organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3,4-Dihy­dr­oxy­benzyl­­idene)-2,4-di­methyl­benzohydrazide monohydrate

aAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia, bFaculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor D. E., Malaysia, cDepartment of Chemical Sciences, Faculty of Science and Technology, University Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia, and dH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 18 February 2013; accepted 27 February 2013; online 6 March 2013)

In the title compound, C16H16N2O3·H2O, the dihedral angle between the benzene rings is 30.27 (7)°. In the crystal, the components are linked by N—H⋯O, O—H⋯O and C—H⋯O inter­actions into a three-dimensional network.

Related literature

For the applications and biological activity of Schiff bases, see: Musharraf et al. (2012[Musharraf, S. G., Bibi, A., Shahid, N., Najam-ul-Haq, M., Khan, M., Taha, M., Mughal, U. R. & Khan, K. M. (2012). Am. J. Anal. Chem. 3, 779-789.]); Khan et al. (2012[Khan, K. M., Taha, M., Naz, F., Siddiqui, S., Rahim, F., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705-710.]). For the crystal structures of related compounds, see: Taha et al. (2012[Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Sammer, Y. (2012). Acta Cryst. E68, o2778.]); Baharudin et al. (2012[Baharudin, M. S., Taha, M., Ismail, N. H., Shah, S. A. A. & Yousuf, S. (2012). Acta Cryst. E68, o3255.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3·H2O

  • Mr = 302.32

  • Monoclinic, P 21 /n

  • a = 8.1373 (3) Å

  • b = 13.9025 (5) Å

  • c = 13.7886 (5) Å

  • β = 92.913 (1)°

  • V = 1557.87 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.991

  • 9012 measured reflections

  • 2897 independent reflections

  • 2535 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.05

  • 2897 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯N2i 0.87 (2) 2.20 (2) 3.059 (2) 169 (2)
O1W—H2W1⋯O1 0.94 (2) 2.01 (2) 2.935 (2) 173 (2)
N1—H1A⋯O3ii 0.91 (2) 2.08 (2) 2.962 (2) 163 (2)
O2—H2A⋯O1i 0.88 (2) 1.94 (2) 2.791 (2) 162 (2)
O3—H3A⋯O1Wiii 0.85 (2) 1.79 (2) 2.629 (2) 172 (2)
C8—H8A⋯O3ii 0.93 2.58 3.382 (2) 145
C15—H15B⋯O2i 0.96 2.52 3.351 (2) 144
Symmetry codes: (i) -x, -y+1, -z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Structurally diverse range of benzohydrazides have been extensively studied in order to explore the structural features that may be responsible for different biological activities (Musharraf et al., 2012; Khan et al., 2012). The title compound is yet another benzohydrazide monohydrate, obtained as a part of our ongoing research that has been studied by X-ray crystallographic method and reported in this article.

In the title compound (Fig. 1) dimethyl and dihydroxy substituted benzene rings (C1–C6 and C9–C14, respectively) are each planner with a dihedral angle 30.27 (7)° between their mean-planes. The azomethine double bond, N2C8 (1.2729 (19) Å) adopts an E configuration. The bond lengths and angle are similar to the corresponding bond lengths and angles reported in structurally related benzohydrazide derivatives (Taha et al., 2012; Baharudin et al., 2012). The crystal structure is stabilized by N1—H1A···N2, O2—H2A···O1, C8—H8A···O3 and C15—H15B···O2 intermolecular interactions. The ineteractions further extend the structure to a three dimentional network via O1W—H2W1···O1, O1W—H1A···O3 and O3—H3A···O1W interactions involving the water of hydration (Table 2 and Fig. 2).

Related literature top

For the applications and biological activity of Schiff bases, see: Musharraf et al. (2012); Khan et al. (2012). For the crystal structures of related compounds, see: Taha et al. (2012); Baharudin et al. (2012).

Experimental top

The title compound was synthesized by reacting (0.328 g, 2 mmol) 2,4-dimethylbenzohydrazide and (0.276 g, 2 mmol) 3,4-dihydroxybenzaldehyde as starting meterial under the same conditions and solvents as described previously for the synthesis of benzohydrazides (Taha et al., 2012). The title compound was recrystalized by dissolving in methanol to obtain colorless needles (0.499 g, 88% yield). All chemicals were purchased by Sigma Aldrich Germany.

Refinement top

H atoms on methyl and benzene ring were positioned geometrically with C—H = 0.96 and 0.93 Å, respectively and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(benzene) or 1.5Ueq(methyl). The H atoms on oxygen and nitrogen were located in difference Fourier map and refined isotropically. A rotating group model was applied to the methyl groups.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. Only hydrogen atoms involved in hydrogen bonding are shown.
(E)-N'-(3,4-Dihydroxybenzylidene)-2,4-dimethylbenzohydrazide monohydrate top
Crystal data top
C16H16N2O3·H2OF(000) = 640
Mr = 302.32Dx = 1.289 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4856 reflections
a = 8.1373 (3) Åθ = 2.8–28.2°
b = 13.9025 (5) ŵ = 0.09 mm1
c = 13.7886 (5) ÅT = 298 K
β = 92.913 (1)°Block, brown
V = 1557.87 (10) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2897 independent reflections
Radiation source: fine-focus sealed tube2535 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scanθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.973, Tmax = 0.991k = 1616
9012 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.3352P]
where P = (Fo2 + 2Fc2)/3
2897 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H16N2O3·H2OV = 1557.87 (10) Å3
Mr = 302.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1373 (3) ŵ = 0.09 mm1
b = 13.9025 (5) ÅT = 298 K
c = 13.7886 (5) Å0.30 × 0.10 × 0.10 mm
β = 92.913 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2897 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2535 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.991Rint = 0.016
9012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
2897 reflectionsΔρmin = 0.28 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15363 (13)0.55077 (8)0.16328 (8)0.0569 (3)
O1W0.12355 (15)0.45259 (10)0.07769 (9)0.0612 (3)
O20.04800 (12)0.26761 (9)0.22605 (8)0.0505 (3)
O30.16469 (13)0.15980 (8)0.32684 (7)0.0460 (3)
N10.34634 (15)0.43523 (9)0.14057 (9)0.0454 (3)
N20.28104 (14)0.40196 (9)0.05580 (8)0.0435 (3)
C10.30375 (16)0.56844 (10)0.36100 (10)0.0395 (3)
C20.40413 (18)0.60048 (11)0.43273 (10)0.0446 (3)
H2C0.35610.61530.49350.054*
C30.57324 (17)0.61142 (11)0.41767 (10)0.0435 (3)
C40.64410 (17)0.58608 (11)0.32796 (11)0.0455 (4)
H4A0.75740.59110.31660.055*
C50.54846 (16)0.55358 (10)0.25556 (10)0.0423 (3)
H5A0.59810.53710.19560.051*
C60.37828 (16)0.54484 (9)0.27016 (10)0.0366 (3)
C70.28131 (16)0.51150 (10)0.18789 (10)0.0397 (3)
C80.35766 (18)0.33077 (11)0.01702 (11)0.0464 (4)
H8A0.44950.30690.04650.056*
C90.30656 (17)0.28538 (10)0.07190 (10)0.0421 (3)
C100.41516 (19)0.22570 (11)0.12370 (12)0.0514 (4)
H10A0.51920.21450.10110.062*
C110.37047 (19)0.18256 (11)0.20869 (12)0.0499 (4)
H11A0.44480.14310.24320.060*
C120.21552 (16)0.19792 (9)0.24262 (10)0.0390 (3)
C130.10379 (16)0.25680 (10)0.18973 (10)0.0376 (3)
C140.14912 (16)0.29972 (10)0.10553 (10)0.0392 (3)
H14A0.07450.33870.07050.047*
C150.12199 (18)0.55713 (14)0.38483 (12)0.0571 (4)
H15A0.10290.55060.45380.086*
H15B0.06480.61280.36280.086*
H15C0.08250.50080.35310.086*
C160.6765 (2)0.65068 (14)0.49624 (13)0.0615 (5)
H16A0.63240.62930.55840.092*
H16B0.78750.62800.48630.092*
H16C0.67550.71970.49410.092*
H2A0.099 (3)0.3180 (16)0.1996 (15)0.077 (6)*
H1A0.436 (2)0.4053 (13)0.1634 (13)0.061 (5)*
H1W10.165 (3)0.4883 (17)0.0335 (16)0.080 (7)*
H3A0.239 (2)0.1248 (15)0.3533 (15)0.071 (6)*
H2W10.029 (3)0.4798 (17)0.1022 (16)0.091 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0495 (6)0.0633 (7)0.0601 (7)0.0209 (5)0.0261 (5)0.0182 (5)
O1W0.0486 (6)0.0766 (9)0.0595 (7)0.0124 (6)0.0122 (5)0.0274 (6)
O20.0399 (5)0.0578 (7)0.0557 (7)0.0085 (5)0.0200 (5)0.0140 (5)
O30.0453 (6)0.0499 (6)0.0442 (6)0.0056 (5)0.0153 (5)0.0141 (5)
N10.0462 (6)0.0506 (7)0.0414 (7)0.0134 (6)0.0227 (5)0.0112 (5)
N20.0453 (6)0.0477 (7)0.0393 (6)0.0066 (5)0.0194 (5)0.0077 (5)
C10.0360 (7)0.0429 (7)0.0400 (7)0.0004 (5)0.0051 (6)0.0011 (6)
C20.0478 (8)0.0505 (8)0.0358 (7)0.0008 (6)0.0041 (6)0.0062 (6)
C30.0437 (7)0.0430 (8)0.0448 (8)0.0010 (6)0.0136 (6)0.0037 (6)
C40.0335 (7)0.0506 (8)0.0530 (9)0.0033 (6)0.0068 (6)0.0038 (7)
C50.0383 (7)0.0488 (8)0.0396 (7)0.0023 (6)0.0014 (6)0.0048 (6)
C60.0360 (7)0.0379 (7)0.0367 (7)0.0023 (5)0.0085 (5)0.0023 (5)
C70.0378 (7)0.0434 (7)0.0387 (7)0.0050 (6)0.0105 (6)0.0030 (6)
C80.0484 (8)0.0466 (8)0.0463 (8)0.0108 (7)0.0218 (6)0.0064 (7)
C90.0468 (8)0.0393 (7)0.0418 (7)0.0055 (6)0.0176 (6)0.0046 (6)
C100.0468 (8)0.0526 (9)0.0572 (9)0.0149 (7)0.0263 (7)0.0122 (7)
C110.0469 (8)0.0496 (9)0.0547 (9)0.0156 (7)0.0171 (7)0.0154 (7)
C120.0441 (7)0.0352 (7)0.0388 (7)0.0008 (6)0.0145 (6)0.0039 (5)
C130.0370 (7)0.0365 (7)0.0405 (7)0.0007 (5)0.0128 (5)0.0002 (5)
C140.0420 (7)0.0361 (7)0.0401 (7)0.0036 (6)0.0082 (6)0.0034 (6)
C150.0401 (8)0.0788 (12)0.0521 (9)0.0036 (7)0.0010 (7)0.0037 (8)
C160.0567 (9)0.0699 (11)0.0598 (10)0.0030 (8)0.0225 (8)0.0146 (9)
Geometric parameters (Å, º) top
O1—C71.2364 (16)C5—C61.3945 (19)
O1W—H1W10.87 (2)C5—H5A0.9300
O1W—H2W10.94 (2)C6—C71.4884 (18)
O2—C131.3645 (15)C8—C91.4581 (19)
O2—H2A0.88 (2)C8—H8A0.9300
O3—C121.3599 (16)C9—C101.384 (2)
O3—H3A0.85 (2)C9—C141.3988 (19)
N1—C71.3398 (18)C10—C111.382 (2)
N1—N21.3877 (15)C10—H10A0.9300
N1—H1A0.913 (19)C11—C121.3835 (19)
N2—C81.2729 (19)C11—H11A0.9300
C1—C21.3878 (19)C12—C131.4004 (19)
C1—C61.4026 (19)C13—C141.3725 (19)
C1—C151.5069 (19)C14—H14A0.9300
C2—C31.390 (2)C15—H15A0.9600
C2—H2C0.9300C15—H15B0.9600
C3—C41.384 (2)C15—H15C0.9600
C3—C161.507 (2)C16—H16A0.9600
C4—C51.373 (2)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
H1W1—O1W—H2W1112 (2)C10—C9—C14119.07 (13)
C13—O2—H2A110.5 (13)C10—C9—C8119.44 (12)
C12—O3—H3A110.4 (13)C14—C9—C8121.48 (13)
C7—N1—N2121.02 (11)C11—C10—C9120.62 (13)
C7—N1—H1A119.8 (11)C11—C10—H10A119.7
N2—N1—H1A119.2 (11)C9—C10—H10A119.7
C8—N2—N1114.37 (11)C10—C11—C12120.24 (14)
C2—C1—C6117.91 (12)C10—C11—H11A119.9
C2—C1—C15119.00 (13)C12—C11—H11A119.9
C6—C1—C15123.05 (12)O3—C12—C11123.41 (13)
C1—C2—C3122.88 (13)O3—C12—C13117.06 (11)
C1—C2—H2C118.6C11—C12—C13119.52 (12)
C3—C2—H2C118.6O2—C13—C14123.35 (12)
C4—C3—C2118.05 (13)O2—C13—C12116.69 (12)
C4—C3—C16120.85 (13)C14—C13—C12119.96 (12)
C2—C3—C16121.10 (13)C13—C14—C9120.57 (13)
C5—C4—C3120.53 (13)C13—C14—H14A119.7
C5—C4—H4A119.7C9—C14—H14A119.7
C3—C4—H4A119.7C1—C15—H15A109.5
C4—C5—C6121.27 (13)C1—C15—H15B109.5
C4—C5—H5A119.4H15A—C15—H15B109.5
C6—C5—H5A119.4C1—C15—H15C109.5
C5—C6—C1119.32 (12)H15A—C15—H15C109.5
C5—C6—C7118.57 (12)H15B—C15—H15C109.5
C1—C6—C7122.11 (12)C3—C16—H16A109.5
O1—C7—N1122.17 (12)C3—C16—H16B109.5
O1—C7—C6123.86 (12)H16A—C16—H16B109.5
N1—C7—C6113.96 (11)C3—C16—H16C109.5
N2—C8—C9122.36 (12)H16A—C16—H16C109.5
N2—C8—H8A118.8H16B—C16—H16C109.5
C9—C8—H8A118.8
C7—N1—N2—C8178.10 (14)C5—C6—C7—N145.73 (18)
C6—C1—C2—C31.1 (2)C1—C6—C7—N1134.90 (14)
C15—C1—C2—C3178.87 (15)N1—N2—C8—C9179.45 (13)
C1—C2—C3—C42.2 (2)N2—C8—C9—C10163.72 (16)
C1—C2—C3—C16177.21 (15)N2—C8—C9—C1417.1 (2)
C2—C3—C4—C51.7 (2)C14—C9—C10—C111.5 (2)
C16—C3—C4—C5177.66 (15)C8—C9—C10—C11179.34 (15)
C3—C4—C5—C60.2 (2)C9—C10—C11—C120.6 (3)
C4—C5—C6—C10.9 (2)C10—C11—C12—O3178.29 (14)
C4—C5—C6—C7178.49 (13)C10—C11—C12—C130.6 (2)
C2—C1—C6—C50.5 (2)O3—C12—C13—O22.27 (19)
C15—C1—C6—C5177.23 (14)C11—C12—C13—O2178.79 (14)
C2—C1—C6—C7178.88 (13)O3—C12—C13—C14178.14 (12)
C15—C1—C6—C73.4 (2)C11—C12—C13—C140.8 (2)
N2—N1—C7—O15.9 (2)O2—C13—C14—C9179.69 (13)
N2—N1—C7—C6172.84 (12)C12—C13—C14—C90.1 (2)
C5—C6—C7—O1133.03 (16)C10—C9—C14—C131.3 (2)
C1—C6—C7—O146.3 (2)C8—C9—C14—C13179.59 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N2i0.87 (2)2.20 (2)3.059 (2)169 (2)
N1—H1A···O3ii0.91 (2)2.08 (2)2.962 (2)163 (2)
O1W—H2W1···O10.94 (2)2.01 (2)2.935 (2)173 (2)
O2—H2A···O1i0.88 (2)1.94 (2)2.791 (2)162 (2)
O3—H3A···O1Wiii0.85 (2)1.79 (2)2.629 (2)172 (2)
C8—H8A···O3ii0.932.583.382 (2)145
C15—H15B···O2i0.962.523.351 (2)144
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O3·H2O
Mr302.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.1373 (3), 13.9025 (5), 13.7886 (5)
β (°) 92.913 (1)
V3)1557.87 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
9012, 2897, 2535
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.05
No. of reflections2897
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N2i0.87 (2)2.20 (2)3.059 (2)169 (2)
N1—H1A···O3ii0.91 (2)2.08 (2)2.962 (2)163 (2)
O1W—H2W1···O10.94 (2)2.01 (2)2.935 (2)173 (2)
O2—H2A···O1i0.88 (2)1.94 (2)2.791 (2)162 (2)
O3—H3A···O1Wiii0.85 (2)1.79 (2)2.629 (2)172 (2)
C8—H8A···O3ii0.93002.58003.382 (2)145
C15—H15B···O2i0.96002.52003.351 (2)144
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Research Management Institute of UiTM for financial support under the Dana Kecemerlangan Grant Scheme [grant No. 600-RMI/DANA 5/3 RIF (143/2012)].

References

First citationBaharudin, M. S., Taha, M., Ismail, N. H., Shah, S. A. A. & Yousuf, S. (2012). Acta Cryst. E68, o3255.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, K. M., Taha, M., Naz, F., Siddiqui, S., Rahim, F., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705–710.  Web of Science CAS PubMed Google Scholar
First citationMusharraf, S. G., Bibi, A., Shahid, N., Najam-ul-Haq, M., Khan, M., Taha, M., Mughal, U. R. & Khan, K. M. (2012). Am. J. Anal. Chem. 3, 779-789.  CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Sammer, Y. (2012). Acta Cryst. E68, o2778.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds