organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,7-Dieth­­oxy-8-[(naphthalen-1-yl)carbon­yl]naph­thalen-1-yl}(naphthalen-1-yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan, and bDivision of Liberal Arts, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 14 February 2013; accepted 27 February 2013; online 6 March 2013)

In the title compound, C36H28O4, the 1-naphthoyl groups at the 1- and 8-positions of the central 2,7-dieth­oxy­naphthalene ring system are aligned almost anti­parallel and make a dihedral angle of 76.59 (4)°. The dihedral angles between the central 2,7-dieth­oxy­naphthalene ring system and the terminal naphthalene ring systems are 86.48 (4) and 83.97 (4)°. In the crystal, C—H⋯π inter­actions between the central naphthalene ring systems and the naphthoyl groups are observed along the a axis, with the mol­ecules forming a columnar structure. The columns are linked into chains parallel to the b axis by C—H⋯O inter­actions.

Related literature

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Tsumuki et al. (2011[Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.]); Sakamoto et al. (2012[Sakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454.]); Isogai et al. (2013[Isogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71.]); Tsumuki et al. (2013[Tsumuki, T., Okamoto, A., Oike, H. & Yonezawa, N. (2013). Acta Cryst. E69, o369.]); Yoshiwaka et al. (2013[Yoshiwaka, S., Hijikata, D., Sasagawa, K., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o242.]).

[Scheme 1]

Experimental

Crystal data
  • C36H28O4

  • Mr = 524.58

  • Triclinic, [P \overline 1]

  • a = 8.76532 (16) Å

  • b = 11.4266 (2) Å

  • c = 14.1972 (3) Å

  • α = 99.080 (1)°

  • β = 99.036 (1)°

  • γ = 104.277 (1)°

  • V = 1331.94 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.689, Tmax = 0.877

  • 24143 measured reflections

  • 4800 independent reflections

  • 4142 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.07

  • 4800 reflections

  • 364 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg6 are the centroids of the C16–C21 and C27–C32 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg4i 0.95 2.77 3.5662 (15) 142
C7—H7⋯Cg6i 0.95 2.76 3.5662 (16) 143
C30—H30⋯O2ii 0.95 2.53 3.3289 (19) 142
C34—H34A⋯O1iii 0.98 2.47 3.423 (2) 163
C35—H35B⋯O2iv 0.99 2.59 3.5476 (17) 163
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+2; (iii) -x, -y+1, -z+1; (iv) -x, -y+2, -z+2.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & &Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008) and [2,7-dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone (Tsumuki et al., 2011). Furthermore, crystal structures of 1,8-diaroylnaphthalene analogues bearing various alkoxy and aryloxy groups at the 2,7-positions such as 1,8-dibenzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2012) and [8-(4-phenoxybenzoyl)-2,7-bis(propan-2-yloxy)naphthalen-1-yl](4-phenoxyphenyl)methanone (Yoshiwaka et al., 2013) have been also revealed. Some 1,8-diaroylnaphthalene compounds bearing the ethoxy group, {2,7-diethoxy-8-[(naphthalen-2-yl)-carbonyl]naphthalen-1-yl}(naphthalen-2-yl)methanone (Tsumuki et al., 2013) and (8-benzoyl-2,7-diethoxynaphthalen-1-yl)(phenyl)methanone (Isogai et al., 2013), are stabilized by the molecular packing of C—H···O interactions between the aroyl groups. As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, the 2,7-diethoxynaphthalene bearing α-naphthoyl groups at the 1,8-positions, is reported on herein.

The molecular structure of the title molecule is illustrated in Fig.1. The two terminal naphthoyl groups are oriented in opposite directions and are twisted away from the central 2,7-diethoxynaphthalene unit. The carbonyl moieties deviate slightly from the attached naphthalene rings. The dihedral angle between the two naphthalene rings of the terminal naphthoyl groups (C12–C21 and C23–C32) is 76.59 (4)°. The dihedral angles between the terminal naphthalene rings and the central naphthalene ring (C1–C10) are 86.48 (4) and 83.97 (4)°. The torsion angles between the carbonyl moieties and the central naphthalene ring are -60.91 (16)° (C10—C1—C11—O1) and -65.50 (17)° (C10—C9—C22—O2), and those between the carbonyl moieties and the terminal naphthalene rings are -47.50 (17)° (O1—C11—C12—C21) and -46.38 (17)° (O2—C22—C23—C32).

In the molecular packing, C—H···π interactions between the central naphthalene rings and the naphthoyl groups are observed along the a axis, and form columnar structures (Fig. 2, 3 and Table 1). Each column is linked into chains along the b axis by C—H···O interactions (Fig. 4 and Table 1).

Related literature top

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Nakaema et al. (2008); Tsumuki et al. (2011); Sakamoto et al. (2012); Isogai et al. (2013); Tsumuki et al. (2013); Yoshiwaka et al. (2013).

Experimental top

To a solution of 1-naphthoyl chloride (630 mg, 3.3 mmol) and TiCl4 (1.88 g, 9.9 mmol) in CH2Cl2 (2.5 ml), 2,7-diethoxynaphthalene (220 mg, 1.0 mmol) was added. The reaction mixture was stirred at r.t. for 3 h, then poured into ice-cold water (20 ml). The aqueous layer was extracted with CHCl3 (20 ml × 3). The combined organic extracts were washed with 2 M aqueous NaOH (25 ml × 3) followed by washing with brine (25 ml × 3). The organic layer was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 95%). The crude product was purified by recrystallization from chloroform (isolated yield 60%). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from chloroform.

1H NMR δ (500 MHz, CDCl3): 0.57 (6H, broad), 3.78 (4H, broad), 7.13 (2H, d, J = 9.0 Hz), 7.27–7.33 (6H, m), 7.71–7.83 (6H, m), 7.91 (2H, d, J = 9.0 Hz), 8.15 (2H, broad) p.p.m.; 13C NMR δ (125 MHz, CDCl3): 14.12, 64.99, 112.73, 124.29, 124.70,125.53, 125.65, 126.45, 127.26, 127.88, 130.31, 130.52, 130.85, 132.33, 132.39,133.61, 137.15, 156.87, 199.49 p.p.m.; IR (KBr): 1658, 1607, 1512, 1471, 1275 cm-1; HRMS (m/z): [M+H]+ calcd. for C36H29O4, 525.2066, found, 525.2032.

Refinement top

All the H atoms were located in a difference Fourier map and were subsequently refined as riding atoms: C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 (methylene) Å, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure, viewed down the a axis.
[Figure 3] Fig. 3. A partial view of the crystal packing of the title compound, showing the intermolecular C—H···π interactions. Cg4 and Cg6 are centroid of the C16–C21 and C27–C32 (see Table 1 for details; symmetry codes: (i) 1 + x, y, z).
[Figure 4] Fig. 4. A partial view of the crystal packing of the title compound, showing the intermolecular C—H···O interactions (see Table 1 for details; symmetry codes: (ii) 1 - x, 2 - y, 2 - z; (iii) - x, - 1 - y, - 1 - z (iv); - x, 2 - y, 2 - z).
{2,7-Diethoxy-8-[(naphthalen-1-yl)carbonyl]naphthalen-1-yl}(naphthalen-1-yl)methanone top
Crystal data top
C36H28O4Z = 2
Mr = 524.58F(000) = 552
Triclinic, P1Dx = 1.308 Mg m3
Hall symbol: -P 1Melting point = 506.6–508.4 K
a = 8.76532 (16) ÅCu Kα radiation, λ = 1.54187 Å
b = 11.4266 (2) ÅCell parameters from 20940 reflections
c = 14.1972 (3) Åθ = 3.2–68.2°
α = 99.080 (1)°µ = 0.67 mm1
β = 99.036 (1)°T = 193 K
γ = 104.277 (1)°Platelet, colorless
V = 1331.94 (4) Å30.60 × 0.40 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4800 independent reflections
Radiation source: rotating anode4142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.2°
ω scansh = 1010
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1313
Tmin = 0.689, Tmax = 0.877l = 1717
24143 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.058P)2 + 0.2087P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4800 reflectionsΔρmax = 0.20 e Å3
364 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (5)
Crystal data top
C36H28O4γ = 104.277 (1)°
Mr = 524.58V = 1331.94 (4) Å3
Triclinic, P1Z = 2
a = 8.76532 (16) ÅCu Kα radiation
b = 11.4266 (2) ŵ = 0.67 mm1
c = 14.1972 (3) ÅT = 193 K
α = 99.080 (1)°0.60 × 0.40 × 0.20 mm
β = 99.036 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4800 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4142 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.877Rint = 0.043
24143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
4800 reflectionsΔρmin = 0.16 e Å3
364 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08739 (10)0.64809 (8)0.66867 (6)0.0379 (2)
O20.19599 (10)0.86929 (8)0.83185 (6)0.0388 (2)
O30.20151 (10)0.67148 (9)0.48478 (6)0.0419 (2)
O40.01872 (10)0.83966 (9)1.00812 (6)0.0429 (2)
C10.13726 (14)0.73032 (10)0.65387 (9)0.0312 (3)
C20.25357 (15)0.70050 (11)0.56859 (9)0.0345 (3)
C30.41501 (15)0.69700 (12)0.56983 (10)0.0399 (3)
H30.49240.67700.51060.048*
C40.45851 (15)0.72264 (12)0.65675 (10)0.0407 (3)
H40.56710.72110.65760.049*
C50.34659 (14)0.75145 (11)0.74590 (9)0.0360 (3)
C60.39763 (15)0.77691 (13)0.83424 (10)0.0429 (3)
H60.50730.77420.83250.052*
C70.29423 (16)0.80531 (13)0.92212 (10)0.0430 (3)
H70.33050.82310.98100.052*
C80.13216 (15)0.80769 (12)0.92383 (9)0.0364 (3)
C90.07595 (14)0.78095 (11)0.83942 (9)0.0313 (3)
C100.18165 (14)0.75431 (10)0.74623 (9)0.0313 (3)
C110.02752 (14)0.72402 (10)0.63903 (8)0.0306 (3)
C120.11099 (14)0.81261 (11)0.58353 (9)0.0327 (3)
C130.11822 (17)0.93448 (12)0.61063 (10)0.0440 (3)
H130.06760.95960.66170.053*
C140.1996 (2)1.02299 (13)0.56390 (13)0.0560 (4)
H140.20631.10760.58480.067*
C150.26881 (18)0.98776 (14)0.48875 (12)0.0530 (4)
H150.32461.04840.45810.064*
C160.25873 (15)0.86244 (12)0.45584 (9)0.0402 (3)
C170.31914 (16)0.82289 (15)0.37281 (10)0.0489 (4)
H170.37430.88260.34120.059*
C180.29954 (16)0.70146 (15)0.33786 (10)0.0481 (4)
H180.33740.67660.28090.058*
C190.22326 (15)0.61257 (13)0.38595 (9)0.0427 (3)
H190.21060.52770.36150.051*
C200.16714 (14)0.64674 (11)0.46737 (9)0.0351 (3)
H200.11800.58530.49970.042*
C210.18097 (13)0.77222 (11)0.50452 (8)0.0325 (3)
C220.10078 (14)0.78898 (10)0.85622 (8)0.0307 (3)
C230.15239 (14)0.69517 (11)0.90702 (8)0.0321 (3)
C240.06855 (16)0.57328 (11)0.87330 (9)0.0385 (3)
H240.02380.55180.82220.046*
C250.11646 (19)0.47971 (13)0.91269 (11)0.0484 (3)
H250.05830.39570.88730.058*
C260.2463 (2)0.50928 (14)0.98733 (11)0.0515 (4)
H260.27970.44551.01280.062*
C270.33248 (16)0.63426 (14)1.02763 (9)0.0426 (3)
C280.46076 (18)0.66683 (18)1.10997 (11)0.0558 (4)
H280.49480.60361.13600.067*
C290.53555 (17)0.78660 (18)1.15211 (10)0.0583 (4)
H290.61980.80661.20800.070*
C300.48893 (16)0.88165 (16)1.11340 (10)0.0518 (4)
H300.54100.96541.14370.062*
C310.36913 (15)0.85385 (13)1.03242 (9)0.0408 (3)
H310.34080.91881.00610.049*
C320.28633 (14)0.72967 (12)0.98702 (8)0.0351 (3)
C330.31667 (16)0.62668 (13)0.39438 (9)0.0426 (3)
H33A0.37550.68820.38200.051*
H33B0.39540.54890.39650.051*
C340.2252 (2)0.60500 (16)0.31584 (10)0.0560 (4)
H34A0.16640.54490.32940.067*
H34B0.14900.68290.31380.067*
H34C0.30050.57300.25290.067*
C350.06724 (16)0.86450 (12)1.09918 (9)0.0395 (3)
H35A0.15080.79221.10630.047*
H35B0.11180.93641.10280.047*
C360.07978 (18)0.89118 (14)1.17804 (10)0.0472 (3)
H36A0.12550.82091.17170.057*
H36B0.05040.90481.24190.057*
H36C0.15950.96521.17210.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0401 (5)0.0440 (5)0.0379 (5)0.0200 (4)0.0118 (4)0.0157 (4)
O20.0334 (5)0.0402 (5)0.0419 (5)0.0070 (4)0.0067 (4)0.0117 (4)
O30.0345 (5)0.0570 (6)0.0308 (5)0.0128 (4)0.0012 (4)0.0042 (4)
O40.0364 (5)0.0645 (6)0.0302 (5)0.0211 (4)0.0071 (4)0.0055 (4)
C10.0292 (6)0.0307 (6)0.0343 (6)0.0085 (5)0.0052 (5)0.0093 (5)
C20.0336 (6)0.0352 (6)0.0346 (6)0.0094 (5)0.0049 (5)0.0094 (5)
C30.0307 (6)0.0474 (7)0.0384 (7)0.0080 (5)0.0011 (5)0.0119 (6)
C40.0268 (6)0.0497 (8)0.0474 (7)0.0108 (5)0.0055 (5)0.0169 (6)
C50.0287 (6)0.0412 (7)0.0405 (7)0.0112 (5)0.0070 (5)0.0132 (5)
C60.0296 (6)0.0597 (8)0.0467 (8)0.0186 (6)0.0125 (5)0.0177 (6)
C70.0386 (7)0.0600 (8)0.0387 (7)0.0223 (6)0.0144 (5)0.0144 (6)
C80.0337 (6)0.0440 (7)0.0345 (6)0.0150 (5)0.0059 (5)0.0108 (5)
C90.0301 (6)0.0331 (6)0.0337 (6)0.0122 (5)0.0073 (5)0.0091 (5)
C100.0292 (6)0.0313 (6)0.0353 (6)0.0099 (5)0.0059 (5)0.0104 (5)
C110.0311 (6)0.0336 (6)0.0257 (5)0.0091 (5)0.0033 (4)0.0041 (5)
C120.0274 (6)0.0352 (6)0.0343 (6)0.0083 (5)0.0016 (5)0.0088 (5)
C130.0447 (7)0.0376 (7)0.0500 (8)0.0126 (6)0.0082 (6)0.0093 (6)
C140.0584 (9)0.0336 (7)0.0743 (11)0.0085 (6)0.0098 (8)0.0168 (7)
C150.0466 (8)0.0470 (8)0.0667 (10)0.0039 (6)0.0119 (7)0.0298 (7)
C160.0292 (6)0.0499 (8)0.0415 (7)0.0067 (5)0.0026 (5)0.0206 (6)
C170.0341 (7)0.0743 (10)0.0429 (8)0.0104 (6)0.0093 (6)0.0312 (7)
C180.0372 (7)0.0768 (11)0.0331 (7)0.0175 (7)0.0084 (5)0.0155 (7)
C190.0342 (7)0.0552 (8)0.0363 (7)0.0126 (6)0.0048 (5)0.0044 (6)
C200.0283 (6)0.0410 (7)0.0340 (6)0.0067 (5)0.0042 (5)0.0084 (5)
C210.0233 (5)0.0415 (7)0.0317 (6)0.0071 (5)0.0006 (4)0.0128 (5)
C220.0300 (6)0.0348 (6)0.0265 (6)0.0098 (5)0.0049 (5)0.0034 (5)
C230.0303 (6)0.0391 (6)0.0311 (6)0.0136 (5)0.0102 (5)0.0089 (5)
C240.0417 (7)0.0396 (7)0.0356 (6)0.0119 (5)0.0100 (5)0.0086 (5)
C250.0640 (9)0.0384 (7)0.0488 (8)0.0193 (6)0.0170 (7)0.0132 (6)
C260.0662 (10)0.0569 (9)0.0508 (8)0.0367 (8)0.0221 (7)0.0259 (7)
C270.0406 (7)0.0661 (9)0.0345 (7)0.0275 (6)0.0158 (5)0.0210 (6)
C280.0453 (8)0.0967 (13)0.0415 (8)0.0351 (8)0.0136 (6)0.0318 (8)
C290.0339 (7)0.1093 (14)0.0337 (7)0.0193 (8)0.0065 (6)0.0219 (8)
C300.0329 (7)0.0773 (10)0.0369 (7)0.0036 (7)0.0087 (6)0.0046 (7)
C310.0311 (6)0.0548 (8)0.0358 (7)0.0099 (6)0.0092 (5)0.0079 (6)
C320.0309 (6)0.0505 (7)0.0303 (6)0.0171 (5)0.0125 (5)0.0116 (5)
C330.0426 (7)0.0432 (7)0.0364 (7)0.0109 (6)0.0042 (5)0.0059 (5)
C340.0647 (10)0.0738 (10)0.0340 (7)0.0399 (8)0.0017 (6)0.0034 (7)
C350.0448 (7)0.0451 (7)0.0345 (7)0.0209 (6)0.0129 (6)0.0074 (5)
C360.0519 (8)0.0569 (8)0.0339 (7)0.0207 (7)0.0083 (6)0.0042 (6)
Geometric parameters (Å, º) top
O1—C111.2148 (14)C18—H180.9500
O2—C221.2131 (14)C19—C201.3644 (18)
O3—C21.3617 (15)C19—H190.9500
O3—C331.4350 (14)C20—C211.4157 (18)
O4—C81.3650 (15)C20—H200.9500
O4—C351.4315 (15)C22—C231.5015 (16)
C1—C21.3901 (16)C23—C241.3723 (17)
C1—C101.4301 (17)C23—C321.4266 (16)
C1—C111.5093 (16)C24—C251.4031 (18)
C2—C31.4088 (18)C24—H240.9500
C3—C41.3576 (19)C25—C261.361 (2)
C3—H30.9500C25—H250.9500
C4—C51.4113 (17)C26—C271.418 (2)
C4—H40.9500C26—H260.9500
C5—C61.4081 (18)C27—C281.419 (2)
C5—C101.4373 (17)C27—C321.4239 (18)
C6—C71.3621 (19)C28—C291.355 (2)
C6—H60.9500C28—H280.9500
C7—C81.4104 (18)C29—C301.409 (2)
C7—H70.9500C29—H290.9500
C8—C91.3843 (17)C30—C311.3661 (19)
C9—C101.4319 (16)C30—H300.9500
C9—C221.5073 (16)C31—C321.4185 (19)
C11—C121.4994 (16)C31—H310.9500
C12—C131.3678 (18)C33—C341.496 (2)
C12—C211.4283 (17)C33—H33A0.9900
C13—C141.406 (2)C33—H33B0.9900
C13—H130.9500C34—H34A0.9800
C14—C151.363 (2)C34—H34B0.9800
C14—H140.9500C34—H34C0.9800
C15—C161.411 (2)C35—C361.5008 (19)
C15—H150.9500C35—H35A0.9900
C16—C171.421 (2)C35—H35B0.9900
C16—C211.4251 (17)C36—H36A0.9800
C17—C181.356 (2)C36—H36B0.9800
C17—H170.9500C36—H36C0.9800
C18—C191.404 (2)
C2—O3—C33119.13 (10)C21—C20—H20119.5
C8—O4—C35118.97 (10)C20—C21—C16118.15 (12)
C2—C1—C10119.84 (11)C20—C21—C12123.61 (10)
C2—C1—C11114.61 (10)C16—C21—C12118.08 (11)
C10—C1—C11125.36 (10)O2—C22—C23122.19 (10)
O3—C2—C1115.41 (11)O2—C22—C9121.24 (10)
O3—C2—C3122.72 (11)C23—C22—C9116.54 (10)
C1—C2—C3121.84 (12)C24—C23—C32120.11 (11)
C4—C3—C2119.11 (11)C24—C23—C22118.12 (11)
C4—C3—H3120.4C32—C23—C22121.76 (11)
C2—C3—H3120.4C23—C24—C25121.34 (13)
C3—C4—C5121.73 (12)C23—C24—H24119.3
C3—C4—H4119.1C25—C24—H24119.3
C5—C4—H4119.1C26—C25—C24119.97 (13)
C6—C5—C4119.63 (11)C26—C25—H25120.0
C6—C5—C10120.35 (11)C24—C25—H25120.0
C4—C5—C10120.01 (12)C25—C26—C27120.78 (12)
C7—C6—C5121.85 (12)C25—C26—H26119.6
C7—C6—H6119.1C27—C26—H26119.6
C5—C6—H6119.1C26—C27—C28121.37 (13)
C6—C7—C8118.56 (12)C26—C27—C32119.59 (12)
C6—C7—H7120.7C28—C27—C32119.00 (14)
C8—C7—H7120.7C29—C28—C27121.08 (14)
O4—C8—C9115.18 (11)C29—C28—H28119.5
O4—C8—C7122.69 (11)C27—C28—H28119.5
C9—C8—C7122.11 (11)C28—C29—C30120.29 (13)
C8—C9—C10120.16 (11)C28—C29—H29119.9
C8—C9—C22114.25 (10)C30—C29—H29119.9
C10—C9—C22125.53 (10)C31—C30—C29120.27 (15)
C1—C10—C9125.67 (11)C31—C30—H30119.9
C1—C10—C5117.42 (11)C29—C30—H30119.9
C9—C10—C5116.91 (11)C30—C31—C32121.15 (14)
O1—C11—C12121.76 (11)C30—C31—H31119.4
O1—C11—C1121.13 (10)C32—C31—H31119.4
C12—C11—C1117.07 (10)C31—C32—C27118.16 (12)
C13—C12—C21120.45 (11)C31—C32—C23123.58 (11)
C13—C12—C11117.95 (11)C27—C32—C23118.12 (12)
C21—C12—C11121.60 (10)O3—C33—C34107.15 (11)
C12—C13—C14120.83 (14)O3—C33—H33A110.3
C12—C13—H13119.6C34—C33—H33A110.3
C14—C13—H13119.6O3—C33—H33B110.3
C15—C14—C13120.21 (14)C34—C33—H33B110.3
C15—C14—H14119.9H33A—C33—H33B108.5
C13—C14—H14119.9C33—C34—H34A109.5
C14—C15—C16120.85 (12)C33—C34—H34B109.5
C14—C15—H15119.6H34A—C34—H34B109.5
C16—C15—H15119.6C33—C34—H34C109.5
C15—C16—C17121.61 (12)H34A—C34—H34C109.5
C15—C16—C21119.50 (13)H34B—C34—H34C109.5
C17—C16—C21118.84 (13)O4—C35—C36107.01 (11)
C18—C17—C16121.22 (12)O4—C35—H35A110.3
C18—C17—H17119.4C36—C35—H35A110.3
C16—C17—H17119.4O4—C35—H35B110.3
C17—C18—C19119.91 (13)C36—C35—H35B110.3
C17—C18—H18120.0H35A—C35—H35B108.6
C19—C18—H18120.0C35—C36—H36A109.5
C20—C19—C18120.76 (13)C35—C36—H36B109.5
C20—C19—H19119.6H36A—C36—H36B109.5
C18—C19—H19119.6C35—C36—H36C109.5
C19—C20—C21121.07 (12)H36A—C36—H36C109.5
C19—C20—H20119.5H36B—C36—H36C109.5
C33—O3—C2—C1173.31 (10)C14—C15—C16—C212.7 (2)
C33—O3—C2—C34.73 (17)C15—C16—C17—C18175.60 (13)
C10—C1—C2—O3175.91 (10)C21—C16—C17—C182.06 (19)
C11—C1—C2—O30.66 (15)C16—C17—C18—C192.2 (2)
C10—C1—C2—C32.16 (18)C17—C18—C19—C200.5 (2)
C11—C1—C2—C3177.41 (11)C18—C19—C20—C211.36 (18)
O3—C2—C3—C4177.47 (11)C19—C20—C21—C161.48 (17)
C1—C2—C3—C40.46 (19)C19—C20—C21—C12173.70 (11)
C2—C3—C4—C50.7 (2)C15—C16—C21—C20177.51 (11)
C3—C4—C5—C6179.75 (12)C17—C16—C21—C200.20 (17)
C3—C4—C5—C100.06 (19)C15—C16—C21—C122.06 (17)
C4—C5—C6—C7179.93 (12)C17—C16—C21—C12175.65 (10)
C10—C5—C6—C70.3 (2)C13—C12—C21—C20174.76 (12)
C5—C6—C7—C80.7 (2)C11—C12—C21—C205.09 (17)
C35—O4—C8—C9177.76 (10)C13—C12—C21—C160.42 (16)
C35—O4—C8—C73.98 (18)C11—C12—C21—C16179.73 (10)
C6—C7—C8—O4177.47 (12)C8—C9—C22—O2111.50 (13)
C6—C7—C8—C90.7 (2)C10—C9—C22—O265.60 (17)
O4—C8—C9—C10175.82 (10)C8—C9—C22—C2366.74 (14)
C7—C8—C9—C102.45 (19)C10—C9—C22—C23116.16 (12)
O4—C8—C9—C221.45 (16)O2—C22—C23—C24132.46 (12)
C7—C8—C9—C22179.73 (11)C9—C22—C23—C2449.32 (15)
C2—C1—C10—C9177.29 (11)O2—C22—C23—C3246.38 (17)
C11—C1—C10—C92.59 (18)C9—C22—C23—C32131.84 (11)
C2—C1—C10—C52.66 (17)C32—C23—C24—C253.29 (18)
C11—C1—C10—C5177.36 (10)C22—C23—C24—C25175.57 (12)
C8—C9—C10—C1177.30 (11)C23—C24—C25—C261.5 (2)
C22—C9—C10—C10.36 (19)C24—C25—C26—C271.4 (2)
C8—C9—C10—C52.76 (17)C25—C26—C27—C28175.37 (13)
C22—C9—C10—C5179.70 (10)C25—C26—C27—C322.4 (2)
C6—C5—C10—C1178.61 (11)C26—C27—C28—C29175.54 (13)
C4—C5—C10—C11.59 (17)C32—C27—C28—C292.3 (2)
C6—C5—C10—C91.45 (17)C27—C28—C29—C301.3 (2)
C4—C5—C10—C9178.35 (11)C28—C29—C30—C310.7 (2)
C2—C1—C11—O1114.04 (12)C29—C30—C31—C321.7 (2)
C10—C1—C11—O160.90 (16)C30—C31—C32—C270.59 (18)
C2—C1—C11—C1264.06 (14)C30—C31—C32—C23175.03 (11)
C10—C1—C11—C12121.00 (12)C26—C27—C32—C31176.52 (12)
O1—C11—C12—C13132.64 (13)C28—C27—C32—C311.34 (17)
C1—C11—C12—C1349.27 (15)C26—C27—C32—C230.66 (18)
O1—C11—C12—C2147.51 (16)C28—C27—C32—C23177.21 (11)
C1—C11—C12—C21130.58 (11)C24—C23—C32—C31173.48 (12)
C21—C12—C13—C142.40 (19)C22—C23—C32—C317.71 (17)
C11—C12—C13—C14177.75 (12)C24—C23—C32—C272.15 (17)
C12—C13—C14—C151.9 (2)C22—C23—C32—C27176.67 (11)
C13—C14—C15—C160.7 (2)C2—O3—C33—C34179.03 (11)
C14—C15—C16—C17175.00 (14)C8—O4—C35—C36177.51 (11)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg6 are the centroids of the C16–C21 and C27–C32 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg4i0.952.773.5662 (15)142
C7—H7···Cg6i0.952.763.5662 (16)143
C30—H30···O2ii0.952.533.3289 (19)142
C34—H34A···O1iii0.982.473.423 (2)163
C35—H35B···O2iv0.992.593.5476 (17)163
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+2; (iii) x, y+1, z+1; (iv) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC36H28O4
Mr524.58
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)8.76532 (16), 11.4266 (2), 14.1972 (3)
α, β, γ (°)99.080 (1), 99.036 (1), 104.277 (1)
V3)1331.94 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.60 × 0.40 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.689, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
24143, 4800, 4142
Rint0.043
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.07
No. of reflections4800
No. of parameters364
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 1998), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg4 and Cg6 are the centroids of the C16–C21 and C27–C32 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg4i0.952.773.5662 (15)142
C7—H7···Cg6i0.952.763.5662 (16)143
C30—H30···O2ii0.952.533.3289 (19)142
C34—H34A···O1iii0.982.473.423 (2)163
C35—H35B···O2iv0.992.593.5476 (17)163
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+2; (iii) x, y+1, z+1; (iv) x, y+2, z+2.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by an Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & &Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIsogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71.  CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTsumuki, T., Okamoto, A., Oike, H. & Yonezawa, N. (2013). Acta Cryst. E69, o369.  CSD CrossRef IUCr Journals Google Scholar
First citationYoshiwaka, S., Hijikata, D., Sasagawa, K., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o242.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds