metal-organic compounds
Bis(3-azaniumylpyridin-1-ium) hexachloridostannate(IV) dichloride
aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@hhu.de
The 5H8N2)2[SnCl6]Cl2, consists of one 3-azaniumylpyridin-1-ium dication and one chloride ion in a general position and a hexachloridostannate(IV) dianion lying about a centre of inversion. The [SnCl6]2− anion exhibits almost perfect octahedral geometry. The 3-azaniumylpyridin-1-ium and chloride ions are connected via medium–strong charge-supported N—H⋯Cl hydrogen bonds, forming undulating layers in the (110) plane. The [SnCl6]2− ions are located between these layers and occupy cavities formed by two facing layer puckers.
of the title compound, (CRelated literature
For related 3-azaniumylpyridin-1-ium salts, see: Ali et al. (2008); Kapoor et al. (2012); Rao et al. (2011); Sarma et al. (2012); Willett et al. (1988). For related hexahalogenidometalate salts, see: Reiss (1998, 2002); Reiss & Helmbrecht (2012). For spectroscopy of hexachloridostannate(IV) salts, see: Brown et al. (1970); Ouasri et al. (2001). For graph-set theory and its applications, see: Bernstein et al. (1995); Etter et al. (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813006806/pk2471sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813006806/pk2471Isup2.hkl
The title compound, (C5H8N2)2[SnCl6]Cl2, was prepared by dissolving 0.47 g (5.0 mmol) 3-aminopyridine and 0.65 g (2.5 mmol) tin(IV) chloride in 10 ml of concentrated (37%) hydrochloric acid. Within two to three days under ambient conditions colourless, rod-shaped crystals were obtained by slow evaporation of the solvent. The Raman spectrum was measured using a Bruker MULTIRAM spectrometer (Nd:YAG-Laser at 1064 nm; RT-InGaAs-detector); 4000–70 cm-1: 3082(w), 3049(w), 2954(vw), 1646(w), 1625(w), 1502(w), 1231(w), 1188(w), 1046(m), 1030(m), 815(w), 627(w), 537(w), 324(vs; ν1, Sn–Cl), 241 (m, br; ν2, Sn–Cl), 172 (s; ν4, Sn–Cl), 158 (s; ν5, Sn–Cl), 98 (m; most likely a lattice mode). - IR spectroscopic data were recorded on a Digilab FT3400 spectrometer using a MIRacle ATR unit (Pike Technologies); 4000–560 cm-1: 3458(w), 3364(w), 3245(w), 3187(w), 3080(s), 3066(s), 3008(m), 2952(m), 2880(m), 2773(vs), 2739(vs), 2687(s), 2604(s), 2542(vs), 1892(w, br), 1644(w), 1624(w), 1556(s), 1499(s), 1472(w), 1380(m), 1318(m), 1131(m), 1123(m), 1092(w), 1009(w), 998(w), 941(w), 890(w), 798(m), 673(m), 625(w). - Elemental analyses (C, H, N) were performed with a HEKA-Tech Euro EA3000 instrument; SnCl8N4C10H16 (594.60): calcd. C 20.20, H 2.71, N 9.42; found C 20.38, H 2.54, N 9.34.
All hydrogen atoms were identified in difference syntheses and refined freely with individual Uiso(H) values.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).(C5H8N2)2[SnCl6]Cl2 | F(000) = 1160 |
Mr = 594.56 | Dx = 1.910 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 11374 reflections |
a = 11.9379 (3) Å | θ = 3.6–33.9° |
b = 10.3704 (3) Å | µ = 2.27 mm−1 |
c = 16.7018 (5) Å | T = 290 K |
V = 2067.70 (10) Å3 | Block, colourless |
Z = 4 | 0.14 × 0.12 × 0.06 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 2364 independent reflections |
Radiation source: fine-focus sealed tube | 1875 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 16.2711 pixels mm-1 | θmax = 27.5°, θmin = 3.6° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −13→13 |
Tmin = 0.853, Tmax = 1.000 | l = −21→21 |
30476 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.044 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0162P)2 + 0.6462P] where P = (Fo2 + 2Fc2)/3 |
2364 reflections | (Δ/σ)max < 0.001 |
138 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
(C5H8N2)2[SnCl6]Cl2 | V = 2067.70 (10) Å3 |
Mr = 594.56 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 11.9379 (3) Å | µ = 2.27 mm−1 |
b = 10.3704 (3) Å | T = 290 K |
c = 16.7018 (5) Å | 0.14 × 0.12 × 0.06 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 2364 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 1875 reflections with I > 2σ(I) |
Tmin = 0.853, Tmax = 1.000 | Rint = 0.038 |
30476 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.044 | All H-atom parameters refined |
S = 1.06 | Δρmax = 0.26 e Å−3 |
2364 reflections | Δρmin = −0.22 e Å−3 |
138 parameters |
Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.44 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.28997 (16) | 0.5670 (2) | 0.35522 (13) | 0.0399 (4) | |
H11 | 0.262 (2) | 0.496 (2) | 0.3270 (14) | 0.059 (8)* | |
H12 | 0.257 (2) | 0.574 (2) | 0.4040 (16) | 0.076 (9)* | |
H13 | 0.273 (2) | 0.639 (2) | 0.3256 (14) | 0.060 (8)* | |
C1 | 0.41111 (17) | 0.55437 (19) | 0.36189 (11) | 0.0308 (4) | |
C2 | 0.4574 (2) | 0.4437 (2) | 0.39366 (14) | 0.0433 (5) | |
H2A | 0.4103 (19) | 0.381 (2) | 0.4093 (13) | 0.048 (7)* | |
C3 | 0.5719 (2) | 0.4332 (2) | 0.39775 (15) | 0.0511 (6) | |
H3A | 0.603 (2) | 0.364 (2) | 0.4159 (14) | 0.061 (8)* | |
C4 | 0.6373 (2) | 0.5311 (3) | 0.37014 (14) | 0.0472 (6) | |
H4A | 0.712 (2) | 0.529 (2) | 0.3692 (14) | 0.060 (8)* | |
N2 | 0.58917 (16) | 0.63570 (19) | 0.33931 (10) | 0.0395 (4) | |
H2 | 0.630 (2) | 0.695 (2) | 0.3187 (14) | 0.061 (8)* | |
C5 | 0.47825 (17) | 0.65048 (19) | 0.33392 (12) | 0.0335 (5) | |
H5A | 0.4526 (16) | 0.7277 (19) | 0.3111 (11) | 0.033 (5)* | |
Cl1 | 0.25614 (5) | 0.31396 (5) | 0.25548 (3) | 0.04263 (13) | |
Sn1 | 0.0000 | 0.0000 | 0.0000 | 0.02235 (6) | |
Cl2 | 0.14393 (4) | −0.16245 (5) | 0.01538 (3) | 0.04262 (13) | |
Cl3 | −0.14685 (4) | −0.15423 (5) | 0.02721 (3) | 0.04332 (13) | |
Cl4 | 0.00932 (5) | 0.04893 (7) | 0.14177 (3) | 0.05529 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0356 (11) | 0.0370 (11) | 0.0470 (11) | −0.0016 (9) | 0.0044 (9) | 0.0035 (10) |
C1 | 0.0342 (11) | 0.0297 (10) | 0.0285 (9) | −0.0009 (9) | 0.0042 (8) | −0.0031 (8) |
C2 | 0.0491 (14) | 0.0340 (12) | 0.0469 (13) | −0.0021 (11) | 0.0031 (11) | 0.0082 (11) |
C3 | 0.0556 (17) | 0.0417 (14) | 0.0559 (15) | 0.0141 (13) | −0.0052 (12) | 0.0085 (12) |
C4 | 0.0357 (13) | 0.0564 (15) | 0.0493 (13) | 0.0017 (12) | −0.0005 (11) | −0.0078 (12) |
N2 | 0.0384 (11) | 0.0414 (11) | 0.0388 (10) | −0.0095 (9) | 0.0066 (8) | −0.0026 (8) |
C5 | 0.0391 (14) | 0.0288 (10) | 0.0327 (10) | −0.0016 (9) | 0.0045 (8) | 0.0004 (8) |
Cl1 | 0.0474 (3) | 0.0329 (2) | 0.0476 (3) | 0.0018 (2) | 0.0113 (2) | −0.0002 (2) |
Sn1 | 0.01879 (9) | 0.02282 (9) | 0.02543 (9) | −0.00037 (7) | 0.00169 (7) | −0.00180 (6) |
Cl2 | 0.0341 (3) | 0.0371 (3) | 0.0566 (3) | 0.0133 (2) | 0.0059 (2) | 0.0094 (2) |
Cl3 | 0.0334 (3) | 0.0338 (3) | 0.0627 (3) | −0.0120 (2) | 0.0084 (2) | 0.0002 (2) |
Cl4 | 0.0572 (4) | 0.0802 (4) | 0.0285 (3) | 0.0001 (3) | −0.0011 (3) | −0.0142 (3) |
N1—C1 | 1.456 (3) | C4—H4A | 0.90 (3) |
N1—H11 | 0.94 (2) | N2—C5 | 1.336 (3) |
N1—H12 | 0.91 (3) | N2—H2 | 0.86 (2) |
N1—H13 | 0.92 (3) | C5—H5A | 0.938 (19) |
C1—C5 | 1.362 (3) | Sn1—Cl3i | 2.4162 (5) |
C1—C2 | 1.380 (3) | Sn1—Cl3 | 2.4162 (5) |
C2—C3 | 1.373 (4) | Sn1—Cl2i | 2.4200 (5) |
C2—H2A | 0.90 (2) | Sn1—Cl2 | 2.4200 (5) |
C3—C4 | 1.361 (4) | Sn1—Cl4 | 2.4242 (5) |
C3—H3A | 0.86 (2) | Sn1—Cl4i | 2.4242 (5) |
C4—N2 | 1.331 (3) | ||
C1—N1—H11 | 108.4 (16) | C5—N2—H2 | 117.0 (17) |
C1—N1—H12 | 111.5 (17) | N2—C5—C1 | 118.4 (2) |
H11—N1—H12 | 111 (2) | N2—C5—H5A | 116.7 (12) |
C1—N1—H13 | 109.8 (15) | C1—C5—H5A | 124.9 (13) |
H11—N1—H13 | 107 (2) | Cl3i—Sn1—Cl3 | 180.00 (3) |
H12—N1—H13 | 109 (2) | Cl3i—Sn1—Cl2i | 91.968 (19) |
C5—C1—C2 | 120.3 (2) | Cl3—Sn1—Cl2i | 88.032 (19) |
C5—C1—N1 | 119.49 (19) | Cl3i—Sn1—Cl2 | 88.032 (19) |
C2—C1—N1 | 120.1 (2) | Cl3—Sn1—Cl2 | 91.968 (19) |
C3—C2—C1 | 119.0 (2) | Cl2i—Sn1—Cl2 | 180.00 (3) |
C3—C2—H2A | 123.4 (15) | Cl3i—Sn1—Cl4 | 90.68 (2) |
C1—C2—H2A | 117.7 (15) | Cl3—Sn1—Cl4 | 89.32 (2) |
C4—C3—C2 | 119.7 (2) | Cl2i—Sn1—Cl4 | 89.46 (2) |
C4—C3—H3A | 119.5 (17) | Cl2—Sn1—Cl4 | 90.54 (2) |
C2—C3—H3A | 120.8 (17) | Cl3i—Sn1—Cl4i | 89.32 (2) |
N2—C4—C3 | 119.4 (2) | Cl3—Sn1—Cl4i | 90.68 (2) |
N2—C4—H4A | 116.1 (16) | Cl2i—Sn1—Cl4i | 90.54 (2) |
C3—C4—H4A | 124.5 (16) | Cl2—Sn1—Cl4i | 89.46 (2) |
C4—N2—C5 | 123.2 (2) | Cl4—Sn1—Cl4i | 180.00 (5) |
C4—N2—H2 | 119.7 (17) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···Cl1 | 0.94 (2) | 2.23 (3) | 3.135 (2) | 161 (2) |
N1—H12···Cl2ii | 0.91 (3) | 2.48 (3) | 3.343 (2) | 160 (2) |
N1—H13···Cl1iii | 0.92 (3) | 2.19 (3) | 3.104 (2) | 176 (2) |
N2—H2···Cl1iv | 0.86 (2) | 2.21 (2) | 3.055 (2) | 167 (2) |
Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x+1/2, y+1/2, z; (iv) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C5H8N2)2[SnCl6]Cl2 |
Mr | 594.56 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 290 |
a, b, c (Å) | 11.9379 (3), 10.3704 (3), 16.7018 (5) |
V (Å3) | 2067.70 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.27 |
Crystal size (mm) | 0.14 × 0.12 × 0.06 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.853, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 30476, 2364, 1875 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.044, 1.06 |
No. of reflections | 2364 |
No. of parameters | 138 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.26, −0.22 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2012), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···Cl1 | 0.94 (2) | 2.23 (3) | 3.135 (2) | 161 (2) |
N1—H12···Cl2i | 0.91 (3) | 2.48 (3) | 3.343 (2) | 160 (2) |
N1—H13···Cl1ii | 0.92 (3) | 2.19 (3) | 3.104 (2) | 176 (2) |
N2—H2···Cl1iii | 0.86 (2) | 2.21 (2) | 3.055 (2) | 167 (2) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1/2, y+1/2, z; (iii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
We thank E. Hammes and P. Roloff for technical support. We acknowledge the support for the publication fee by the `Lehrförderfond' of the Heinrich-Heine-Universität Düsseldorf.
References
Ali, B. F., Al-Far, R. H. & Haddad, S. F. (2008). Acta Cryst. E64, m751–m752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, T. L., McDugle, W. G. Jr & Kent, L. G. (1970). J. Am. Chem. Soc. 92, 3645–3653. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kapoor, I. P. S., Kapoor, M., Singh, G., Singh, U. P. & Goel, N. (2012). J. Mol. Struct. 1012, 62–72. Web of Science CSD CrossRef CAS Google Scholar
Ouasri, A., Elyoubi, M. S. D., Guedira, T., Rhandour, A., Mhiri, T. & Daoud, A. (2001). Spectrochim. Acta Part A, 57, 2593–2598. CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rao, A. S., Baruah, U. & Das, S. K. (2011). Inorg. Chim. Acta, 372, 206–212. Web of Science CSD CrossRef CAS Google Scholar
Reiß, G. J. (1998). Acta Cryst. C54, 1489–1491. Web of Science CSD CrossRef IUCr Journals Google Scholar
Reiß, G. J. (2002). Acta Cryst. E58, m47–m50. Web of Science CSD CrossRef IUCr Journals Google Scholar
Reiss, G. J. & Helmbrecht, C. (2012). Acta Cryst. E68, m1402–m1403. CSD CrossRef CAS IUCr Journals Google Scholar
Sarma, M., Chatterjee, T. & Das, S. K. (2012). RSC Adv. 2, 3920–3926. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Willett, R., Place, H. & Middleton, M. (1988). J. Am. Chem. Soc. 110, 8639–8650. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Only a limited number of 3-azaniumylpyridin-1-ium containing compounds has structurally been characterized so far. The majority of these are salts consisting of halogenidometalate anions such as [BiCl6]3- (Rao et al., 2011), [CuCl4]2- (Willett et al., 1988), [CuBr4]2- (Willett et al., 1988) and [HgBr4]2- (Ali et al., 2008). Furthermore, the dinitrate (Kapoor et al., 2012) and some complex crown ether compounds (Sarma et al., 2012) have been reported. This study on (C5H8N2)2[SnCl6]Cl2 is part of our long standing interest on the principles of arrangement of simple hexahalogenidometalate salts (dipH = diisopropylaminium): (dipH)2[SiF6] (Reiss, 1998); (dipH)2[IrCl6] (Reiss, 2002); (dipH)2[SnCl6] (Reiss & Helmbrecht, 2012).
The asymmetric unit of the title compound, (C5H8N2)2[SnCl6]Cl2, consists of one 3-azaniumylpyridin-1-ium dication and one chloride ion in general positions and the hexachloridostannate(IV) dianion lying on a centre of inversion (Fig. 1). The C–N and C–C bond lengths and angles of the cation are within the expected ranges. The [SnCl6]2- dianion exhibits a nearly perfect octahedral coordination sphere with Sn–Cl bond lengths ranging from 2.4162 (5) to 2.4242 (5) Å and bond angles between 88.03 (2) and 91.97 (2)°. The 3-azaniumylpyridin-1-ium dications and chloride ions are connected by medium strong, charge supported hydrogen bonds (Table 1) forming layers in the [110] plane. The characteristic hydrogen bonding motif is a 18-membered, wavy ring, which is classified as a third level graph-set R63(18) (Etter et al., 1990; Fig. 2). In addition to that, the second level graph-set descriptors C21(4) and C21(7) represent the chains, bridging the dications and chloride ions along [010] and [100], respectively. Thereby, the NH3+ group as well as the NH+ group of the 3-azaniumylpyridin-1-ium dication acts as a hydrogen bond donor. D···A distances for the NH3+ group range from 3.104 (2) to 3.343 (2) Å and for the NH+ group a D···A distance of 3.055 (2) Å is found. The [SnCl6]2- dianions are located in cavities between the layers, connected to the 3-azaniumylpyridin-1-ium dications by weak hydrogen bonds (Table 1) between two of their chlorido ligands and neighbouring NH3+groups (Fig. 3). The Raman-active bands (ν1, ν2, ν4 and ν5) of the [SnCl6]2- dianion appear in the Raman spectrum of the title compound (C5H8N2)2[SnCl6]Cl2 (Brown et al., 1970; Ouasri et al., 2001).