organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Dimeth­­oxy­pyridin-3-yl)-9-methyl-9H-carbazole-3-sulfonamide

aInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantan Xili 1#, Beijing, People's Republic of China
*Correspondence e-mail: zongyingliu@263.net

(Received 21 February 2013; accepted 18 March 2013; online 23 March 2013)

In the title compound, C20H19N3O4S, a novel tubulin ligand active against human cancer, the dihedral angle between the pyridine ring and the carbazole ring system is 42.87 (10)°. In the crystal, the mol­ecules are held together by N—H⋯O and C—H⋯O hydrogen bonds into layers, which are assembled into a three-dimensional network via ππ stacking inter­actions between inversion-related pyridine rings, with centroid–centroid distances of 3.5101 (12) Å.

Related literature

For the synthesis and properties of the compound and its derivatives, see Hu et al. (2007[Hu, L.-X., Li, Z.-R., Wang, Y.-M., Wu, Y.-B., Jiang, J.-D. & Boykin, D. W. (2007). Bioorg. Med. Chem. Lett. 17, 1194-1196.]). For tubulin as a target for anti­cancer activity, see Wang et al. (2008[Wang, Y.-M., Hu, L.-X., Liu, Z.-M., Uou, X.-F., Zhang, S.-H., Qu, J.-R., Li, Z.-R., Li, Y., Kong, W.-J., He, H.-W., Shao, R.-G., Zhang, L.-R., Peng, Z.-G., Boykin, D. W. & Jiang, J.-D. (2008). Clin. Cancer Res. 14, 6218-6227.]); Jackson et al. (2007[Jackson, J. R., Patrick, D. R., Dar, M. M. & Huang, P. S. (2007). Nat. Rev. Cancer, 7, 107-117.]); Jordan et al. (1991[Jordan, M. A., Thrower, D. & Wilson, L. (1991). Cancer Res. 51, 2212-2222.]); Mollinedo & Gajate (2003[Mollinedo, F. & Gajate, C. (2003). Apoptosis, 8, 413-450.]); Wilson et al. (1999[Wilson, L., Panda, D. & Jordan, M. A. (1999). Cell Struct. Funct. 24, 329-335.]); Yvon et al. (1999[Yvon, A. M., Wadsworth, P. & Jordan, M. A. (1999). Mol. Biol. Cell, 10, 947-959.]). For the stability of the temperature controller used for the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N3O4S

  • Mr = 397.45

  • Monoclinic, P 21 /c

  • a = 13.5078 (2) Å

  • b = 7.9272 (1) Å

  • c = 20.9276 (3) Å

  • β = 124.027 (1)°

  • V = 1857.20 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.83 mm−1

  • T = 120 K

  • 0.45 × 0.36 × 0.32 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.475, Tmax = 0.556

  • 11460 measured reflections

  • 3280 independent reflections

  • 3161 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.06

  • 3280 reflections

  • 262 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.81 (2) 2.56 (2) 3.3387 (18) 163 (2)
C18—H18A⋯O1ii 0.96 2.45 3.398 (2) 170
C10—H10⋯O2iii 0.93 2.56 3.4887 (19) 177
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Tubulin is a target for anticancer drugs (Jordan et al., 1991; Yvon et al., 1999; Wilson et al., 1999). The representative with this mode of action are the Vinca alkaloids (such as vincristine) and Taxol analogues such as paclitaxel (Jackson et al., 2007; Mollinedo et al., 2003). In this research area, N-(2,6-dimethoxypyridine-3-yl)-9-methylcarbazole-3-sulfonamide (IG-105, IMB-105) showed a promising anti-proliferative activity in human cancer cell lines. The title compound inhibits micro-tubule assembly by binding at the colchicine pocket and shows a potent anticancer activity in vitro and in vivo and was safe in mice (Wang et al., 2008).

The title molecule is shown in Fig. 1. In the crystal structure, the carbazole CH3 hydrogens are disordered. The distance is 5.0286 (12) Å between the respective centroids of pyridine ring and the 6-membered ring C1\C2\C3\C4\C5\C6, and the dihedral angle between their planes is 42.87 (10) °. The intermolecular interactions that are present in the structure are N—H···O and C—H···O hydrogen bonds (Table 1) and π-π stacking interactions between inversion-related pyridine rings, with centroid-centroid distance = 3.5101 (12) Å (symmetry codes x, y, z and 2-x, -y, 1-z).

Related literature top

For the synthesis and properties of the compound and its derivatives, see Hu et al. (2007). For tubulin as a target for anticancer activity, see Wang et al. (2008); Jackson et al. (2007); Jordan et al. (1991); Mollinedo & Gajate (2003); Wilson et al. (1999); Yvon et al. (1999). For the stability of the temperature controller used for the data collection, see Cosier & Glazer (1986).

Experimental top

To a solution of 3-amino-2,6-dimethoxypyridine (2.6 g, 16.8 mmol) in 45 ml dimethylfornamide at room temperature, prepared 9-methylcarbazole-3-sulfonyl chloride (5.0 g, 16.9 mmol) was added. After stirring for 5 min, triethylamine (3.6 ml, 25.6 mmol) was added, with continued stirring for 2 h. After adding ice water (50 ml), the precipitate was filtered, washed with water (20 ml) and dried, recrystallized with anhydrous ethanol, dried in vacuo to give N- (2,6-dimethoxypyridine-3-yl)-9-methylcarbazole-3-sulfonamide as a colourless crystalline solid (5.2 g, 78%; mp: 170–172 °C).

1H NMR (DMSO δ): 3.40 (3H, s), 3.69 (3H, s), 3.89 (3H, s), 6.28(1H, d, J = 8.0 Hz), 7.26 (1H, t, J = 7.2 Hz), 7.44 (1H, d, J = 8.0 Hz), 7.52(1H, dd, J = 8.0, 7.2 Hz), 7.63 (1H, d, J = 8.0 Hz), 7.70 (1H, d, J = 8.8 Hz), 7.76 (1H, d, J = 8.8 Hz), 8.21 (1H, d, J = 8.0 Hz), 8.49 (1H, s), 9.32 (1H, s).

13C NMR (DMSO δ): 160.2, 156.7, 142.2, 141.3, 139.3, 130.4, 126.7, 124.3, 121.6, 121.1, 120.5, 119.9, 119.8, 112.2, 109.8, 109.1, 100.6, 53.4, 52.9, 29.2.

Single crystals suitable for X-ray analysis were obtained by slow evaporation of a mixed solvent of dichloromethane and cyclohexane (3:1 v/v).

Refinement top

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93–0.96 Å, Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(methyl C). Hydrogen atoms bonded to nitrogen atoms (N1) were located in a difference map and their positions refined using fixed isotropic U values.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing the atom-numbering scheme. The displacement parameters are shown at the 30% probability level.
[Figure 2] Fig. 2. Part of packing of the title compound, viewed down the b direction. Dashed lines indicate hydrogen bonds.
N-(2,6-Dimethoxypyridin-3-yl)-9-methyl-9H-carbazole-3-sulfonamide top
Crystal data top
C20H19N3O4SF(000) = 832
Mr = 397.45Dx = 1.421 Mg m3
Monoclinic, P21/cMelting point = 443–445 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 13.5078 (2) ÅCell parameters from 7976 reflections
b = 7.9272 (1) Åθ = 3.3–66.7°
c = 20.9276 (3) ŵ = 1.83 mm1
β = 124.027 (1)°T = 120 K
V = 1857.20 (4) Å3Block, colourless
Z = 40.45 × 0.36 × 0.32 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3280 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3161 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4713 pixels mm-1θmax = 66.8°, θmin = 4.0°
ω scansh = 1613
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 98
Tmin = 0.475, Tmax = 0.556l = 2424
11460 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0468P)2 + 1.1436P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3280 reflectionsΔρmax = 0.45 e Å3
262 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0078 (4)
Crystal data top
C20H19N3O4SV = 1857.20 (4) Å3
Mr = 397.45Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.5078 (2) ŵ = 1.83 mm1
b = 7.9272 (1) ÅT = 120 K
c = 20.9276 (3) Å0.45 × 0.36 × 0.32 mm
β = 124.027 (1)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3280 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3161 reflections with I > 2σ(I)
Tmin = 0.475, Tmax = 0.556Rint = 0.027
11460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.45 e Å3
3280 reflectionsΔρmin = 0.52 e Å3
262 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.69096 (3)0.28850 (4)0.403260 (19)0.01331 (14)
O10.62355 (9)0.15207 (14)0.35261 (6)0.0178 (3)
O20.68743 (10)0.45199 (14)0.37286 (6)0.0195 (3)
O30.95214 (10)0.42247 (14)0.55767 (6)0.0209 (3)
O40.93551 (10)0.14336 (14)0.60496 (6)0.0208 (3)
N10.83268 (12)0.22943 (17)0.45142 (8)0.0152 (3)
H10.8755 (17)0.301 (3)0.4817 (11)0.019 (5)*
N20.94314 (11)0.14034 (16)0.58206 (7)0.0166 (3)
N30.59643 (11)0.36785 (16)0.64261 (7)0.0167 (3)
C10.65608 (13)0.30951 (19)0.47199 (8)0.0137 (3)
C20.61415 (13)0.16778 (19)0.48958 (9)0.0161 (3)
H20.60130.06750.46290.019*
C30.59167 (13)0.1756 (2)0.54624 (9)0.0169 (3)
H30.56320.08220.55810.020*
C40.61299 (13)0.32797 (19)0.58516 (8)0.0148 (3)
C50.65942 (13)0.46985 (18)0.56913 (8)0.0141 (3)
C60.67969 (13)0.46111 (19)0.51119 (8)0.0143 (3)
H60.70820.55390.49900.017*
C70.67359 (13)0.6016 (2)0.62161 (8)0.0158 (3)
C80.63249 (13)0.5339 (2)0.66488 (8)0.0163 (3)
C90.63143 (14)0.6286 (2)0.72079 (9)0.0203 (3)
H90.60320.58370.74880.024*
C100.67411 (15)0.7918 (2)0.73269 (9)0.0224 (4)
H100.67430.85830.76940.027*
C110.71695 (15)0.8595 (2)0.69094 (9)0.0219 (4)
H110.74620.96930.70090.026*
C120.71658 (14)0.7660 (2)0.63491 (9)0.0188 (3)
H120.74440.81210.60690.023*
C130.91249 (13)0.01614 (19)0.55524 (9)0.0150 (3)
C140.86006 (13)0.05938 (19)0.47790 (8)0.0141 (3)
C150.83742 (13)0.0704 (2)0.42735 (9)0.0160 (3)
H150.80280.04690.37540.019*
C160.86582 (13)0.2349 (2)0.45332 (9)0.0173 (3)
H160.84930.32390.41980.021*
C170.92017 (13)0.26123 (19)0.53180 (9)0.0163 (3)
C180.54002 (16)0.2605 (2)0.66988 (10)0.0239 (4)
H18A0.57400.28340.72340.036*0.61 (2)
H18B0.55300.14430.66370.036*0.61 (2)
H18C0.45580.28310.64050.036*0.61 (2)
H18D0.48120.19050.62840.036*0.39 (2)
H18E0.50220.32960.68800.036*0.39 (2)
H18F0.59940.19080.71120.036*0.39 (2)
C190.99079 (19)0.0978 (2)0.68440 (10)0.0319 (4)
H19A0.99960.19650.71370.048*
H19B1.06800.04970.70410.048*
H19C0.94180.01670.68850.048*
C201.01784 (18)0.4455 (2)0.63937 (10)0.0326 (4)
H20A1.08640.37280.66410.049*
H20B1.04340.56080.65180.049*
H20C0.96780.41850.65710.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0165 (2)0.0117 (2)0.0116 (2)0.00097 (13)0.00782 (16)0.00084 (13)
O10.0184 (5)0.0184 (6)0.0143 (5)0.0000 (4)0.0077 (4)0.0026 (4)
O20.0266 (6)0.0147 (6)0.0192 (6)0.0027 (4)0.0141 (5)0.0049 (4)
O30.0268 (6)0.0119 (5)0.0196 (6)0.0000 (4)0.0103 (5)0.0013 (4)
O40.0320 (6)0.0150 (6)0.0142 (5)0.0026 (5)0.0123 (5)0.0031 (4)
N10.0163 (7)0.0117 (7)0.0168 (7)0.0023 (5)0.0088 (6)0.0022 (5)
N20.0185 (6)0.0149 (7)0.0160 (6)0.0023 (5)0.0094 (5)0.0001 (5)
N30.0223 (7)0.0151 (7)0.0159 (6)0.0003 (5)0.0128 (6)0.0003 (5)
C10.0148 (7)0.0133 (7)0.0118 (7)0.0011 (6)0.0067 (6)0.0000 (6)
C20.0188 (7)0.0107 (7)0.0180 (7)0.0013 (6)0.0098 (6)0.0025 (6)
C30.0207 (8)0.0121 (7)0.0193 (8)0.0025 (6)0.0121 (7)0.0009 (6)
C40.0160 (7)0.0144 (7)0.0134 (7)0.0018 (6)0.0078 (6)0.0018 (6)
C50.0152 (7)0.0108 (7)0.0134 (7)0.0010 (6)0.0062 (6)0.0003 (6)
C60.0152 (7)0.0115 (7)0.0155 (7)0.0001 (6)0.0081 (6)0.0014 (6)
C70.0161 (7)0.0145 (7)0.0134 (7)0.0028 (6)0.0062 (6)0.0006 (6)
C80.0172 (7)0.0156 (8)0.0123 (7)0.0039 (6)0.0060 (6)0.0012 (6)
C90.0221 (8)0.0232 (9)0.0137 (7)0.0056 (6)0.0089 (7)0.0001 (6)
C100.0248 (8)0.0222 (9)0.0141 (7)0.0068 (7)0.0071 (7)0.0038 (6)
C110.0232 (8)0.0153 (8)0.0187 (8)0.0014 (6)0.0064 (7)0.0045 (6)
C120.0209 (8)0.0150 (8)0.0172 (8)0.0014 (6)0.0086 (7)0.0000 (6)
C130.0160 (7)0.0138 (7)0.0158 (7)0.0031 (6)0.0093 (6)0.0033 (6)
C140.0137 (7)0.0126 (7)0.0158 (7)0.0004 (6)0.0081 (6)0.0001 (6)
C150.0148 (7)0.0181 (8)0.0141 (7)0.0004 (6)0.0075 (6)0.0011 (6)
C160.0186 (8)0.0147 (8)0.0179 (8)0.0025 (6)0.0097 (6)0.0042 (6)
C170.0163 (7)0.0121 (7)0.0202 (8)0.0024 (6)0.0101 (6)0.0002 (6)
C180.0367 (10)0.0200 (8)0.0252 (9)0.0000 (7)0.0235 (8)0.0021 (7)
C190.0539 (12)0.0235 (9)0.0157 (8)0.0099 (8)0.0179 (8)0.0045 (7)
C200.0452 (11)0.0200 (9)0.0190 (8)0.0022 (8)0.0096 (8)0.0048 (7)
Geometric parameters (Å, º) top
S1—O11.4291 (11)C8—C91.397 (2)
S1—O21.4327 (11)C9—C101.381 (2)
S1—N11.6554 (13)C9—H90.9300
S1—C11.7542 (15)C10—C111.397 (3)
O3—C171.3608 (19)C10—H100.9300
O3—C201.430 (2)C11—C121.385 (2)
O4—C131.3543 (18)C11—H110.9300
O4—C191.436 (2)C12—H120.9300
N1—C141.425 (2)C13—C141.399 (2)
N1—H10.80 (2)C14—C151.382 (2)
N2—C171.325 (2)C15—C161.382 (2)
N2—C131.329 (2)C15—H150.9300
N3—C41.3770 (19)C16—C171.390 (2)
N3—C81.390 (2)C16—H160.9300
N3—C181.455 (2)C18—H18A0.9600
C1—C61.388 (2)C18—H18B0.9600
C1—C21.397 (2)C18—H18C0.9600
C2—C31.380 (2)C18—H18D0.9600
C2—H20.9300C18—H18E0.9600
C3—C41.394 (2)C18—H18F0.9600
C3—H30.9300C19—H19A0.9600
C4—C51.416 (2)C19—H19B0.9600
C5—C61.386 (2)C19—H19C0.9600
C5—C71.449 (2)C20—H20A0.9600
C6—H60.9300C20—H20B0.9600
C7—C121.390 (2)C20—H20C0.9600
C7—C81.407 (2)
O1—S1—O2120.41 (6)C7—C12—H12120.8
O1—S1—N1106.10 (7)N2—C13—O4119.17 (13)
O2—S1—N1105.43 (7)N2—C13—C14123.64 (14)
O1—S1—C1109.15 (7)O4—C13—C14117.16 (13)
O2—S1—C1108.71 (7)C15—C14—C13117.10 (14)
N1—S1—C1106.10 (7)C15—C14—N1120.55 (13)
C17—O3—C20116.23 (13)C13—C14—N1122.34 (13)
C13—O4—C19116.68 (12)C14—C15—C16120.50 (14)
C14—N1—S1117.67 (10)C14—C15—H15119.7
C14—N1—H1116.4 (14)C16—C15—H15119.7
S1—N1—H1110.9 (13)C15—C16—C17116.98 (14)
C17—N2—C13117.44 (13)C15—C16—H16121.5
C4—N3—C8108.21 (13)C17—C16—H16121.5
C4—N3—C18125.79 (13)N2—C17—O3118.84 (14)
C8—N3—C18125.74 (13)N2—C17—C16124.31 (14)
C6—C1—C2122.25 (14)O3—C17—C16116.85 (14)
C6—C1—S1119.24 (11)N3—C18—H18A109.5
C2—C1—S1118.31 (11)N3—C18—H18B109.5
C3—C2—C1120.44 (14)H18A—C18—H18B109.5
C3—C2—H2119.8N3—C18—H18C109.5
C1—C2—H2119.8H18A—C18—H18C109.5
C2—C3—C4117.92 (14)H18B—C18—H18C109.5
C2—C3—H3121.0N3—C18—H18D109.5
C4—C3—H3121.0H18A—C18—H18D141.1
N3—C4—C3128.88 (14)H18B—C18—H18D56.3
N3—C4—C5109.52 (13)H18C—C18—H18D56.3
C3—C4—C5121.59 (14)N3—C18—H18E109.5
C6—C5—C4119.85 (13)H18A—C18—H18E56.3
C6—C5—C7133.80 (14)H18B—C18—H18E141.1
C4—C5—C7106.34 (13)H18C—C18—H18E56.3
C5—C6—C1117.89 (14)H18D—C18—H18E109.5
C5—C6—H6121.1N3—C18—H18F109.5
C1—C6—H6121.1H18A—C18—H18F56.3
C12—C7—C8120.01 (14)H18B—C18—H18F56.3
C12—C7—C5133.71 (15)H18C—C18—H18F141.1
C8—C7—C5106.28 (13)H18D—C18—H18F109.5
N3—C8—C9128.59 (15)H18E—C18—H18F109.5
N3—C8—C7109.63 (13)O4—C19—H19A109.5
C9—C8—C7121.78 (15)O4—C19—H19B109.5
C10—C9—C8117.10 (15)H19A—C19—H19B109.5
C10—C9—H9121.5O4—C19—H19C109.5
C8—C9—H9121.5H19A—C19—H19C109.5
C9—C10—C11121.62 (15)H19B—C19—H19C109.5
C9—C10—H10119.2O3—C20—H20A109.5
C11—C10—H10119.2O3—C20—H20B109.5
C12—C11—C10121.16 (16)H20A—C20—H20B109.5
C12—C11—H11119.4O3—C20—H20C109.5
C10—C11—H11119.4H20A—C20—H20C109.5
C11—C12—C7118.33 (15)H20B—C20—H20C109.5
C11—C12—H12120.8
O1—S1—N1—C1441.52 (12)C4—N3—C8—C70.40 (16)
O2—S1—N1—C14170.29 (11)C18—N3—C8—C7174.84 (14)
C1—S1—N1—C1474.49 (12)C12—C7—C8—N3178.80 (13)
O1—S1—C1—C6159.85 (11)C5—C7—C8—N31.12 (16)
O2—S1—C1—C626.75 (14)C12—C7—C8—C91.1 (2)
N1—S1—C1—C686.21 (13)C5—C7—C8—C9178.95 (13)
O1—S1—C1—C225.18 (14)N3—C8—C9—C10179.09 (15)
O2—S1—C1—C2158.28 (11)C7—C8—C9—C100.8 (2)
N1—S1—C1—C288.76 (13)C8—C9—C10—C110.2 (2)
C6—C1—C2—C31.7 (2)C9—C10—C11—C121.0 (2)
S1—C1—C2—C3176.48 (11)C10—C11—C12—C70.7 (2)
C1—C2—C3—C40.5 (2)C8—C7—C12—C110.3 (2)
C8—N3—C4—C3178.69 (15)C5—C7—C12—C11179.77 (16)
C18—N3—C4—C36.9 (3)C17—N2—C13—O4179.41 (13)
C8—N3—C4—C50.51 (16)C17—N2—C13—C141.3 (2)
C18—N3—C4—C5173.93 (14)C19—O4—C13—N21.0 (2)
C2—C3—C4—N3179.15 (14)C19—O4—C13—C14179.21 (15)
C2—C3—C4—C51.7 (2)N2—C13—C14—C151.4 (2)
N3—C4—C5—C6177.87 (13)O4—C13—C14—C15179.54 (13)
C3—C4—C5—C62.9 (2)N2—C13—C14—N1177.34 (13)
N3—C4—C5—C71.19 (16)O4—C13—C14—N10.8 (2)
C3—C4—C5—C7178.08 (13)S1—N1—C14—C1576.61 (16)
C4—C5—C6—C11.7 (2)S1—N1—C14—C13104.69 (15)
C7—C5—C6—C1179.60 (15)C13—C14—C15—C160.2 (2)
C2—C1—C6—C50.5 (2)N1—C14—C15—C16178.92 (13)
S1—C1—C6—C5175.32 (11)C14—C15—C16—C171.6 (2)
C6—C5—C7—C122.6 (3)C13—N2—C17—O3179.01 (13)
C4—C5—C7—C12178.51 (16)C13—N2—C17—C160.4 (2)
C6—C5—C7—C8177.48 (16)C20—O3—C17—N25.0 (2)
C4—C5—C7—C81.39 (16)C20—O3—C17—C16174.38 (15)
C4—N3—C8—C9179.67 (15)C15—C16—C17—N21.8 (2)
C18—N3—C8—C95.2 (2)C15—C16—C17—O3177.58 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.81 (2)2.56 (2)3.3387 (18)163 (2)
C18—H18A···O1ii0.962.453.398 (2)170
C10—H10···O2iii0.932.563.4887 (19)177
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H19N3O4S
Mr397.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)13.5078 (2), 7.9272 (1), 20.9276 (3)
β (°) 124.027 (1)
V3)1857.20 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.83
Crystal size (mm)0.45 × 0.36 × 0.32
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.475, 0.556
No. of measured, independent and
observed [I > 2σ(I)] reflections
11460, 3280, 3161
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.06
No. of reflections3280
No. of parameters262
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.52

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.81 (2)2.56 (2)3.3387 (18)163 (2)
C18—H18A···O1ii0.962.453.398 (2)169.7
C10—H10···O2iii0.932.563.4887 (19)176.5
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30901840) and the New Teachers' Fund for Doctor Stations, Ministry of Education (20101106120032).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHu, L.-X., Li, Z.-R., Wang, Y.-M., Wu, Y.-B., Jiang, J.-D. & Boykin, D. W. (2007). Bioorg. Med. Chem. Lett. 17, 1194–1196.  Google Scholar
First citationJackson, J. R., Patrick, D. R., Dar, M. M. & Huang, P. S. (2007). Nat. Rev. Cancer, 7, 107–117.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJordan, M. A., Thrower, D. & Wilson, L. (1991). Cancer Res. 51, 2212–2222.  CAS PubMed Web of Science Google Scholar
First citationMollinedo, F. & Gajate, C. (2003). Apoptosis, 8, 413–450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-M., Hu, L.-X., Liu, Z.-M., Uou, X.-F., Zhang, S.-H., Qu, J.-R., Li, Z.-R., Li, Y., Kong, W.-J., He, H.-W., Shao, R.-G., Zhang, L.-R., Peng, Z.-G., Boykin, D. W. & Jiang, J.-D. (2008). Clin. Cancer Res. 14, 6218–6227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, L., Panda, D. & Jordan, M. A. (1999). Cell Struct. Funct. 24, 329–335.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYvon, A. M., Wadsworth, P. & Jordan, M. A. (1999). Mol. Biol. Cell, 10, 947–959.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds