organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o518-o519

2-(4-Bromo­anilino)-6-(4-chloro­phen­yl)-5-meth­­oxy­carbonyl-4-methyl-3,6-di­hydro­pyrimidin-1-ium chloride

aDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa, and bEquipe Chimie du Solide et Matériaux, UMR 6226 Institut des Sciences, Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes cedex, France
*Correspondence e-mail: katharigattav@dut.ac.za, nksusa@gmail.com

(Received 3 February 2013; accepted 5 March 2013; online 9 March 2013)

In the title molecular salt, C19H18BrClN3O2+·Cl, the dihedral angles between the pyrimidine ring and the chlorobenzene and bromobenzene rings are 72.4 (2) and 45.5 (2)°, respectively. The dihedral angle between the chlorobenzene and bromobenzene rings is 27.5 (2)°. The conformation of the mol­ecule is stabilized by an intra­molecular C—H⋯O inter­action. In the crystal, the anion and cation are linked by an N—H⋯Cl hydrogen bond. Pairs of weak C—H⋯O and C—H⋯Cl hydrogen bonds form inversion dimers. Further N—H⋯Cl hydrogen bonds form R21(6) motifs and link the dimers into chains along [101]. Br⋯Cl short contacts [3.482 (2) Å] inter­link the hydrogen-bonded chains along the b-axis direction.

Related literature

For a study of chloride salts of dihydro­pyrimidine derivatives and their anti-tubercular activity, see: Venugopala, Nayak, Pillay et al. (2012[Venugopala, K. N., Nayak, S. K., Pillay, M., Renuka, P., Coovadia, Y. M. & Odhav, B. (2012). Chem. Biol. Drug Des. 81, 219-227.]). For the crystal structures of dihydro­pyrimidine derivatives, see: Venugopala, Nayak & Odhav (2012[Venugopala, K. N., Nayak, S. K. & Odhav, B. (2012). Acta Cryst. E68, o2977-o2978.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18BrClN3O2+·Cl

  • Mr = 471.17

  • Monoclinic, P 21 /n

  • a = 13.2691 (15) Å

  • b = 11.0965 (12) Å

  • c = 14.9545 (17) Å

  • β = 114.181 (3)°

  • V = 2008.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.33 mm−1

  • T = 100 K

  • 0.08 × 0.05 × 0.03 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.835, Tmax = 0.933

  • 10242 measured reflections

  • 3919 independent reflections

  • 2511 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.096

  • S = 0.95

  • 3919 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2 0.88 2.34 3.136 (3) 151
N2—H2⋯Cl2i 0.88 2.41 3.179 (3) 146
N3—H3⋯Cl2i 0.88 2.39 3.191 (3) 151
C5—H5A⋯O2 0.98 2.22 2.897 (5) 125
C15—H15⋯O2ii 0.95 2.42 3.197 (5) 139
C18—H18⋯Cl2iii 0.95 2.81 3.702 (4) 156
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

We have recently reported that the chloride salts of dihydropyrimidine derivatives exhibit anti-tubercular activity (Venugopala, Nayak, Pillay et al. 2012). In continuation of our work in this field and on the crystal structures of dihydropyrimidine derivatives (Venugopala, Nayak & Odhav, 2012), we now report in this article, the crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in a closely related compound (Venugopala, Nayak &Odhav, 2012).The dihedral angles between the planes of 4-chlorophenyl and 4-bromophenyl rings with the plane of the six-membered pyrimidine ring are 72.4 (2)° and 45.5 (2)°, respectively. The conformation of the title molecule is stabilized by intramolecular C5—H5···O2 interactions. The crystal structure is stabilized by the N—H···Cl hydrogen bonds and further consolidated by weak C—H···O and C—H···Cl hydrogen bonding interactions (Table 1 & Fig. 2).

In the crystal structure, Cl2 is hydrogen bonded to N2 and N3 forming six membered rings in R21(6) motif (Bernstein et al.,1995). This Cl2 is also involved in a hydrogen bond (C18—H18···Cl2) with a molecule lying about an inversion center thus resulting in dimers. In addition, N1—H1···Cl2 interactions link the dimers into chains in the (1 0 1) direction. C15—H15···O2 interactions also result in macrocyclic rings about inversion centers resulting in dimers. Finally, a Br1···Cl1* short contact (3.482 (2) Å, symmetry code *: x - 1/2, -y + 1/2, z + 1/2) interlinks the hydrogen bonded chains along the b axis.

Related literature top

For a study of chloride salts of dihydropyrimidine derivatives and their anti-tubercular activity, see: Venugopala, Nayak, Pillay et al. (2012). For the crystal structures of dihydropyrimidine derivatives, see: Venugopala, Nayak & Odhav (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of methyl-2-chloro-4-(4-chlorophenyl)-6-methyl-1,4- dihydropyrimidine-5-carboxylate (1 mmol) and 4-bromoaniline (1 mmol) in 2-propanol (5 mL) was refluxed for 16 h. The reaction was monitored by TLC. The reaction medium was cooled to room temperature and the product was filtered, washed with cold 2-propanol and dried to obtain the crude product. The product was purified by recrystallization using ethanol to yield 66% yield of product which was pale yellow amorphous solid (m.p. 500 (2) K). Crystals suitable for single-crystal X-ray analysis were obtained using acetone as a solvent using slow evaporation at room temperature.

Refinement top

All H atoms were positioned geometrically with N—H = 0.88 Å, C—H = 0.95–1.00 Å and refined using a riding model with Uiso(H) = 1.2 Ueq(C/N)except for the methyl group where Uiso(H) = 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme and displacement ellipsoids for non-H atoms drawn at the 50% probability level. The intramolecular interactions are shown as dashed lines.
[Figure 2] Fig. 2. Intermolecular N—H···Cl hydrogen-bonding interactions form infinite chains which are linked by Br···Cl short contacts along the b axis.
2-(4-Bromoanilino)-6-(4-chlorophenyl)-5-methoxycarbonyl-4-methyl-3,6-dihydropyrimidin-1-ium chloride top
Crystal data top
C19H18BrClN3O2+·ClF(000) = 952
Mr = 471.17Dx = 1.558 Mg m3
Monoclinic, P21/nMelting point: 500(2) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.2691 (15) ÅCell parameters from 650 reflections
b = 11.0965 (12) Åθ = 1.7–27.9°
c = 14.9545 (17) ŵ = 2.33 mm1
β = 114.181 (3)°T = 100 K
V = 2008.7 (4) Å3Block, colorless
Z = 40.08 × 0.05 × 0.03 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3919 independent reflections
Radiation source: fine-focus sealed tube2511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
0.5° ϕ scans and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.835, Tmax = 0.933k = 1313
10242 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0403P)2]
where P = (Fo2 + 2Fc2)/3
3919 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C19H18BrClN3O2+·ClV = 2008.7 (4) Å3
Mr = 471.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.2691 (15) ŵ = 2.33 mm1
b = 11.0965 (12) ÅT = 100 K
c = 14.9545 (17) Å0.08 × 0.05 × 0.03 mm
β = 114.181 (3)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3919 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2511 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.933Rint = 0.067
10242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.95Δρmax = 0.42 e Å3
3919 reflectionsΔρmin = 0.40 e Å3
246 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.13690 (4)0.30575 (4)0.48412 (3)0.03906 (15)
Cl10.62679 (9)0.43238 (11)0.13181 (9)0.0497 (3)
Cl20.18134 (7)0.73567 (10)0.24229 (7)0.0366 (3)
O10.4928 (2)1.0157 (2)0.21182 (19)0.0336 (7)
O20.6208 (2)1.1174 (3)0.3359 (2)0.0391 (7)
N10.4274 (2)0.7807 (3)0.3884 (2)0.0220 (7)
H10.35800.75790.36780.026*
N20.5907 (2)0.8308 (3)0.5160 (2)0.0244 (7)
H20.64220.81090.57360.029*
N30.4682 (2)0.7087 (3)0.5462 (2)0.0236 (7)
H30.50750.72510.60850.028*
C10.4941 (4)1.1104 (4)0.1460 (3)0.0420 (11)
H1A0.57031.13630.16320.063*
H1B0.45031.17880.15150.063*
H1C0.46241.08010.07850.063*
C20.5598 (3)1.0312 (3)0.3065 (3)0.0266 (9)
C30.5487 (3)0.9312 (3)0.3668 (3)0.0213 (8)
C40.6119 (3)0.9232 (3)0.4638 (3)0.0239 (9)
C50.7060 (3)1.0023 (3)0.5265 (3)0.0320 (10)
H5A0.69811.08190.49610.048*
H5B0.77600.96600.53290.048*
H5C0.70561.01050.59160.048*
C60.4680 (3)0.8309 (3)0.3176 (3)0.0217 (8)
H60.40330.86740.26250.026*
C70.5126 (3)0.7297 (3)0.2746 (2)0.0232 (8)
C80.6080 (3)0.7427 (4)0.2584 (3)0.0282 (9)
H80.65040.81450.27910.034*
C90.6427 (3)0.6536 (4)0.2129 (3)0.0308 (9)
H90.70700.66430.20080.037*
C100.5819 (3)0.5490 (4)0.1855 (3)0.0308 (10)
C110.4875 (3)0.5316 (4)0.2014 (3)0.0305 (10)
H110.44750.45810.18330.037*
C120.4528 (3)0.6233 (4)0.2441 (3)0.0268 (9)
H120.38630.61370.25290.032*
C130.4936 (3)0.7697 (3)0.4817 (3)0.0202 (8)
C140.3842 (3)0.6193 (3)0.5253 (3)0.0230 (8)
C150.3303 (3)0.6112 (4)0.5866 (3)0.0284 (9)
H150.34410.66920.63700.034*
C160.2553 (3)0.5180 (4)0.5747 (3)0.0301 (9)
H160.21840.51120.61700.036*
C170.2358 (3)0.4357 (3)0.5001 (3)0.0277 (9)
C180.2874 (3)0.4450 (3)0.4374 (3)0.0246 (9)
H180.27110.38890.38530.029*
C190.3625 (3)0.5356 (3)0.4501 (3)0.0237 (8)
H190.39960.54120.40780.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0491 (3)0.0302 (2)0.0386 (3)0.0145 (2)0.0188 (2)0.0051 (2)
Cl10.0502 (7)0.0405 (7)0.0635 (8)0.0083 (5)0.0285 (6)0.0154 (6)
Cl20.0226 (5)0.0571 (7)0.0259 (5)0.0006 (5)0.0058 (4)0.0065 (5)
O10.0401 (16)0.0293 (17)0.0292 (16)0.0082 (13)0.0117 (13)0.0027 (12)
O20.0433 (17)0.0265 (16)0.0440 (18)0.0114 (14)0.0144 (14)0.0019 (14)
N10.0136 (14)0.0266 (19)0.0221 (17)0.0004 (12)0.0036 (13)0.0000 (13)
N20.0169 (16)0.0249 (19)0.0239 (17)0.0012 (13)0.0007 (13)0.0002 (13)
N30.0243 (16)0.0268 (19)0.0173 (16)0.0040 (14)0.0060 (13)0.0026 (14)
C10.052 (3)0.040 (3)0.038 (3)0.009 (2)0.022 (2)0.007 (2)
C20.027 (2)0.023 (2)0.034 (2)0.0016 (17)0.0166 (19)0.0060 (18)
C30.0227 (19)0.017 (2)0.026 (2)0.0006 (15)0.0112 (17)0.0029 (16)
C40.022 (2)0.017 (2)0.032 (2)0.0007 (15)0.0109 (18)0.0044 (16)
C50.026 (2)0.024 (2)0.038 (2)0.0018 (17)0.0033 (18)0.0081 (19)
C60.0198 (18)0.023 (2)0.0206 (19)0.0013 (15)0.0063 (16)0.0009 (15)
C70.026 (2)0.023 (2)0.0172 (19)0.0028 (16)0.0063 (16)0.0027 (15)
C80.024 (2)0.028 (2)0.031 (2)0.0029 (17)0.0097 (17)0.0013 (18)
C90.028 (2)0.032 (2)0.038 (2)0.0020 (18)0.0194 (19)0.0010 (19)
C100.033 (2)0.025 (2)0.032 (2)0.0083 (18)0.0110 (19)0.0031 (18)
C110.028 (2)0.026 (2)0.031 (2)0.0031 (17)0.0042 (18)0.0004 (18)
C120.024 (2)0.030 (2)0.025 (2)0.0034 (17)0.0092 (17)0.0019 (18)
C130.0185 (18)0.019 (2)0.025 (2)0.0029 (15)0.0107 (17)0.0035 (16)
C140.025 (2)0.019 (2)0.021 (2)0.0047 (15)0.0052 (17)0.0040 (16)
C150.038 (2)0.024 (2)0.024 (2)0.0020 (18)0.0140 (19)0.0055 (17)
C160.037 (2)0.030 (2)0.029 (2)0.0050 (18)0.0176 (19)0.0007 (18)
C170.034 (2)0.018 (2)0.027 (2)0.0033 (16)0.0074 (18)0.0001 (17)
C180.030 (2)0.022 (2)0.021 (2)0.0001 (16)0.0093 (17)0.0026 (16)
C190.025 (2)0.022 (2)0.024 (2)0.0063 (16)0.0098 (17)0.0028 (17)
Geometric parameters (Å, º) top
Br1—C171.898 (4)C5—H5C0.9800
Cl1—C101.751 (4)C6—C71.529 (5)
O1—C21.339 (4)C6—H61.0000
O1—C11.445 (5)C7—C81.390 (5)
O2—C21.214 (4)C7—C121.391 (5)
N1—C131.315 (4)C8—C91.382 (5)
N1—C61.479 (4)C8—H80.9500
N1—H10.8800C9—C101.377 (5)
N2—C131.357 (4)C9—H90.9500
N2—C41.386 (5)C10—C111.381 (5)
N2—H20.8800C11—C121.377 (5)
N3—C131.330 (4)C11—H110.9500
N3—C141.428 (4)C12—H120.9500
N3—H30.8800C14—C151.377 (5)
C1—H1A0.9800C14—C191.395 (5)
C1—H1B0.9800C15—C161.395 (5)
C1—H1C0.9800C15—H150.9500
C2—C31.475 (5)C16—C171.381 (5)
C3—C41.349 (5)C16—H160.9500
C3—C61.510 (5)C17—C181.373 (5)
C4—C51.500 (5)C18—C191.374 (5)
C5—H5A0.9800C18—H180.9500
C5—H5B0.9800C19—H190.9500
C2—O1—C1116.1 (3)C8—C7—C6122.3 (3)
C13—N1—C6120.9 (3)C12—C7—C6119.6 (3)
C13—N1—H1119.6C9—C8—C7121.5 (4)
C6—N1—H1119.6C9—C8—H8119.3
C13—N2—C4122.4 (3)C7—C8—H8119.3
C13—N2—H2118.8C10—C9—C8118.5 (4)
C4—N2—H2118.8C10—C9—H9120.7
C13—N3—C14127.0 (3)C8—C9—H9120.7
C13—N3—H3116.5C9—C10—C11121.9 (4)
C14—N3—H3116.5C9—C10—Cl1119.5 (3)
O1—C1—H1A109.5C11—C10—Cl1118.6 (3)
O1—C1—H1B109.5C12—C11—C10118.4 (4)
H1A—C1—H1B109.5C12—C11—H11120.8
O1—C1—H1C109.5C10—C11—H11120.8
H1A—C1—H1C109.5C11—C12—C7121.6 (4)
H1B—C1—H1C109.5C11—C12—H12119.2
O2—C2—O1122.6 (4)C7—C12—H12119.2
O2—C2—C3126.2 (4)N1—C13—N3124.0 (3)
O1—C2—C3111.1 (3)N1—C13—N2118.3 (3)
C4—C3—C2122.2 (3)N3—C13—N2117.6 (3)
C4—C3—C6118.7 (3)C15—C14—C19120.1 (3)
C2—C3—C6119.0 (3)C15—C14—N3118.2 (3)
C3—C4—N2118.3 (3)C19—C14—N3121.6 (3)
C3—C4—C5128.8 (4)C14—C15—C16120.1 (4)
N2—C4—C5112.9 (3)C14—C15—H15120.0
C4—C5—H5A109.5C16—C15—H15120.0
C4—C5—H5B109.5C17—C16—C15118.8 (4)
H5A—C5—H5B109.5C17—C16—H16120.6
C4—C5—H5C109.5C15—C16—H16120.6
H5A—C5—H5C109.5C18—C17—C16121.4 (4)
H5B—C5—H5C109.5C18—C17—Br1118.9 (3)
N1—C6—C3108.8 (3)C16—C17—Br1119.7 (3)
N1—C6—C7110.0 (3)C17—C18—C19119.8 (3)
C3—C6—C7115.3 (3)C17—C18—H18120.1
N1—C6—H6107.5C19—C18—H18120.1
C3—C6—H6107.5C18—C19—C14119.9 (3)
C7—C6—H6107.5C18—C19—H19120.1
C8—C7—C12118.0 (4)C14—C19—H19120.1
C1—O1—C2—O22.1 (5)C8—C9—C10—C110.6 (6)
C1—O1—C2—C3178.1 (3)C8—C9—C10—Cl1177.6 (3)
O2—C2—C3—C43.4 (6)C9—C10—C11—C121.4 (6)
O1—C2—C3—C4176.4 (3)Cl1—C10—C11—C12179.7 (3)
O2—C2—C3—C6179.9 (4)C10—C11—C12—C72.6 (6)
O1—C2—C3—C60.3 (5)C8—C7—C12—C111.6 (5)
C2—C3—C4—N2175.7 (3)C6—C7—C12—C11177.4 (3)
C6—C3—C4—N27.6 (5)C6—N1—C13—N3168.9 (3)
C2—C3—C4—C54.6 (6)C6—N1—C13—N215.6 (5)
C6—C3—C4—C5172.2 (3)C14—N3—C13—N118.7 (6)
C13—N2—C4—C318.5 (5)C14—N3—C13—N2165.8 (3)
C13—N2—C4—C5161.7 (3)C4—N2—C13—N114.7 (5)
C13—N1—C6—C337.3 (4)C4—N2—C13—N3161.0 (3)
C13—N1—C6—C789.8 (4)C13—N3—C14—C15146.4 (4)
C4—C3—C6—N132.5 (4)C13—N3—C14—C1938.7 (5)
C2—C3—C6—N1150.7 (3)C19—C14—C15—C161.2 (5)
C4—C3—C6—C791.6 (4)N3—C14—C15—C16173.8 (3)
C2—C3—C6—C785.3 (4)C14—C15—C16—C170.7 (6)
N1—C6—C7—C8139.6 (3)C15—C16—C17—C180.9 (6)
C3—C6—C7—C816.2 (5)C15—C16—C17—Br1178.5 (3)
N1—C6—C7—C1244.8 (4)C16—C17—C18—C191.9 (6)
C3—C6—C7—C12168.2 (3)Br1—C17—C18—C19177.4 (3)
C12—C7—C8—C90.5 (5)C17—C18—C19—C141.4 (5)
C6—C7—C8—C9175.2 (3)C15—C14—C19—C180.1 (5)
C7—C8—C9—C101.5 (6)N3—C14—C19—C18174.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.882.343.136 (3)151
N2—H2···Cl2i0.882.413.179 (3)146
N3—H3···Cl2i0.882.393.191 (3)151
C5—H5A···O20.982.222.897 (5)125
C15—H15···O2ii0.952.423.197 (5)139
C18—H18···Cl2iii0.952.813.702 (4)156
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H18BrClN3O2+·Cl
Mr471.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.2691 (15), 11.0965 (12), 14.9545 (17)
β (°) 114.181 (3)
V3)2008.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.33
Crystal size (mm)0.08 × 0.05 × 0.03
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.835, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
10242, 3919, 2511
Rint0.067
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.096, 0.95
No. of reflections3919
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.40

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.88002.34003.136 (3)151.00
N2—H2···Cl2i0.88002.41003.179 (3)146.00
N3—H3···Cl2i0.88002.39003.191 (3)151.00
C5—H5A···O20.98002.22002.897 (5)125.00
C15—H15···O2ii0.95002.42003.197 (5)139.00
C18—H18···Cl2iii0.95002.81003.702 (4)156.00
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Durban University of Technology for facilities. KNV thanks the NRF South Africa for a DST/NRF Innovation Postdoctoral Fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenugopala, K. N., Nayak, S. K. & Odhav, B. (2012). Acta Cryst. E68, o2977–o2978.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationVenugopala, K. N., Nayak, S. K., Pillay, M., Renuka, P., Coovadia, Y. M. & Odhav, B. (2012). Chem. Biol. Drug Des. 81, 219–227.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o518-o519
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds