organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

D-Phenyl­glycinium bromide

aCrystal Research Laboratory, Department of Physics, Anna University, Chennai 600 025, India, and bDepartment of Chemistry, Loyola College (Autonomous), Chennai 600 034, India
*Correspondence e-mail: krgkrishnan@annauniv.edu

(Received 30 January 2013; accepted 19 February 2013; online 2 March 2013)

In the crystal of the title salt, C8H10NO2+·Br, the bromide anions and the phenylglycinium cations are ­linked through N—H⋯Br, O—H⋯Br and C—H⋯O hydrogen bonds, generating sheets lying parallel to (001).

Related literature

For a similar compound with a different halogen anion, see: Ravichandran et al. (1998[Ravichandran, S., Dattagupta, J. K. & Chakrabarti, C. (1998). Acta Cryst. C54, 499-501.]). For related structures and background, see: Srinivasan et al. (2001[Srinivasan, N., Sridhar, B. & Rajaram, R. K. (2001). Acta Cryst. E57, o754-o756.]); Bouchouit et al. (2004[Bouchouit, K., Bendheif, L. & Benali-Cherif, N. (2004). Acta Cryst. E60, o272-o274.]); Ramaswamy et al. (2001[Ramaswamy, S., Sridhar, B., Ramakrishnan, V. & Rajaram, R. K. (2001). Acta Cryst. E57, o1149-o1151.]); Bouacida et al. (2006[Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838-o840.]); Thomsen et al. (1994[Thomsen, C., Boel, E. & Suzdak, P. D. (1994). Eur. J. Pharmacol. 267, 77-84.]). For biological importance, see: Satyam et al. (1996[Satyam, A., Hocker, M. D., Kanemaguire, K. A., Morgan, A. S., Villar, H. O. & Lyttle, M. H. (1996). J. Med. Chem. 39, 1736-1747.]); Jayasinghe et al. (1994[Jayasinghe, L. R., Datta, A., Ali, S. M., Zymunt, J., Van der Velde, D. G. & Georg, G. I. (1994). J. Med. Chem. 37, 2981-2984.]); Chun et al. (2010[Chun, L. W., Yang, B. F., Hsiao, H. L., Tung, H. T., Ming, C. T. & Hui, P. W. (2010). J. Biomed. Sci. 17, 71-78.]); Thomas & West (2011[Thomas, G. & West, G. B. (2011). J. Pharm. Pharmacol. 26, 151-152.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10NO2+·Br

  • Mr = 232.08

  • Orthorhombic, P 21 21 21

  • a = 5.5240 (5) Å

  • b = 7.4735 (5) Å

  • c = 23.1229 (18) Å

  • V = 954.60 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.27 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.317, Tmax = 0.415

  • 5824 measured reflections

  • 2170 independent reflections

  • 2003 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.046

  • S = 1.03

  • 2170 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.011 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Br1i 0.89 2.54 3.3586 (17) 154
N1—H1C⋯Br1ii 0.89 2.57 3.429 (2) 163
N1—H1A⋯Br1 0.89 2.45 3.3166 (18) 164
O1—H1D⋯Br1iii 0.82 2.39 3.2027 (17) 171
C7—H7⋯O2iv 0.98 2.59 3.527 (3) 159
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) x-1, y-1, z; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

D-Phenylglycine is an important constituent in the production of semisynthetic penicillins and cephalosporins. Recently the usages of some phenylglycine derivatives in the synthesis of antitumor drugs and other pharmacological applications have been found to be increasing (Satyam et al., 1996; Jayasinghe et al., 1994). Phenylglycine has been reported as a delivery tool for improving l-dopa absorption (Chun et al., 2010) and also found to have anti-inflammatory activity (Thomas et al., 2011). The torsion angle N1-C7-C8-O1, which indicates the relative orientation of the carboxyl group and the amino N atom, is 15.5 (3)° and close to the corresponding value of 18.9°(5) reported for D-Phenylglycine Hydrochloride (Ravichandran et al., 1998). The orientation of the phenyl ring as described by the torsion angle C5—C6—C7—N1 is 130.05 (3)°. The intermolecular interaction between the molecular ions are primarly decided by hydrogen bonding. The hydrogen bonds N1—H1A···Br1, N1—H1B···Br1i [Symmetry code: (i) -x+1, y-1/2, -z+3/2], N1—H1C···Br1ii [Symmetry code: (ii) x-1, y, z] and O1—H1D···Br1iii [Symmetry code: (iii) x-1, y-1, z] and C7—H7···O2iv [Symmetry code: (iv) x-1, y-1, z] hydrogen bond interconnects the molecular ions to form an extensive two-dimensional molecular sheet parallel to (001) plane. Parallel stacking of these sheets along [0 0 1] direction constitute the molecular packing of the crystal.

Related literature top

For a similar compound with different halogen see: Ravichandran et al. (1998). For related structures and background see: Srinivasan et al. (2001); Bouchouit et al. (2004); Ramaswamy et al. (2001); Bouacida et al. (2006); Thomsen et al.(1994). For biological importance see: Satyam et al. (1996); Jayasinghe et al. (1994); Chun et al. (2010); Thomas et al. (2011).

Experimental top

The title compound (I), was prepared by mixing a 1:1 ratio of D-Phenylglycine and hydrobromic acid in water solvent. The suitable single-crystal of the compound was selected for X-ray analysis from the above solution by slow evaporation method.

Refinement top

The hydrogen atoms associated with C atoms were identified from the difference electron density peaks and subsequently treated as riding atoms with distances of d(C–H) = 0.98 Å (for CH) with Uiso(H) = -1.5Ueq(C) and d(C–H) = 0.93 Å (for aromatic CH) with Uiso(H) = 1.2Ueq(C). The carboxylic acid hydrogen was constrained to a distance of d(O–H) = 0.82 Å with Uiso(H) = 1.5Ueq(C) and the positions of NH3 H atoms were also treated as riding about the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the molecular structure drawn at the 40% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing the two dimensional anionic-cationic (0 0 1) sheet formed through N—H···Br, O—H···Br and C—H···O interactions viewed down c axis.
D-Phenylglycinium bromide top
Crystal data top
C8H10NO2+·BrF(000) = 464
Mr = 232.08Dx = 1.615 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3239 reflections
a = 5.5240 (5) Åθ = 2.6–28.8°
b = 7.4735 (5) ŵ = 4.27 mm1
c = 23.1229 (18) ÅT = 295 K
V = 954.60 (13) Å3Block, colourless
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2170 independent reflections
Radiation source: fine-focus sealed tube2003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scanθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 67
Tmin = 0.317, Tmax = 0.415k = 95
5824 measured reflectionsl = 2830
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2)]
wR(F2) = 0.046(Δ/σ)max = 0.003
S = 1.03Δρmax = 0.25 e Å3
2170 reflectionsΔρmin = 0.29 e Å3
114 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0530 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.011 (8)
Crystal data top
C8H10NO2+·BrV = 954.60 (13) Å3
Mr = 232.08Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5240 (5) ŵ = 4.27 mm1
b = 7.4735 (5) ÅT = 295 K
c = 23.1229 (18) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2170 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2003 reflections with I > 2σ(I)
Tmin = 0.317, Tmax = 0.415Rint = 0.022
5824 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.046Δρmax = 0.25 e Å3
S = 1.03Δρmin = 0.29 e Å3
2170 reflectionsAbsolute structure: Flack (1983)
114 parametersAbsolute structure parameter: 0.011 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1060 (5)0.5444 (3)0.56980 (9)0.0370 (5)
H10.02510.58840.59060.044*
C20.1209 (5)0.5734 (3)0.51081 (9)0.0418 (6)
H20.00060.63720.49210.050*
C30.3119 (5)0.5092 (3)0.47991 (9)0.0424 (6)
H30.31960.52900.44020.051*
C40.4922 (5)0.4160 (3)0.50678 (9)0.0443 (6)
H40.62290.37340.48550.053*
C50.4804 (4)0.3849 (3)0.56595 (9)0.0355 (5)
H50.60240.32040.58420.043*
C60.2866 (4)0.4500 (2)0.59770 (7)0.0264 (4)
C70.2695 (4)0.4057 (2)0.66152 (7)0.0282 (5)
H70.42170.34990.67380.034*
C80.0650 (4)0.2773 (3)0.67328 (8)0.0311 (5)
N10.2266 (4)0.5687 (2)0.69772 (6)0.0345 (4)
H1A0.33690.65140.68920.063 (8)*
H1B0.23790.53990.73500.063 (8)*
H1C0.07940.61170.69050.047 (7)*
O10.1199 (4)0.1163 (2)0.65347 (8)0.0561 (5)
H1D0.00510.04860.65860.084*
O20.1206 (3)0.3164 (2)0.69632 (6)0.0441 (4)
Br10.71415 (4)0.82278 (3)0.681529 (8)0.03843 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0381 (14)0.0388 (11)0.0339 (11)0.0062 (12)0.0048 (10)0.0032 (10)
C20.0552 (17)0.0342 (12)0.0360 (12)0.0066 (11)0.0030 (11)0.0072 (10)
C30.0638 (18)0.0364 (12)0.0270 (10)0.0101 (13)0.0087 (11)0.0010 (9)
C40.0417 (16)0.0496 (14)0.0415 (14)0.0021 (12)0.0170 (11)0.0082 (11)
C50.0277 (13)0.0429 (12)0.0360 (12)0.0004 (11)0.0035 (9)0.0027 (10)
C60.0261 (11)0.0258 (9)0.0273 (9)0.0062 (10)0.0011 (9)0.0013 (7)
C70.0261 (13)0.0316 (10)0.0269 (9)0.0034 (10)0.0012 (8)0.0002 (7)
C80.0352 (14)0.0323 (11)0.0258 (11)0.0071 (10)0.0018 (9)0.0014 (8)
N10.0377 (13)0.0396 (9)0.0262 (9)0.0137 (10)0.0029 (8)0.0036 (7)
O10.0634 (15)0.0333 (8)0.0715 (12)0.0161 (9)0.0238 (10)0.0057 (8)
O20.0328 (9)0.0448 (9)0.0547 (9)0.0106 (9)0.0085 (7)0.0021 (8)
Br10.04061 (14)0.03701 (12)0.03766 (12)0.01269 (10)0.00446 (10)0.00279 (9)
Geometric parameters (Å, º) top
C1—C61.382 (3)C6—C71.515 (2)
C1—C21.383 (3)C7—N11.497 (2)
C1—H10.9300C7—C81.507 (3)
C2—C31.361 (3)C7—H70.9800
C2—H20.9300C8—O21.192 (3)
C3—C41.365 (3)C8—O11.323 (3)
C3—H30.9300N1—H1A0.8900
C4—C51.389 (3)N1—H1B0.8900
C4—H40.9300N1—H1C0.8900
C5—C61.386 (3)O1—H1D0.8200
C5—H50.9300
C6—C1—C2119.8 (2)C5—C6—C7119.15 (19)
C6—C1—H1120.1N1—C7—C8107.37 (17)
C2—C1—H1120.1N1—C7—C6112.12 (15)
C3—C2—C1120.6 (2)C8—C7—C6111.19 (16)
C3—C2—H2119.7N1—C7—H7108.7
C1—C2—H2119.7C8—C7—H7108.7
C2—C3—C4120.4 (2)C6—C7—H7108.7
C2—C3—H3119.8O2—C8—O1125.1 (2)
C4—C3—H3119.8O2—C8—C7124.73 (19)
C3—C4—C5120.0 (2)O1—C8—C7110.16 (19)
C3—C4—H4120.0C7—N1—H1A109.5
C5—C4—H4120.0C7—N1—H1B109.5
C6—C5—C4119.9 (2)H1A—N1—H1B109.5
C6—C5—H5120.0C7—N1—H1C109.5
C4—C5—H5120.0H1A—N1—H1C109.5
C1—C6—C5119.30 (19)H1B—N1—H1C109.5
C1—C6—C7121.4 (2)C8—O1—H1D109.5
C6—C1—C2—C30.2 (4)C1—C6—C7—N154.0 (3)
C1—C2—C3—C40.3 (4)C5—C6—C7—N1130.1 (2)
C2—C3—C4—C50.5 (4)C1—C6—C7—C866.2 (2)
C3—C4—C5—C60.6 (3)C5—C6—C7—C8109.7 (2)
C2—C1—C6—C50.2 (3)N1—C7—C8—O215.6 (3)
C2—C1—C6—C7176.2 (2)C6—C7—C8—O2107.4 (2)
C4—C5—C6—C10.5 (3)N1—C7—C8—O1165.48 (17)
C4—C5—C6—C7176.5 (2)C6—C7—C8—O171.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Br1i0.892.543.3586 (17)154
N1—H1C···Br1ii0.892.573.429 (2)163
N1—H1A···Br10.892.453.3166 (18)164
O1—H1D···Br1iii0.822.393.2027 (17)171
C7—H7···O2iv0.982.593.527 (3)159
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z; (iii) x1, y1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H10NO2+·Br
Mr232.08
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)5.5240 (5), 7.4735 (5), 23.1229 (18)
V3)954.60 (13)
Z4
Radiation typeMo Kα
µ (mm1)4.27
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.317, 0.415
No. of measured, independent and
observed [I > 2σ(I)] reflections
5824, 2170, 2003
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.046, 1.03
No. of reflections2170
No. of parameters114
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.29
Absolute structureFlack (1983)
Absolute structure parameter0.011 (8)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Br1i0.892.543.3586 (17)154.0
N1—H1C···Br1ii0.892.573.429 (2)162.6
N1—H1A···Br10.892.453.3166 (18)163.9
O1—H1D···Br1iii0.822.393.2027 (17)171.1
C7—H7···O2iv0.982.593.527 (3)159.3
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y, z; (iii) x1, y1, z; (iv) x+1, y, z.
 

Acknowledgements

The authors are grateful to Professor K. Sivakumar, Department of Physics, Anna University, Chennai-25, for fruitful scientific discussions. The authors are thankful to the SAIF, IIT Madras, Chennai-36, India, for the X-ray data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838–o840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouchouit, K., Bendheif, L. & Benali-Cherif, N. (2004). Acta Cryst. E60, o272–o274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChun, L. W., Yang, B. F., Hsiao, H. L., Tung, H. T., Ming, C. T. & Hui, P. W. (2010). J. Biomed. Sci. 17, 71–78.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJayasinghe, L. R., Datta, A., Ali, S. M., Zymunt, J., Van der Velde, D. G. & Georg, G. I. (1994). J. Med. Chem. 37, 2981–2984.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamaswamy, S., Sridhar, B., Ramakrishnan, V. & Rajaram, R. K. (2001). Acta Cryst. E57, o1149–o1151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavichandran, S., Dattagupta, J. K. & Chakrabarti, C. (1998). Acta Cryst. C54, 499–501.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSatyam, A., Hocker, M. D., Kanemaguire, K. A., Morgan, A. S., Villar, H. O. & Lyttle, M. H. (1996). J. Med. Chem. 39, 1736–1747.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, N., Sridhar, B. & Rajaram, R. K. (2001). Acta Cryst. E57, o754–o756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThomas, G. & West, G. B. (2011). J. Pharm. Pharmacol. 26, 151–152.  CrossRef Google Scholar
First citationThomsen, C., Boel, E. & Suzdak, P. D. (1994). Eur. J. Pharmacol. 267, 77–84.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds