organic compounds
D-Phenylglycinium bromide
aCrystal Research Laboratory, Department of Physics, Anna University, Chennai 600 025, India, and bDepartment of Chemistry, Loyola College (Autonomous), Chennai 600 034, India
*Correspondence e-mail: krgkrishnan@annauniv.edu
In the crystal of the title salt, C8H10NO2+·Br−, the bromide anions and the phenylglycinium cations are linked through N—H⋯Br, O—H⋯Br and C—H⋯O hydrogen bonds, generating sheets lying parallel to (001).
Related literature
For a similar compound with a different halogen anion, see: Ravichandran et al. (1998). For related structures and background, see: Srinivasan et al. (2001); Bouchouit et al. (2004); Ramaswamy et al. (2001); Bouacida et al. (2006); Thomsen et al. (1994). For biological importance, see: Satyam et al. (1996); Jayasinghe et al. (1994); Chun et al. (2010); Thomas & West (2011).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813004807/pk2465sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813004807/pk2465Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813004807/pk2465Isup3.cml
The title compound (I), was prepared by mixing a 1:1 ratio of D-Phenylglycine and hydrobromic acid in water solvent. The suitable single-crystal of the compound was selected for X-ray analysis from the above solution by slow evaporation method.
The hydrogen atoms associated with C atoms were identified from the difference electron density peaks and subsequently treated as riding atoms with distances of d(C–H) = 0.98 Å (for CH) with Uiso(H) = -1.5Ueq(C) and d(C–H) = 0.93 Å (for aromatic CH) with Uiso(H) = 1.2Ueq(C). The carboxylic acid hydrogen was constrained to a distance of d(O–H) = 0.82 Å with Uiso(H) = 1.5Ueq(C) and the positions of NH3 H atoms were also treated as riding about the parent atom.
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).C8H10NO2+·Br− | F(000) = 464 |
Mr = 232.08 | Dx = 1.615 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3239 reflections |
a = 5.5240 (5) Å | θ = 2.6–28.8° |
b = 7.4735 (5) Å | µ = 4.27 mm−1 |
c = 23.1229 (18) Å | T = 295 K |
V = 954.60 (13) Å3 | Block, colourless |
Z = 4 | 0.35 × 0.30 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 2170 independent reflections |
Radiation source: fine-focus sealed tube | 2003 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω and ϕ scan | θmax = 27.5°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −6→7 |
Tmin = 0.317, Tmax = 0.415 | k = −9→5 |
5824 measured reflections | l = −28→30 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2)] |
wR(F2) = 0.046 | (Δ/σ)max = 0.003 |
S = 1.03 | Δρmax = 0.25 e Å−3 |
2170 reflections | Δρmin = −0.29 e Å−3 |
114 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0530 (13) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.011 (8) |
C8H10NO2+·Br− | V = 954.60 (13) Å3 |
Mr = 232.08 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.5240 (5) Å | µ = 4.27 mm−1 |
b = 7.4735 (5) Å | T = 295 K |
c = 23.1229 (18) Å | 0.35 × 0.30 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 2170 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2003 reflections with I > 2σ(I) |
Tmin = 0.317, Tmax = 0.415 | Rint = 0.022 |
5824 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.046 | Δρmax = 0.25 e Å−3 |
S = 1.03 | Δρmin = −0.29 e Å−3 |
2170 reflections | Absolute structure: Flack (1983) |
114 parameters | Absolute structure parameter: 0.011 (8) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1060 (5) | 0.5444 (3) | 0.56980 (9) | 0.0370 (5) | |
H1 | −0.0251 | 0.5884 | 0.5906 | 0.044* | |
C2 | 0.1209 (5) | 0.5734 (3) | 0.51081 (9) | 0.0418 (6) | |
H2 | −0.0006 | 0.6372 | 0.4921 | 0.050* | |
C3 | 0.3119 (5) | 0.5092 (3) | 0.47991 (9) | 0.0424 (6) | |
H3 | 0.3196 | 0.5290 | 0.4402 | 0.051* | |
C4 | 0.4922 (5) | 0.4160 (3) | 0.50678 (9) | 0.0443 (6) | |
H4 | 0.6229 | 0.3734 | 0.4855 | 0.053* | |
C5 | 0.4804 (4) | 0.3849 (3) | 0.56595 (9) | 0.0355 (5) | |
H5 | 0.6024 | 0.3204 | 0.5842 | 0.043* | |
C6 | 0.2866 (4) | 0.4500 (2) | 0.59770 (7) | 0.0264 (4) | |
C7 | 0.2695 (4) | 0.4057 (2) | 0.66152 (7) | 0.0282 (5) | |
H7 | 0.4217 | 0.3499 | 0.6738 | 0.034* | |
C8 | 0.0650 (4) | 0.2773 (3) | 0.67328 (8) | 0.0311 (5) | |
N1 | 0.2266 (4) | 0.5687 (2) | 0.69772 (6) | 0.0345 (4) | |
H1A | 0.3369 | 0.6514 | 0.6892 | 0.063 (8)* | |
H1B | 0.2379 | 0.5399 | 0.7350 | 0.063 (8)* | |
H1C | 0.0794 | 0.6117 | 0.6905 | 0.047 (7)* | |
O1 | 0.1199 (4) | 0.1163 (2) | 0.65347 (8) | 0.0561 (5) | |
H1D | 0.0051 | 0.0486 | 0.6586 | 0.084* | |
O2 | −0.1206 (3) | 0.3164 (2) | 0.69632 (6) | 0.0441 (4) | |
Br1 | 0.71415 (4) | 0.82278 (3) | 0.681529 (8) | 0.03843 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0381 (14) | 0.0388 (11) | 0.0339 (11) | 0.0062 (12) | 0.0048 (10) | −0.0032 (10) |
C2 | 0.0552 (17) | 0.0342 (12) | 0.0360 (12) | 0.0066 (11) | −0.0030 (11) | 0.0072 (10) |
C3 | 0.0638 (18) | 0.0364 (12) | 0.0270 (10) | −0.0101 (13) | 0.0087 (11) | 0.0010 (9) |
C4 | 0.0417 (16) | 0.0496 (14) | 0.0415 (14) | −0.0021 (12) | 0.0170 (11) | −0.0082 (11) |
C5 | 0.0277 (13) | 0.0429 (12) | 0.0360 (12) | 0.0004 (11) | 0.0035 (9) | −0.0027 (10) |
C6 | 0.0261 (11) | 0.0258 (9) | 0.0273 (9) | −0.0062 (10) | 0.0011 (9) | −0.0013 (7) |
C7 | 0.0261 (13) | 0.0316 (10) | 0.0269 (9) | −0.0034 (10) | 0.0012 (8) | 0.0002 (7) |
C8 | 0.0352 (14) | 0.0323 (11) | 0.0258 (11) | −0.0071 (10) | −0.0018 (9) | 0.0014 (8) |
N1 | 0.0377 (13) | 0.0396 (9) | 0.0262 (9) | −0.0137 (10) | 0.0029 (8) | −0.0036 (7) |
O1 | 0.0634 (15) | 0.0333 (8) | 0.0715 (12) | −0.0161 (9) | 0.0238 (10) | −0.0057 (8) |
O2 | 0.0328 (9) | 0.0448 (9) | 0.0547 (9) | −0.0106 (9) | 0.0085 (7) | −0.0021 (8) |
Br1 | 0.04061 (14) | 0.03701 (12) | 0.03766 (12) | −0.01269 (10) | 0.00446 (10) | −0.00279 (9) |
C1—C6 | 1.382 (3) | C6—C7 | 1.515 (2) |
C1—C2 | 1.383 (3) | C7—N1 | 1.497 (2) |
C1—H1 | 0.9300 | C7—C8 | 1.507 (3) |
C2—C3 | 1.361 (3) | C7—H7 | 0.9800 |
C2—H2 | 0.9300 | C8—O2 | 1.192 (3) |
C3—C4 | 1.365 (3) | C8—O1 | 1.323 (3) |
C3—H3 | 0.9300 | N1—H1A | 0.8900 |
C4—C5 | 1.389 (3) | N1—H1B | 0.8900 |
C4—H4 | 0.9300 | N1—H1C | 0.8900 |
C5—C6 | 1.386 (3) | O1—H1D | 0.8200 |
C5—H5 | 0.9300 | ||
C6—C1—C2 | 119.8 (2) | C5—C6—C7 | 119.15 (19) |
C6—C1—H1 | 120.1 | N1—C7—C8 | 107.37 (17) |
C2—C1—H1 | 120.1 | N1—C7—C6 | 112.12 (15) |
C3—C2—C1 | 120.6 (2) | C8—C7—C6 | 111.19 (16) |
C3—C2—H2 | 119.7 | N1—C7—H7 | 108.7 |
C1—C2—H2 | 119.7 | C8—C7—H7 | 108.7 |
C2—C3—C4 | 120.4 (2) | C6—C7—H7 | 108.7 |
C2—C3—H3 | 119.8 | O2—C8—O1 | 125.1 (2) |
C4—C3—H3 | 119.8 | O2—C8—C7 | 124.73 (19) |
C3—C4—C5 | 120.0 (2) | O1—C8—C7 | 110.16 (19) |
C3—C4—H4 | 120.0 | C7—N1—H1A | 109.5 |
C5—C4—H4 | 120.0 | C7—N1—H1B | 109.5 |
C6—C5—C4 | 119.9 (2) | H1A—N1—H1B | 109.5 |
C6—C5—H5 | 120.0 | C7—N1—H1C | 109.5 |
C4—C5—H5 | 120.0 | H1A—N1—H1C | 109.5 |
C1—C6—C5 | 119.30 (19) | H1B—N1—H1C | 109.5 |
C1—C6—C7 | 121.4 (2) | C8—O1—H1D | 109.5 |
C6—C1—C2—C3 | 0.2 (4) | C1—C6—C7—N1 | −54.0 (3) |
C1—C2—C3—C4 | −0.3 (4) | C5—C6—C7—N1 | 130.1 (2) |
C2—C3—C4—C5 | 0.5 (4) | C1—C6—C7—C8 | 66.2 (2) |
C3—C4—C5—C6 | −0.6 (3) | C5—C6—C7—C8 | −109.7 (2) |
C2—C1—C6—C5 | −0.2 (3) | N1—C7—C8—O2 | 15.6 (3) |
C2—C1—C6—C7 | −176.2 (2) | C6—C7—C8—O2 | −107.4 (2) |
C4—C5—C6—C1 | 0.5 (3) | N1—C7—C8—O1 | −165.48 (17) |
C4—C5—C6—C7 | 176.5 (2) | C6—C7—C8—O1 | 71.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···Br1i | 0.89 | 2.54 | 3.3586 (17) | 154 |
N1—H1C···Br1ii | 0.89 | 2.57 | 3.429 (2) | 163 |
N1—H1A···Br1 | 0.89 | 2.45 | 3.3166 (18) | 164 |
O1—H1D···Br1iii | 0.82 | 2.39 | 3.2027 (17) | 171 |
C7—H7···O2iv | 0.98 | 2.59 | 3.527 (3) | 159 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1, y, z; (iii) x−1, y−1, z; (iv) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C8H10NO2+·Br− |
Mr | 232.08 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 295 |
a, b, c (Å) | 5.5240 (5), 7.4735 (5), 23.1229 (18) |
V (Å3) | 954.60 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.27 |
Crystal size (mm) | 0.35 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.317, 0.415 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5824, 2170, 2003 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.046, 1.03 |
No. of reflections | 2170 |
No. of parameters | 114 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.29 |
Absolute structure | Flack (1983) |
Absolute structure parameter | 0.011 (8) |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···Br1i | 0.89 | 2.54 | 3.3586 (17) | 154.0 |
N1—H1C···Br1ii | 0.89 | 2.57 | 3.429 (2) | 162.6 |
N1—H1A···Br1 | 0.89 | 2.45 | 3.3166 (18) | 163.9 |
O1—H1D···Br1iii | 0.82 | 2.39 | 3.2027 (17) | 171.1 |
C7—H7···O2iv | 0.98 | 2.59 | 3.527 (3) | 159.3 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1, y, z; (iii) x−1, y−1, z; (iv) x+1, y, z. |
Acknowledgements
The authors are grateful to Professor K. Sivakumar, Department of Physics, Anna University, Chennai-25, for fruitful scientific discussions. The authors are thankful to the SAIF, IIT Madras, Chennai-36, India, for the X-ray data collection.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838–o840. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouchouit, K., Bendheif, L. & Benali-Cherif, N. (2004). Acta Cryst. E60, o272–o274. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chun, L. W., Yang, B. F., Hsiao, H. L., Tung, H. T., Ming, C. T. & Hui, P. W. (2010). J. Biomed. Sci. 17, 71–78. Web of Science PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jayasinghe, L. R., Datta, A., Ali, S. M., Zymunt, J., Van der Velde, D. G. & Georg, G. I. (1994). J. Med. Chem. 37, 2981–2984. CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ramaswamy, S., Sridhar, B., Ramakrishnan, V. & Rajaram, R. K. (2001). Acta Cryst. E57, o1149–o1151. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ravichandran, S., Dattagupta, J. K. & Chakrabarti, C. (1998). Acta Cryst. C54, 499–501. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Satyam, A., Hocker, M. D., Kanemaguire, K. A., Morgan, A. S., Villar, H. O. & Lyttle, M. H. (1996). J. Med. Chem. 39, 1736–1747. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srinivasan, N., Sridhar, B. & Rajaram, R. K. (2001). Acta Cryst. E57, o754–o756. Web of Science CSD CrossRef IUCr Journals Google Scholar
Thomas, G. & West, G. B. (2011). J. Pharm. Pharmacol. 26, 151–152. CrossRef Google Scholar
Thomsen, C., Boel, E. & Suzdak, P. D. (1994). Eur. J. Pharmacol. 267, 77–84. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
D-Phenylglycine is an important constituent in the production of semisynthetic penicillins and cephalosporins. Recently the usages of some phenylglycine derivatives in the synthesis of antitumor drugs and other pharmacological applications have been found to be increasing (Satyam et al., 1996; Jayasinghe et al., 1994). Phenylglycine has been reported as a delivery tool for improving l-dopa absorption (Chun et al., 2010) and also found to have anti-inflammatory activity (Thomas et al., 2011). The torsion angle N1-C7-C8-O1, which indicates the relative orientation of the carboxyl group and the amino N atom, is 15.5 (3)° and close to the corresponding value of 18.9°(5) reported for D-Phenylglycine Hydrochloride (Ravichandran et al., 1998). The orientation of the phenyl ring as described by the torsion angle C5—C6—C7—N1 is 130.05 (3)°. The intermolecular interaction between the molecular ions are primarly decided by hydrogen bonding. The hydrogen bonds N1—H1A···Br1, N1—H1B···Br1i [Symmetry code: (i) -x+1, y-1/2, -z+3/2], N1—H1C···Br1ii [Symmetry code: (ii) x-1, y, z] and O1—H1D···Br1iii [Symmetry code: (iii) x-1, y-1, z] and C7—H7···O2iv [Symmetry code: (iv) x-1, y-1, z] hydrogen bond interconnects the molecular ions to form an extensive two-dimensional molecular sheet parallel to (001) plane. Parallel stacking of these sheets along [0 0 1] direction constitute the molecular packing of the crystal.