organic compounds
Cyclohexane-1,4-dicarboxylic acid–pyridinium-4-olate (1/1)
aFacultad de Ingenieria Mochis, Universidad Autónoma de Sinaloa, Fuente Poseidón y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, México, and bCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62210, Cuernavaca, Morelos, México
*Correspondence e-mail: cenriqueza@yahoo.com.mx
In the title adduct, C5H5NO·C8H12O4, the heterocycle exists in its zwitterionic form. The cyclohexane ring exhibits a chair conformation with the carboxylic acid groups in equatorial and axial orientations. In the crystal, molecules are linked through charge-assisted O—H⋯O−, N+—H⋯O− and N+—H⋯O hydrogen bonds, and an additional series of C—H⋯O contacts, giving a pleated two-dimensional hydrogen-bonded network parallel to (-204).
Related literature
For reports on supramolecular crystal engineering and potential applications of co-crystals, see: Desiraju (1995); Simon & Bassoul (2000); Weyna et al. (2009); Aakeröy et al. (2010); Yan et al. (2012). For related structures, see: Bhogala et al. (2005); Shattock et al. (2008); Yu (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT; molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al. 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S160053681300754X/pk2472sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681300754X/pk2472Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681300754X/pk2472Isup3.cml
C5H5NO.C8H12O4 was prepared from a solution of C5H5NO (0.05 g, 0.53 mmol) and C8H12O4 (0.09 g, 0.53 mmol) in CH3OH (5 ml), which was stirred for a few minutes at room temperature, giving a clear transparent solution. After evaporation of the solvent, colorless crystals suitable for single-crystal X-ray diffraction had formed in about 51% yield. IR (KBr): 3471, 3276, 3131, 3092, 2937, 2863, 1709, 1632, 1576, 1509, 1416, 1364, 1331, 1316, 1229, 1170, 1001 cm-1.
H atoms were found in difference Fourier maps. Carbon-bound hydrogen atoms were placed in idealized positions using a riding models with constrained distances of 0.97 Å (R2CH2), 0.98 Å (R3CH) and 0.93 Å (Csp2H). Coordinates for hydrogens bound to oxygen and nitrogen were refined. Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (OH, NH) of the attached atom.
Data collection: SMART (Bruker, 2000); cell
SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT (Bruker, 2001); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al. 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structures of the components in the title compound, showing displacement ellipsoids drawn at the 30% probability level. | |
Fig. 2. View down the c-axis of the two-dimensional hydrogen-bonded supramolecular network formed through O—H···O-, N+—H···O- and N+—H···O and C—H···O interactions. |
C5H5NO·C8H12O4 | F(000) = 568 |
Mr = 267.28 | Dx = 1.333 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5484 reflections |
a = 11.749 (2) Å | θ = 2.6–27.4° |
b = 11.618 (2) Å | µ = 0.10 mm−1 |
c = 10.8010 (19) Å | T = 293 K |
β = 115.383 (2)° | Rectangular prism, yellow |
V = 1332.0 (4) Å3 | 0.50 × 0.43 × 0.24 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2345 independent reflections |
Radiation source: fine-focus sealed tube | 2229 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −13→13 |
Tmin = 0.95, Tmax = 0.98 | k = −13→13 |
12552 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.072 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.161 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0623P)2 + 1.4075P] where P = (Fo2 + 2Fc2)/3 |
2345 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.20 e Å−3 |
3 restraints | Δρmin = −0.27 e Å−3 |
C5H5NO·C8H12O4 | V = 1332.0 (4) Å3 |
Mr = 267.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.749 (2) Å | µ = 0.10 mm−1 |
b = 11.618 (2) Å | T = 293 K |
c = 10.8010 (19) Å | 0.50 × 0.43 × 0.24 mm |
β = 115.383 (2)° |
Bruker SMART CCD area-detector diffractometer | 2345 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2229 reflections with I > 2σ(I) |
Tmin = 0.95, Tmax = 0.98 | Rint = 0.041 |
12552 measured reflections |
R[F2 > 2σ(F2)] = 0.072 | 3 restraints |
wR(F2) = 0.161 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.20 e Å−3 |
2345 reflections | Δρmin = −0.27 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2230 (2) | 0.1930 (2) | 0.0632 (2) | 0.0663 (6) | |
H1' | 0.162 (2) | 0.198 (4) | 0.085 (4) | 0.099* | |
O2 | 0.3186 (2) | 0.3059 (3) | 0.2412 (3) | 0.0898 (9) | |
O3 | 0.8439 (2) | 0.3327 (2) | 0.3413 (2) | 0.0733 (7) | |
H3' | 0.901 (3) | 0.324 (4) | 0.4210 (17) | 0.110* | |
O4 | 0.7984 (2) | 0.15562 (19) | 0.3701 (2) | 0.0805 (8) | |
C1 | 0.4258 (2) | 0.2522 (2) | 0.1037 (2) | 0.0420 (6) | |
H1A | 0.3892 | 0.2539 | 0.0033 | 0.050* | |
C2 | 0.5129 (3) | 0.3552 (2) | 0.1563 (3) | 0.0489 (7) | |
H2A | 0.4647 | 0.4256 | 0.1246 | 0.059* | |
H2B | 0.5510 | 0.3555 | 0.2557 | 0.059* | |
C3 | 0.6155 (3) | 0.3511 (3) | 0.1063 (3) | 0.0556 (8) | |
H3A | 0.6718 | 0.4160 | 0.1442 | 0.067* | |
H3B | 0.5773 | 0.3583 | 0.0073 | 0.067* | |
C4 | 0.6915 (3) | 0.2400 (3) | 0.1470 (3) | 0.0497 (7) | |
H4 | 0.7428 | 0.2374 | 0.0955 | 0.060* | |
C5 | 0.6058 (3) | 0.1347 (3) | 0.1039 (3) | 0.0557 (8) | |
H5A | 0.5683 | 0.1283 | 0.0048 | 0.067* | |
H5B | 0.6559 | 0.0662 | 0.1416 | 0.067* | |
C6 | 0.5018 (3) | 0.1405 (2) | 0.1514 (3) | 0.0485 (7) | |
H6A | 0.5384 | 0.1363 | 0.2506 | 0.058* | |
H6B | 0.4460 | 0.0751 | 0.1152 | 0.058* | |
C7 | 0.3195 (3) | 0.2542 (2) | 0.1453 (3) | 0.0471 (6) | |
C8 | 0.7822 (2) | 0.2371 (2) | 0.2978 (3) | 0.0442 (6) | |
N1 | 0.0308 (3) | −0.0636 (2) | 0.3628 (3) | 0.0590 (7) | |
H1 | 0.041 (4) | −0.115 (2) | 0.421 (3) | 0.088* | |
O5 | 0.01175 (16) | 0.18473 (15) | 0.09311 (18) | 0.0470 (5) | |
C9 | 0.0146 (2) | 0.1065 (2) | 0.1791 (2) | 0.0384 (6) | |
C10 | −0.0764 (3) | 0.0194 (2) | 0.1462 (3) | 0.0495 (7) | |
H10 | −0.1444 | 0.0185 | 0.0603 | 0.059* | |
C11 | −0.0659 (3) | −0.0638 (2) | 0.2390 (4) | 0.0609 (8) | |
H11 | −0.1266 | −0.1213 | 0.2159 | 0.073* | |
C12 | 0.1179 (3) | 0.0179 (3) | 0.4004 (3) | 0.0584 (8) | |
H12 | 0.1836 | 0.0165 | 0.4880 | 0.070* | |
C13 | 0.1124 (3) | 0.1029 (2) | 0.3127 (3) | 0.0497 (7) | |
H13 | 0.1740 | 0.1599 | 0.3410 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0561 (13) | 0.0868 (16) | 0.0593 (13) | −0.0227 (12) | 0.0280 (11) | −0.0188 (12) |
O2 | 0.0729 (16) | 0.130 (2) | 0.0779 (16) | −0.0249 (15) | 0.0433 (14) | −0.0510 (16) |
O3 | 0.0722 (15) | 0.0658 (14) | 0.0532 (13) | −0.0221 (12) | −0.0005 (11) | 0.0129 (11) |
O4 | 0.1024 (19) | 0.0580 (14) | 0.0471 (12) | −0.0139 (13) | −0.0003 (12) | 0.0119 (11) |
C1 | 0.0442 (14) | 0.0476 (15) | 0.0296 (12) | −0.0022 (11) | 0.0115 (11) | 0.0003 (11) |
C2 | 0.0532 (16) | 0.0370 (14) | 0.0506 (15) | 0.0012 (12) | 0.0166 (13) | 0.0067 (12) |
C3 | 0.0529 (16) | 0.0624 (18) | 0.0448 (15) | −0.0094 (14) | 0.0146 (13) | 0.0164 (13) |
C4 | 0.0479 (15) | 0.0695 (19) | 0.0349 (13) | 0.0017 (14) | 0.0207 (12) | 0.0011 (13) |
C5 | 0.0569 (17) | 0.0591 (18) | 0.0447 (15) | 0.0045 (14) | 0.0157 (13) | −0.0176 (13) |
C6 | 0.0550 (16) | 0.0374 (14) | 0.0483 (15) | −0.0063 (12) | 0.0175 (13) | −0.0069 (12) |
C7 | 0.0480 (15) | 0.0490 (16) | 0.0400 (14) | −0.0005 (12) | 0.0146 (12) | 0.0019 (12) |
C8 | 0.0437 (14) | 0.0500 (16) | 0.0386 (13) | 0.0008 (12) | 0.0174 (11) | 0.0004 (12) |
N1 | 0.0757 (18) | 0.0480 (15) | 0.0647 (17) | 0.0093 (13) | 0.0411 (15) | 0.0138 (12) |
O5 | 0.0441 (10) | 0.0454 (10) | 0.0432 (10) | −0.0014 (8) | 0.0109 (8) | 0.0082 (8) |
C9 | 0.0411 (13) | 0.0345 (13) | 0.0403 (13) | 0.0048 (10) | 0.0182 (11) | −0.0015 (10) |
C10 | 0.0450 (15) | 0.0467 (16) | 0.0554 (16) | −0.0027 (12) | 0.0202 (13) | −0.0062 (13) |
C11 | 0.0667 (19) | 0.0407 (16) | 0.088 (2) | −0.0111 (14) | 0.0458 (19) | −0.0066 (15) |
C12 | 0.0672 (19) | 0.0558 (18) | 0.0488 (16) | 0.0103 (16) | 0.0217 (14) | 0.0081 (14) |
C13 | 0.0517 (15) | 0.0439 (15) | 0.0449 (14) | −0.0043 (12) | 0.0125 (12) | −0.0001 (12) |
O1—C7 | 1.310 (3) | C4—H4 | 0.9800 |
O1—H1' | 0.8400 (10) | C5—C6 | 1.516 (4) |
O2—C7 | 1.201 (3) | C5—H5A | 0.9700 |
O3—C8 | 1.299 (3) | C5—H5B | 0.9700 |
O3—H3' | 0.8400 (11) | C6—H6A | 0.9700 |
O4—C8 | 1.189 (3) | C6—H6B | 0.9700 |
C1—C7 | 1.498 (4) | N1—C12 | 1.324 (4) |
C1—C2 | 1.518 (4) | N1—C11 | 1.333 (4) |
C1—C6 | 1.534 (4) | N1—H1 | 0.8400 (10) |
C1—H1A | 0.9800 | O5—C9 | 1.289 (3) |
C2—C3 | 1.518 (4) | C9—C10 | 1.403 (4) |
C2—H2A | 0.9700 | C9—C13 | 1.408 (4) |
C2—H2B | 0.9700 | C10—C11 | 1.359 (4) |
C3—C4 | 1.524 (4) | C10—H10 | 0.9300 |
C3—H3A | 0.9700 | C11—H11 | 0.9300 |
C3—H3B | 0.9700 | C12—C13 | 1.351 (4) |
C4—C8 | 1.517 (4) | C12—H12 | 0.9300 |
C4—C5 | 1.525 (4) | C13—H13 | 0.9300 |
C7—O1—H1' | 112 (3) | H5A—C5—H5B | 107.8 |
C8—O3—H3' | 110 (3) | C5—C6—C1 | 111.2 (2) |
C7—C1—C2 | 113.0 (2) | C5—C6—H6A | 109.4 |
C7—C1—C6 | 110.6 (2) | C1—C6—H6A | 109.4 |
C2—C1—C6 | 109.8 (2) | C5—C6—H6B | 109.4 |
C7—C1—H1A | 107.7 | C1—C6—H6B | 109.4 |
C2—C1—H1A | 107.7 | H6A—C6—H6B | 108.0 |
C6—C1—H1A | 107.7 | O2—C7—O1 | 122.0 (3) |
C3—C2—C1 | 110.7 (2) | O2—C7—C1 | 125.7 (3) |
C3—C2—H2A | 109.5 | O1—C7—C1 | 112.3 (2) |
C1—C2—H2A | 109.5 | O4—C8—O3 | 122.4 (2) |
C3—C2—H2B | 109.5 | O4—C8—C4 | 124.3 (3) |
C1—C2—H2B | 109.5 | O3—C8—C4 | 113.3 (2) |
H2A—C2—H2B | 108.1 | C12—N1—C11 | 121.6 (3) |
C2—C3—C4 | 112.4 (2) | C12—N1—H1 | 116 (3) |
C2—C3—H3A | 109.1 | C11—N1—H1 | 122 (3) |
C4—C3—H3A | 109.1 | O5—C9—C10 | 123.0 (2) |
C2—C3—H3B | 109.1 | O5—C9—C13 | 121.1 (2) |
C4—C3—H3B | 109.1 | C10—C9—C13 | 115.8 (2) |
H3A—C3—H3B | 107.9 | C11—C10—C9 | 120.6 (3) |
C8—C4—C3 | 112.5 (2) | C11—C10—H10 | 119.7 |
C8—C4—C5 | 112.2 (2) | C9—C10—H10 | 119.7 |
C3—C4—C5 | 111.2 (2) | N1—C11—C10 | 120.5 (3) |
C8—C4—H4 | 106.8 | N1—C11—H11 | 119.8 |
C3—C4—H4 | 106.8 | C10—C11—H11 | 119.8 |
C5—C4—H4 | 106.8 | N1—C12—C13 | 120.6 (3) |
C6—C5—C4 | 112.6 (2) | N1—C12—H12 | 119.7 |
C6—C5—H5A | 109.1 | C13—C12—H12 | 119.7 |
C4—C5—H5A | 109.1 | C12—C13—C9 | 120.9 (3) |
C6—C5—H5B | 109.1 | C12—C13—H13 | 119.6 |
C4—C5—H5B | 109.1 | C9—C13—H13 | 119.6 |
C7—C1—C2—C3 | −177.7 (2) | C6—C1—C7—O1 | −79.7 (3) |
C6—C1—C2—C3 | 58.2 (3) | C3—C4—C8—O4 | 136.9 (3) |
C1—C2—C3—C4 | −56.6 (3) | C5—C4—C8—O4 | 10.5 (4) |
C2—C3—C4—C8 | −74.5 (3) | C3—C4—C8—O3 | −44.6 (3) |
C2—C3—C4—C5 | 52.4 (3) | C5—C4—C8—O3 | −170.9 (2) |
C8—C4—C5—C6 | 75.7 (3) | O5—C9—C10—C11 | 177.2 (2) |
C3—C4—C5—C6 | −51.4 (3) | C13—C9—C10—C11 | −1.8 (4) |
C4—C5—C6—C1 | 54.4 (3) | C12—N1—C11—C10 | 1.2 (4) |
C7—C1—C6—C5 | 177.2 (2) | C9—C10—C11—N1 | 0.3 (4) |
C2—C1—C6—C5 | −57.4 (3) | C11—N1—C12—C13 | −1.1 (5) |
C2—C1—C7—O2 | −22.5 (4) | N1—C12—C13—C9 | −0.5 (4) |
C6—C1—C7—O2 | 101.1 (3) | O5—C9—C13—C12 | −177.1 (3) |
C2—C1—C7—O1 | 156.7 (2) | C10—C9—C13—C12 | 1.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1′···O5 | 0.84 | 1.82 | 2.638 (3) | 165 |
O3—H3′···O5i | 0.84 | 1.76 | 2.594 (2) | 175 |
N1—H1···O4ii | 0.84 | 2.29 | 2.921 (3) | 132 |
N1—H1···O5iii | 0.84 | 2.39 | 3.038 (3) | 134 |
C1—H1A···O2iv | 0.98 | 2.67 | 3.625 (4) | 162 |
C11—H11···O2iii | 0.93 | 2.62 | 3.420 (5) | 143 |
C12—H12···O4ii | 0.93 | 2.47 | 3.014 (4) | 117 |
Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H5NO·C8H12O4 |
Mr | 267.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.749 (2), 11.618 (2), 10.8010 (19) |
β (°) | 115.383 (2) |
V (Å3) | 1332.0 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.50 × 0.43 × 0.24 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.95, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12552, 2345, 2229 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.072, 0.161, 1.02 |
No. of reflections | 2345 |
No. of parameters | 181 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.27 |
Computer programs: SMART (Bruker, 2000), SAINT-Plus-NT (Bruker, 2001), SHELXTL-NT (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al. 2008), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1'···O5 | 0.84 | 1.82 | 2.638 (3) | 165 |
O3—H3'···O5i | 0.84 | 1.76 | 2.594 (2) | 175 |
N1—H1···O4ii | 0.84 | 2.29 | 2.921 (3) | 132 |
N1—H1···O5iii | 0.84 | 2.39 | 3.038 (3) | 134 |
C1—H1A···O2iv | 0.98 | 2.67 | 3.625 (4) | 162 |
C11—H11···O2iii | 0.93 | 2.62 | 3.420 (5) | 143 |
C12—H12···O4ii | 0.93 | 2.47 | 3.014 (4) | 117 |
Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2. |
Acknowledgements
This work was supported financially by the Universidad Autónoma de Sinaloa (PROFAPI 2012/049).
References
Aakeröy, C. B., Champness, N. R. & Janiak, C. (2010). CrystEngComm, 12, 22–43. Google Scholar
Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551–562. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533–4545. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simon, J. & Bassoul, P. (2000). In Design of Molecular Materials: Supramolecular Engineering. Berlin: Wiley-VCH. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123. Web of Science CSD CrossRef CAS Google Scholar
Yan, D., Delori, A., Lloyd, G. O., Patel, B., Friscic, T., Day, G. M., Bucar, D. K., Jones, W., Lu, J., Wei, M., Evans, D. G. & Duan, X. (2012). CrystEngComm, 14, 5121–5123. Web of Science CSD CrossRef CAS Google Scholar
Yu, C.-H. (2012). Acta Cryst. E68, o1989. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The engineering of novel materials via non-covalent synthesis has developed as a very attractive and potential area of research because of its importance in biological systems, molecular recognition (Simon et al., 2000; Aakeröy et al., 2010), pharmaceutical chemistry (Weyna et al., 2009) and materials chemistry (Yan et al., 2012). Aromatic carboxylic acids form reliable supramolecular synthons for the construction of novel organic networks by hydrogen bonding and π-π interactions (Desiraju, 1995), and numerous studies have focused on hydrogen bonding between carboxylic acids and pyridine derivatives (Bhogala et al., 2005; Shattock et al. 2008; Yu, 2012). Herein, we report on the solid-state structure of a 1:1 co-crystal formed between cyclohexane-1,4-dicarboxylic acid and pyridin-4-ol. The molecular components of the title compound are shown in Fig. 1. The asymmetric unit contains one cyclohexane-1,4-dicarboxylic acid and one pyridin-4-ol molecule in the zwitterionic form. The cyclohexane ring exhibits a chair conformation with the carboxylic groups in equatorial and axial orientation, as denoted by the C7—C1—C2—C3 [-177.7 (2)°] and C8—C4—C5—C6 [75.7 (3)°] torsion angles, respectively. In the crystal, the molecular entities are linked through charge-assisted O—H···O-, N+—H···O- and N+—H···O hydrogen bonds and an additional series of C—H···O contacts to give a pleated two-dimensional hydrogen-bonded network parallel to (-204) (Fig. 2, Table 1).