.51500.48530.24200.030*
C80.60638 (16)0.49779 (16)0.39171 (9)0.0258 (2)
H8A0.54360.57200.41240.031*
C90.71362 (15)0.44019 (16)0.46273 (9)0.0253 (2)
H9A0.72370.47420.53210.030*
C100.80626 (15)0.33282 (15)0.43240 (8)0.0234 (2)
H10A0.87820.29200.48110.028*
C110.79447 (14)0.28455 (14)0.33127 (8)0.0204 (2)
C121.00985 (17)0.08482 (16)0.39394 (9)0.0264 (2)
H12A1.09610.18770.44670.032*
H12B0.91060.01980.42140.032*
C131.10834 (15)0.03469 (15)0.36236 (8)0.0227 (2)
C141.29817 (16)0.02421 (17)0.38585 (10)0.0290 (3)
H14A1.36750.14150.42250.035*
C151.38726 (17)0.0870 (2)0.35612 (11)0.0347 (3)
H15A1.51720.04600.37280.042*
C161.28712 (19)0.25763 (19)0.30218 (10)0.0331 (3)
H16A1.34840.33340.28160.040*
C171.09805 (19)0.31805 (17)0.27822 (10)0.0315 (3)
H17A1.02930.43530.24140.038*
C181.00906 (16)0.20683 (16)0.30818 (9)0.0273 (2)
H18A0.87910.24850.29160.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03082 (16)0.02960 (16)0.01770 (15)0.01758 (12)0.00528 (11)0.00466 (11)
N10.0250 (4)0.0320 (5)0.0178 (4)0.0139 (4)0.0066 (4)0.0058 (4)
N20.0231 (4)0.0286 (5)0.0197 (5)0.0075 (4)0.0046 (4)0.0047 (4)
N30.0270 (5)0.0335 (5)0.0170 (5)0.0081 (4)0.0063 (4)0.0050 (4)
C10.0250 (5)0.0222 (5)0.0200 (5)0.0106 (4)0.0072 (4)0.0056 (4)
C20.0318 (6)0.0367 (7)0.0299 (6)0.0042 (5)0.0132 (5)0.0075 (5)
C30.0280 (6)0.0348 (6)0.0222 (6)0.0078 (5)0.0011 (5)0.0032 (5)
C40.0342 (6)0.0365 (7)0.0188 (5)0.0094 (5)0.0026 (5)0.0067 (5)
C50.0334 (6)0.0424 (7)0.0253 (6)0.0057 (5)0.0134 (5)0.0056 (5)
C60.0208 (5)0.0242 (5)0.0179 (5)0.0076 (4)0.0049 (4)0.0046 (4)
C70.0246 (5)0.0303 (6)0.0225 (5)0.0133 (4)0.0071 (4)0.0076 (4)
C80.0257 (5)0.0295 (6)0.0253 (6)0.0124 (4)0.0101 (4)0.0043 (5)
C90.0260 (5)0.0302 (6)0.0182 (5)0.0080 (4)0.0073 (4)0.0020 (4)
C100.0238 (5)0.0262 (5)0.0181 (5)0.0080 (4)0.0029 (4)0.0042 (4)
C110.0199 (5)0.0212 (5)0.0196 (5)0.0072 (4)0.0049 (4)0.0034 (4)
C120.0329 (6)0.0291 (6)0.0194 (5)0.0166 (5)0.0031 (4)0.0051 (4)
C130.0264 (5)0.0236 (5)0.0189 (5)0.0105 (4)0.0041 (4)0.0069 (4)
C140.0260 (6)0.0280 (6)0.0282 (6)0.0061 (4)0.0016 (5)0.0075 (5)
C150.0248 (6)0.0479 (8)0.0356 (7)0.0162 (5)0.0076 (5)0.0158 (6)
C160.0433 (7)0.0430 (7)0.0282 (6)0.0290 (6)0.0150 (5)0.0153 (5)
C170.0413 (7)0.0253 (6)0.0290 (6)0.0133 (5)0.0096 (5)0.0049 (5)
C180.0244 (5)0.0259 (6)0.0290 (6)0.0071 (4)0.0055 (4)0.0041 (5)
Geometric parameters (Å, º) top
S1—C111.7643 (11)C6—C71.3937 (15)
S1—C121.8159 (12)C6—C111.4143 (15)
N1—C11.2879 (14)C7—C81.3894 (16)
N1—C61.3953 (14)C7—H7A0.9500
N2—C11.3791 (14)C8—C91.3861 (17)
N2—C21.4576 (15)C8—H8A0.9500
N2—C31.4652 (15)C9—C101.3879 (16)
N3—C11.3789 (14)C9—H9A0.9500
N3—C51.4495 (15)C10—C111.3896 (15)
N3—C41.4559 (15)C10—H10A0.9500
C2—H2A0.9800C12—C131.5055 (16)
C2—H2B0.9800C12—H12A0.9900
C2—H2C0.9800C12—H12B0.9900
C2—H2D0.9800C13—C141.3884 (16)
C2—H2E0.9800C13—C181.3928 (16)
C2—H2F0.9800C14—C151.3868 (19)
C3—C41.5190 (18)C14—H14A0.9500
C3—H3A0.9900C15—C161.383 (2)
C3—H3B0.9900C15—H15A0.9500
C4—H4A0.9900C16—C171.3823 (19)
C4—H4B0.9900C16—H16A0.9500
C5—H5A0.9800C17—C181.3870 (17)
C5—H5B0.9800C17—H17A0.9500
C5—H5C0.9800C18—H18A0.9500
C11—S1—C12102.12 (5)C7—C6—C11118.30 (10)
C1—N1—C6125.71 (10)N1—C6—C11116.83 (10)
C1—N2—C2121.84 (10)C8—C7—C6121.15 (10)
C1—N2—C3108.85 (9)C8—C7—H7A119.4
C2—N2—C3116.19 (10)C6—C7—H7A119.4
C1—N3—C5119.96 (10)C9—C8—C7120.01 (11)
C1—N3—C4109.64 (9)C9—C8—H8A120.0
C5—N3—C4118.80 (10)C7—C8—H8A120.0
N1—C1—N3119.85 (10)C8—C9—C10119.91 (11)
N1—C1—N2131.63 (10)C8—C9—H9A120.0
N3—C1—N2108.52 (9)C10—C9—H9A120.0
N2—C2—H2A109.5C9—C10—C11120.45 (10)
N2—C2—H2B109.5C9—C10—H10A119.8
H2A—C2—H2B109.5C11—C10—H10A119.8
N2—C2—H2C109.5C10—C11—C6120.16 (10)
H2A—C2—H2C109.5C10—C11—S1124.81 (9)
H2B—C2—H2C109.5C6—C11—S1115.00 (8)
N2—C2—H2D109.5C13—C12—S1107.83 (8)
N2—C2—H2E109.5C13—C12—H12A110.1
H2D—C2—H2E109.5S1—C12—H12A110.1
N2—C2—H2F109.5C13—C12—H12B110.1
H2D—C2—H2F109.5S1—C12—H12B110.1
H2E—C2—H2F109.5H12A—C12—H12B108.5
N2—C3—C4102.28 (9)C14—C13—C18118.95 (11)
N2—C3—H3A111.3C14—C13—C12120.99 (11)
C4—C3—H3A111.3C18—C13—C12120.06 (10)
N2—C3—H3B111.3C15—C14—C13120.43 (11)
C4—C3—H3B111.3C15—C14—H14A119.8
H3A—C3—H3B109.2C13—C14—H14A119.8
N3—C4—C3101.32 (9)C16—C15—C14120.07 (11)
N3—C4—H4A111.5C16—C15—H15A120.0
C3—C4—H4A111.5C14—C15—H15A120.0
N3—C4—H4B111.5C17—C16—C15120.13 (12)
C3—C4—H4B111.5C17—C16—H16A119.9
H4A—C4—H4B109.3C15—C16—H16A119.9
N3—C5—H5A109.5C16—C17—C18119.76 (12)
N3—C5—H5B109.5C16—C17—H17A120.1
H5A—C5—H5B109.5C18—C17—H17A120.1
N3—C5—H5C109.5C17—C18—C13120.65 (11)
H5A—C5—H5C109.5C17—C18—H18A119.7
H5B—C5—H5C109.5C13—C18—H18A119.7
C7—C6—N1124.38 (10)
C6—N1—C1—N3167.61 (10)C8—C9—C10—C110.94 (17)
C6—N1—C1—N213.5 (2)C9—C10—C11—C61.62 (17)
C5—N3—C1—N126.12 (17)C9—C10—C11—S1176.39 (9)
C4—N3—C1—N1168.89 (11)C7—C6—C11—C100.90 (16)
C5—N3—C1—N2154.73 (11)N1—C6—C11—C10173.18 (10)
C4—N3—C1—N211.97 (13)C7—C6—C11—S1177.30 (8)
C2—N2—C1—N130.72 (19)N1—C6—C11—S15.01 (13)
C3—N2—C1—N1170.28 (12)C12—S1—C11—C1010.12 (11)
C2—N2—C1—N3148.28 (11)C12—S1—C11—C6171.78 (8)
C3—N2—C1—N38.73 (13)C11—S1—C12—C13176.61 (8)
C1—N2—C3—C424.46 (13)S1—C12—C13—C14104.05 (11)
C2—N2—C3—C4166.57 (11)S1—C12—C13—C1875.54 (12)
C1—N3—C4—C326.33 (13)C18—C13—C14—C150.26 (18)
C5—N3—C4—C3169.58 (11)C12—C13—C14—C15179.85 (11)
N2—C3—C4—N329.57 (12)C13—C14—C15—C160.38 (19)
C1—N1—C6—C745.01 (17)C14—C15—C16—C170.4 (2)
C1—N1—C6—C11143.23 (11)C15—C16—C17—C180.22 (19)
N1—C6—C7—C8171.15 (11)C16—C17—C18—C130.10 (19)
C11—C6—C7—C80.50 (16)C14—C13—C18—C170.12 (18)
C6—C7—C8—C91.19 (18)C12—C13—C18—C17179.71 (11)
C7—C8—C9—C100.46 (17)

Experimental details

Crystal data
Chemical formulaC18H21N3S
Mr311.44
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.9814 (5), 8.1158 (5), 13.9440 (9)
α, β, γ (°)97.232 (1), 102.721 (1), 107.915 (1)
V3)819.89 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.47 × 0.36 × 0.31
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.913, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
7869, 3959, 3652
Rint0.016
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.04
No. of reflections3959
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.

 

Acknowledgements

We thank the German research council (DFG) and the Federal Ministry of education and research (BMBF) for continued support of our work.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHerres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879–4890.  Web of Science CSD CrossRef Google Scholar
First citationLindoy, L. F. & Livingstone, S. E. (1968). Inorg. Chem. 7, 1149–1154.  CrossRef CAS Web of Science Google Scholar
First citationNeuba, A., Flörke, U. & Henkel, G. (2007). Acta Cryst. E63, o3476–o3477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds