organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1-benzoyl-7-meth­­oxy­naphthalen-2-yl) terephthalate

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Naka-machi, Koganei, Tokyo 184-8588, Japan, and bInternational Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 21 February 2013; accepted 15 March 2013; online 20 March 2013)

The title molecule, C44H30O8, lies about a crystallographic inversion centre located at the centre of the central benzene ring. The benzene rings in the benzoyl and the terephthalate units make dihedral angles of 67.05 (7)° and 57.57 (7)°, respectively, with the naphthalene ring system. There is an intra­molecular C—H⋯O inter­action between the ketonic carbonyl O atom and an H atom on the naphthalene ring system. In the crystal, C—H⋯O inter­action of the benzene ring in the benzoyl group and weak C=O⋯π inter­action [O⋯centroid = 3.375 (2) Å] of the naphthalene ring with the O atom in the ketonic carbonyl group are observed. These inter­actions form layers parallel to the bc plane.

Related literature

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]); Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Sakamoto et al. (2012[Sakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454.], 2013[Sakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o210.]).

[Scheme 1]

Experimental

Crystal data
  • C44H30O8

  • Mr = 686.72

  • Monoclinic, P 21 /c

  • a = 9.977 (5) Å

  • b = 14.922 (7) Å

  • c = 11.709 (6) Å

  • β = 106.610 (5)°

  • V = 1670.5 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.16 × 0.13 × 0.03 mm

Data collection
  • Rigaku Saturn70 diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.985, Tmax = 0.997

  • 10969 measured reflections

  • 2909 independent reflections

  • 2354 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.04

  • 2909 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.95 2.41 2.965 (3) 117
C16—H16⋯O1i 0.95 2.55 3.258 (3) 132
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2006[Rigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of the naphthalene core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011).

Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dialkoxynaphthalene, e.g., 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008). Furthermore, we have also determined the crystal structures of 1-monoaroylated 2,7-dialkoxynaphthalene compounds such as (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone [1-benzoyl-2,7-dimethoxynaphthalene](Kato et al., 2010).

These compounds have non-coplanar structures where the aroyl groups are perpendicularly orientated relative to the naphthalene ring. Crystal structures of the aroylnaphthalene analogues bearing oxybenzoyl groups at the 2,7- positions of the naphthalene ring core namely 1,8-dibenzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2012) and 1-benzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2013), have been previously determined which show the molecules form the tubular arrangements when the benzene ring of the benzoyl group effectively interacts with the carbonyl moiety of the benzoyloxy group and the naphthalene ring through intermolecular C–H···O and C–H···π interactions.

As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound composed of two 1-benzoylnaphthalene units and a terephthalate moiety is reported on herein.

The molecular structure of the title compound is displayed in Fig. 1. The molecule lies on a centre of inversion so that the asymmetric unit contains one-half of the molecules. The benzene rings in the benzoyl group and the terephthalate moiety are twisted away from the naphthalene ring. Two kinds of intramolecular C–H···O interactions, one intramolecular C–H···O interaction between the naphthalene ring and the benzoyl group (C8–H8···O1 = 2.41 Å) and another one between the benzene ring and the ethereal oxygen of the terephthalate moiety (C22–H22···O3 = 2.39 Å), contribute to stabilization of the twisted orientation of each benzene ring against the naphthalene ring (Fig. 1).

The dihedral angles of the benzene ring in the benzoyl group and the terephthalate moiety with the naphthalene ring are 67.05 (7)° [C9–C1–C11–O1 and O1–C11–C12–C17, torsion angles = -45.1 (3) and -26.3 (3)° for benzoyl group] and 57.57 (7)° [O4–C19–C20–C21, O4–C19–O3–C2, and C3–C2–O3–C19, torsion angles = 2.9 (3), 4.0 (5), and -66.8 (9)° for terephthalate moiety].

In the case of the homologous molecule, 1-benzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2013), the corresponding dihedral angles are slightly larger than those of the title compound [80.41 (6)° and 73.62 (5)°].

In the crystal (Fig. 2), the ketonic carbonyl oxygen forms intermolecular C–H···O interaction with the benzene ring of the benzoyl goup [C16–H16···O1i = 2.55 Å; symmetry code: x, 1/2 - y, -1/2 + z] and weak intermolecular C=O···π interaction with the naphthalene ring [C11–O1···Cg1ii = 3.38 Å; Cg1 is the centroids of the C1/C4–C9–C10 rings].

Consequently, the molecules are arranged in laminae along the bc-plane (Fig. 3).

Related literature top

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Kato et al. (2010); Nakaema et al. (2008); Sakamoto et al. (2012, 2013).

Experimental top

The title compound was prepared by treatment of a mixture of (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (0.4 mmol, 111 mg), terephthaloyl dichloride (0.22 mmol, 44.7 mg), and triethylamine (0.44 mmol, 0.062 ml) in dichloromethane (1.0 ml). After the reaction mixture was stirred at rt for 3 h, it was poured into water (30 ml) and the mixture was extracted with chloroform (10 ml×3). The combined extracts were washed with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake (yield 63%). The crude product was purified by recrystallization from chloroform and colorless single crystals suitable for X-ray diffraction were obtained.

Spectroscopic data: 1H NMR δ (500 MHz, CDCl3): 3.76 (6H, s), 7.02 (2H, dd, J=9.2, 2.3 Hz), 7.20 (2H, dd, J=9.2, 2.3 Hz), 7.33–7.39 (6H, m), 7.50 (2H, t, J=7.4 Hz), 7.66 (4H, s), 7.81–7.85 (6H, m), 7.96 (2H, d, J=8.6 Hz) p.p.m..

13C NMR δ (75 MHz, CDCl3): 55.30, 103.37, 118.54, 119.32, 126.63, 127.18, 128.68, 129.43, 129.71, 129.83, 130.95, 132.84, 133.75, 137.78, 146.33, 158.99, 163.38, 195.98 p.p.m..

IR (KBr): 1729 (OC=O), 1663 (C=O), 1624,1595, 1510 (Ar) cm-1. m.p. = 484.2–484.8 K.

Anal. Calcd for C44H30O8 3.5H2O: C, 70.49; H, 4.97; Found: C, 70.40; H, 4.73.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2006); cell refinement: CrystalClear (Rigaku, 2006); data reduction: CrystalClear (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids at 50% probability for non-H atoms. The dashed lines indicate intramolecular C–H···O bonds.
[Figure 2] Fig. 2. C–H···O interaction (dashed line) between phenyl ring and ketonic carbonyl group.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the b axis. The molecular layers are expanded along the bc-plane.
Bis(1-benzoyl-7-methoxynaphthalen-2-yl) terephthalate top
Crystal data top
C44H30O8F(000) = 716
Mr = 686.72Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 4873 reflections
a = 9.977 (5) Åθ = 2.1–31.2°
b = 14.922 (7) ŵ = 0.09 mm1
c = 11.709 (6) ÅT = 173 K
β = 106.610 (5)°Block, colorless
V = 1670.5 (14) Å30.16 × 0.13 × 0.03 mm
Z = 2
Data collection top
Rigaku Saturn70
diffractometer
2909 independent reflections
Radiation source: fine-focus sealed tube2354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 7.314 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scansh = 1111
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1317
Tmin = 0.985, Tmax = 0.997l = 1313
10969 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0716P)2 + 0.0599P]
where P = (Fo2 + 2Fc2)/3
2909 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C44H30O8V = 1670.5 (14) Å3
Mr = 686.72Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.977 (5) ŵ = 0.09 mm1
b = 14.922 (7) ÅT = 173 K
c = 11.709 (6) Å0.16 × 0.13 × 0.03 mm
β = 106.610 (5)°
Data collection top
Rigaku Saturn70
diffractometer
2909 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2354 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.997Rint = 0.048
10969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2909 reflectionsΔρmin = 0.18 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.89735 (14)0.10507 (8)0.99483 (11)0.0365 (3)
O20.58268 (14)0.02769 (9)1.24046 (11)0.0370 (4)
O30.88903 (12)0.06534 (8)0.75583 (10)0.0274 (3)
O40.71518 (13)0.10741 (8)0.59275 (11)0.0331 (3)
C10.78482 (18)0.02789 (11)0.90842 (14)0.0250 (4)
C20.81191 (18)0.09200 (11)0.83329 (15)0.0268 (4)
C30.78049 (19)0.18316 (12)0.83991 (16)0.0300 (4)
H30.80210.22530.78700.036*
C40.71849 (19)0.20981 (12)0.92361 (16)0.0317 (4)
H40.69660.27140.92880.038*
C50.6193 (2)0.17586 (12)1.08887 (16)0.0323 (4)
H50.59640.23731.09320.039*
C60.58792 (19)0.11631 (12)1.16488 (16)0.0328 (4)
H60.54370.13631.22210.039*
C70.62077 (19)0.02485 (12)1.15912 (15)0.0298 (4)
C80.68635 (18)0.00528 (12)1.07862 (14)0.0268 (4)
H80.70930.06701.07680.032*
C90.72028 (18)0.05563 (11)0.99763 (15)0.0263 (4)
C100.68584 (18)0.14785 (11)1.00309 (15)0.0286 (4)
C110.83238 (18)0.06688 (11)0.90305 (15)0.0273 (4)
C120.79951 (18)0.11478 (11)0.78599 (15)0.0272 (4)
C130.68449 (19)0.09267 (11)0.69170 (16)0.0295 (4)
H130.62480.04510.70020.035*
C140.6557 (2)0.13957 (12)0.58465 (17)0.0366 (5)
H140.57570.12500.52080.044*
C150.7446 (2)0.20763 (13)0.57206 (18)0.0426 (5)
H150.72620.23930.49880.051*
C160.8603 (2)0.22994 (13)0.66549 (19)0.0425 (5)
H160.92100.27650.65580.051*
C170.8877 (2)0.18470 (12)0.77284 (18)0.0365 (5)
H170.96600.20100.83740.044*
C180.6184 (2)0.12025 (13)1.24527 (18)0.0409 (5)
H18A0.58090.14691.16610.049*
H18B0.72040.12671.27110.049*
H18C0.57840.15091.30200.049*
C190.82851 (18)0.07386 (11)0.63596 (15)0.0259 (4)
C200.91934 (18)0.03603 (11)0.56745 (15)0.0256 (4)
C210.87490 (19)0.04257 (12)0.44403 (16)0.0306 (4)
H210.78900.07160.40590.037*
C221.04521 (19)0.00720 (12)0.62350 (15)0.0316 (4)
H221.07560.01220.70790.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0435 (8)0.0394 (8)0.0269 (7)0.0090 (6)0.0105 (6)0.0069 (6)
O20.0448 (8)0.0425 (8)0.0294 (7)0.0008 (6)0.0198 (6)0.0037 (5)
O30.0321 (7)0.0316 (7)0.0211 (6)0.0011 (5)0.0120 (5)0.0004 (5)
O40.0366 (8)0.0359 (7)0.0287 (7)0.0071 (6)0.0124 (6)0.0030 (5)
C10.0281 (9)0.0274 (9)0.0202 (9)0.0003 (7)0.0080 (7)0.0017 (7)
C20.0286 (9)0.0326 (10)0.0206 (9)0.0002 (7)0.0092 (7)0.0035 (7)
C30.0372 (10)0.0271 (10)0.0281 (10)0.0013 (7)0.0130 (8)0.0007 (7)
C40.0399 (11)0.0252 (9)0.0319 (10)0.0005 (8)0.0133 (8)0.0024 (7)
C50.0364 (10)0.0310 (10)0.0311 (10)0.0000 (8)0.0122 (8)0.0063 (8)
C60.0346 (10)0.0403 (11)0.0267 (10)0.0005 (8)0.0140 (8)0.0073 (8)
C70.0298 (10)0.0399 (11)0.0211 (9)0.0052 (8)0.0097 (7)0.0006 (7)
C80.0291 (9)0.0303 (9)0.0213 (9)0.0016 (7)0.0074 (7)0.0012 (7)
C90.0268 (9)0.0304 (10)0.0211 (9)0.0016 (7)0.0059 (7)0.0036 (7)
C100.0307 (10)0.0301 (10)0.0253 (9)0.0000 (7)0.0086 (8)0.0046 (7)
C110.0283 (9)0.0301 (10)0.0262 (9)0.0003 (7)0.0125 (8)0.0014 (7)
C120.0316 (10)0.0254 (9)0.0275 (10)0.0023 (7)0.0131 (8)0.0004 (7)
C130.0327 (10)0.0269 (9)0.0314 (10)0.0016 (7)0.0134 (8)0.0002 (7)
C140.0411 (11)0.0342 (11)0.0329 (11)0.0030 (9)0.0079 (9)0.0040 (8)
C150.0561 (13)0.0356 (11)0.0366 (12)0.0030 (10)0.0143 (10)0.0131 (8)
C160.0475 (12)0.0329 (11)0.0503 (13)0.0046 (9)0.0191 (10)0.0111 (9)
C170.0382 (11)0.0331 (10)0.0395 (11)0.0045 (8)0.0131 (9)0.0029 (8)
C180.0505 (13)0.0428 (12)0.0333 (11)0.0048 (9)0.0182 (10)0.0040 (8)
C190.0325 (10)0.0227 (9)0.0240 (9)0.0024 (7)0.0105 (8)0.0018 (7)
C200.0300 (9)0.0240 (9)0.0253 (9)0.0027 (7)0.0121 (7)0.0007 (7)
C210.0307 (10)0.0370 (10)0.0261 (10)0.0051 (8)0.0110 (8)0.0023 (7)
C220.0366 (10)0.0392 (10)0.0190 (9)0.0029 (8)0.0078 (8)0.0016 (8)
Geometric parameters (Å, º) top
O1—C111.225 (2)C11—C121.497 (2)
O2—C71.369 (2)C12—C131.386 (3)
O2—C181.423 (2)C12—C171.401 (3)
O3—C191.366 (2)C13—C141.392 (3)
O3—C21.404 (2)C13—H130.9500
O4—C191.208 (2)C14—C151.384 (3)
C1—C21.378 (2)C14—H140.9500
C1—C91.436 (2)C15—C161.385 (3)
C1—C111.499 (2)C15—H150.9500
C2—C31.403 (3)C16—C171.383 (3)
C3—C41.359 (2)C16—H160.9500
C3—H30.9500C17—H170.9500
C4—C101.414 (3)C18—H18A0.9800
C4—H40.9500C18—H18B0.9800
C5—C61.356 (3)C18—H18C0.9800
C5—C101.416 (2)C19—C201.483 (2)
C5—H50.9500C20—C211.389 (3)
C6—C71.410 (3)C20—C221.397 (3)
C6—H60.9500C21—C22i1.378 (3)
C7—C81.368 (2)C21—H210.9500
C8—C91.422 (2)C22—C21i1.378 (3)
C8—H80.9500C22—H220.9500
C9—C101.424 (3)
C7—O2—C18117.86 (14)C13—C12—C11122.05 (16)
C19—O3—C2118.32 (13)C17—C12—C11118.43 (16)
C2—C1—C9118.35 (15)C12—C13—C14120.55 (17)
C2—C1—C11120.41 (15)C12—C13—H13119.7
C9—C1—C11121.05 (15)C14—C13—H13119.7
C1—C2—C3123.39 (16)C15—C14—C13119.44 (18)
C1—C2—O3117.35 (15)C15—C14—H14120.3
C3—C2—O3118.86 (15)C13—C14—H14120.3
C4—C3—C2118.58 (16)C14—C15—C16120.47 (18)
C4—C3—H3120.7C14—C15—H15119.8
C2—C3—H3120.7C16—C15—H15119.8
C3—C4—C10121.40 (17)C17—C16—C15120.28 (19)
C3—C4—H4119.3C17—C16—H16119.9
C10—C4—H4119.3C15—C16—H16119.9
C6—C5—C10121.01 (17)C16—C17—C12119.72 (19)
C6—C5—H5119.5C16—C17—H17120.1
C10—C5—H5119.5C12—C17—H17120.1
C5—C6—C7120.15 (16)O2—C18—H18A109.5
C5—C6—H6119.9O2—C18—H18B109.5
C7—C6—H6119.9H18A—C18—H18B109.5
O2—C7—C8125.02 (17)O2—C18—H18C109.5
O2—C7—C6114.00 (15)H18A—C18—H18C109.5
C8—C7—C6120.98 (16)H18B—C18—H18C109.5
C7—C8—C9120.07 (17)O4—C19—O3123.71 (16)
C7—C8—H8120.0O4—C19—C20125.10 (16)
C9—C8—H8120.0O3—C19—C20111.19 (14)
C8—C9—C10118.76 (15)C21—C20—C22119.86 (16)
C8—C9—C1122.84 (16)C21—C20—C19118.26 (16)
C10—C9—C1118.38 (15)C22—C20—C19121.86 (16)
C4—C10—C5121.11 (16)C22i—C21—C20120.34 (17)
C4—C10—C9119.88 (16)C22i—C21—H21119.8
C5—C10—C9119.02 (16)C20—C21—H21119.8
O1—C11—C12120.23 (16)C21i—C22—C20119.80 (17)
O1—C11—C1119.77 (16)C21i—C22—H22120.1
C12—C11—C1120.00 (15)C20—C22—H22120.1
C13—C12—C17119.52 (17)
C9—C1—C2—C30.4 (3)C8—C9—C10—C50.1 (2)
C11—C1—C2—C3174.71 (16)C1—C9—C10—C5178.62 (16)
C9—C1—C2—O3173.00 (14)C2—C1—C11—O1129.92 (19)
C11—C1—C2—O32.1 (2)C9—C1—C11—O145.1 (2)
C19—O3—C2—C1120.17 (17)C2—C1—C11—C1250.6 (2)
C19—O3—C2—C366.9 (2)C9—C1—C11—C12134.45 (17)
C1—C2—C3—C40.9 (3)O1—C11—C12—C13152.96 (17)
O3—C2—C3—C4173.35 (16)C1—C11—C12—C1326.6 (2)
C2—C3—C4—C100.1 (3)O1—C11—C12—C1726.3 (2)
C10—C5—C6—C70.3 (3)C1—C11—C12—C17154.14 (16)
C18—O2—C7—C82.5 (3)C17—C12—C13—C140.3 (3)
C18—O2—C7—C6176.79 (16)C11—C12—C13—C14178.96 (16)
C5—C6—C7—O2179.69 (17)C12—C13—C14—C151.2 (3)
C5—C6—C7—C81.0 (3)C13—C14—C15—C160.9 (3)
O2—C7—C8—C9179.64 (16)C14—C15—C16—C170.4 (3)
C6—C7—C8—C91.1 (3)C15—C16—C17—C121.3 (3)
C7—C8—C9—C100.6 (2)C13—C12—C17—C161.0 (3)
C7—C8—C9—C1177.87 (16)C11—C12—C17—C16179.72 (17)
C2—C1—C9—C8179.22 (16)C2—O3—C19—O44.1 (2)
C11—C1—C9—C85.7 (3)C2—O3—C19—C20175.43 (13)
C2—C1—C9—C100.8 (2)O4—C19—C20—C212.9 (3)
C11—C1—C9—C10175.87 (15)O3—C19—C20—C21177.60 (14)
C3—C4—C10—C5179.04 (17)O4—C19—C20—C22175.60 (17)
C3—C4—C10—C91.1 (3)O3—C19—C20—C223.9 (2)
C6—C5—C10—C4179.90 (17)C22—C20—C21—C22i0.5 (3)
C6—C5—C10—C90.2 (3)C19—C20—C21—C22i179.03 (16)
C8—C9—C10—C4179.97 (16)C21—C20—C22—C21i0.5 (3)
C1—C9—C10—C41.5 (2)C19—C20—C22—C21i178.97 (16)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.952.412.965 (3)117
C16—H16···O1ii0.952.553.258 (3)132
C22—H22···O30.952.392.717 (3)100
Symmetry code: (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC44H30O8
Mr686.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.977 (5), 14.922 (7), 11.709 (6)
β (°) 106.610 (5)
V3)1670.5 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.16 × 0.13 × 0.03
Data collection
DiffractometerRigaku Saturn70
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.985, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
10969, 2909, 2354
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.04
No. of reflections2909
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: CrystalClear (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.952.412.965 (3)117
C16—H16···O1i0.952.553.258 (3)132
C22—H22···O30.952.392.717 (3)100
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors express their gratitude to Associate Professor Hikaru Takaya and Professor Masaharu Nakamura, Institute for Chemical Research, Kyoto University, for their kind advice. This work was partially supported by the Collaborative Research Program of Institute for Chemical Research, Kyoto University (grant No. 2012–72).

References

First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454.  CSD CrossRef IUCr Journals Google Scholar
First citationSakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o210.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds