metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m200-m201

[1,2-Bis(diiso­propyl­phosphan­yl)ethane-κ2P,P′](carbonato-κ2O,O′)nickel(II)

aFacultad de Química, Universidad Nacional Autónoma de México, México DF, 04510, Mexico
*Correspondence e-mail: juvent@unam.mx

(Received 22 February 2013; accepted 6 March 2013; online 13 March 2013)

In the crystal of the title compound, [Ni(CO3)(C14H32P2)], the metal center in each of three independent mol­ecules shows slight tetra­hedral distortion from ideal square-planar coordination geometry, with angles between the normals to the planes defined by the cis-P—Ni—P and cis-O—Ni—O fragments of 3.92 (17), 0.70 (16) and 2.17 (14)° in the three mol­ecules. In the crystal, there are inter­molecular C—H⋯O hydrogen bonds that show a laminar growth in the ab plane.

Related literature

For the synthesis and related structures, see: González-Sebastián et al. (2012[González-Sebastián, L., Flores-Alamo, M. & García, J. J. (2012). Organometallics, 31, 8200-8207.]); Cañavera-Buelvas et al. (2011[Cañavera-Buelvas, F., Flores-Alamo, M. & García, J. J. (2011). Acta Cryst. E67, m501.]); Castellanos-Blanco et al. (2011[Castellanos-Blanco, N. Y., García, J. J. & Flores-Alamo, M. (2011). Acta Cryst. E67, m871.]); Angulo et al. (2003[Angulo, I. M., Bouwman, E., van Gorkum, R., Lok, S. M., Lutz, M. & Spek, A. L. (2003). J. Mol. Catal. A Chem. 202, 97-106. ]); Dahlenburg & Kurth (2001[Dahlenburg, L. & Kurth, V. (2001). Inorg. Chim. Acta, 319, 176-182. ]). For applications of nickel complexes to catalytic systems, see: Vicic & Jones (1997[Vicic, D. A. & Jones, W. D. (1997). J. Am. Chem. Soc. 119, 10855-10856.]); Arévalo & García (2010[Arévalo, A. & García, J. J. (2010). Eur. J. Inorg. Chem. pp. 4063-4074.]). For nickel compounds in CO2 activation, see: Anderson et al. (2010[Anderson, J. S., Iluc, V. M. & Hillhouse, G. L. (2010). Inorg. Chem. 49, 10203-10207. ]); Aresta et al. (1975[Aresta, M. N., Nobile, C. F., Albano, V. G., Forni, E. & Manasero, M. (1975). J. Chem. Soc. Chem. Commun. pp. 636-637. ]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(CO3)(C14H32P2)]

  • Mr = 381.06

  • Monoclinic, P 21 /n

  • a = 8.4974 (4) Å

  • b = 46.582 (2) Å

  • c = 14.7342 (7) Å

  • β = 103.618 (4)°

  • V = 5668.2 (5) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 130 K

  • 0.33 × 0.06 × 0.03 mm

Data collection
  • Oxford Diffraction Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.813, Tmax = 0.965

  • 42978 measured reflections

  • 10329 independent reflections

  • 7642 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.096

  • S = 1.09

  • 10329 reflections

  • 592 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Ni1A—O1A 1.879 (2)
Ni1A—O2A 1.885 (3)
Ni1A—P1A 2.1390 (12)
Ni1A—P2A 2.1460 (11)
Ni1B—O2B 1.887 (2)
Ni1B—O1B 1.890 (3)
Ni1B—P2B 2.1399 (12)
Ni1B—P1B 2.1415 (11)
Ni1C—O2C 1.877 (3)
Ni1C—O1C 1.889 (2)
Ni1C—P2C 2.1433 (10)
Ni1C—P1C 2.1481 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5A—H5A1⋯O3Ai 0.98 2.70 3.670 (5) 169
C4A—H4A3⋯O1Ai 0.98 2.69 3.448 (5) 134
C8C—H8C1⋯O3Cii 0.98 2.71 3.595 (5) 150
C10B—H10F⋯O3Bii 0.98 2.52 3.335 (5) 141
C1A—H1A2⋯O3Bii 0.99 2.23 3.204 (5) 168
C1C—H1C2⋯O3Aiii 0.99 2.50 3.443 (5) 159
C9C—H9C⋯O2Aiii 1.00 2.48 3.455 (5) 165
C1B—H1B1⋯O3Civ 0.99 2.50 3.452 (5) 161
C6B—H6B⋯O3Civ 1.00 2.60 3.516 (5) 153
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Nickel compounds are highly active in CO2 activation (Aresta et al., 1975, Anderson et al., 2010), to produce carbonyl and carbonato derivatives. We recently published the complex [(dippe)Ni(CO3)] with a methanol solvate (González-Sebastián et al., 2012).

The asymmetric unit consists of three [(dippe)Ni(CO3)] discrete molecules of the neutral complex (Figure 1). The Ni(II) atom is coordinated by two P atoms of dippe ligand and two oxygen atoms of the carbonato anion. The metal center in 3 independent molecules A, B and C of [(dippe)Ni(CO3)] shows slight tetrahedral distortion from ideal square planar coordination geometry, with the angle between the normals to the planes defined by the two cis-P–Ni–P and cis- O–Ni–O fragments of 3.92 (17), 0.70 (16) and 2.17 (14)° respectively, these being larger than the limiting value of 0° for square-planar coordination in [(dippe)Ni(CO)2]CH3OH (González-Sebastián et al. 2012). Additionally the Ni(II) atom is situated 0.040 (1), 0.0057 (9), 0.0095 (9) Å above the P1/P2/O1/O2 plane in A, B and C molecules respectively. These deviations from planarity, which can be attributed to some steric efect of the dippe ligand and intermolecular interactions of the carbonato ligand, are somewhat shorter than the distortion from ideal square-planar coordination geometry observed on [(dippe)Ni(carbazole)2 (Cañavera-Buelvas et al., 2011) and [(dippe)NiCl2] (Castellanos-Blanco et al., 2011,) complexes where the NiCl2/NiP2 dihedral angles of 15.32 and 10.01 ° respectively, and similar to the distortion from ideal square-planar coordination geometry observed for related [(dcpe)NiCl2] (Angulo et al., 2003) and [(1S,2S)- C5H8{P(C6H11)2}2NiCl2] (Dahlenburg & Kurth, 2001) complexes, where the NiCl2/NiP2 dihedral angles of 3.96 and 5.37°, respectively.

In the crystal packing, there are intermolecular contacts of the type hydrogen bond (Table 2) mainly between the carbon donor atom of the dippe to O oxygen atom acceptor of the metallic complex mainly. The C5A-H5A1···O3A (2.7 Å) and C4A-H4A3···O1A (2.69 Å) intermolecular interactions in molecule A forming a motif graph R22(8) along the a axes, while the C10B—H10F···O3B (2.52 Å) and C8C-H8C1···O3C (2.71 Å) intermolecular interactions in molecules B and C forming a C(8) motif along to c axis. All these interactions show a laminar growing in the a, b plane (Figure 2).

Related literature top

For the synthesis and related structures, see: González-Sebastián et al. (2012); Cañavera-Buelvas et al. (2011); Castellanos-Blanco et al. (2011); Angulo et al. (2003); Dahlenburg & Kurth (2001). For applications of nickel complexes to catalytic systems, see: Vicic & Jones (1997); Arévalo & García (2010). For nickel compounds in CO2 activation, see: Anderson et al. (2010); Aresta et al. (1975).

Experimental top

The compound [(dippe)NiCl2] (98.0 mg, 0.25 mmol) was slowly added into a solution of commercially available KOH (28.0 mg, 0. 50 mmol) in H2O (5 ml) under constant stirring at room temperature. After 15 min of reaction, a red solution was observed. At this point the reaction mixture was evaporated to dryness under vacuum and the obtained red-wine residue was re-dissolved in THF (5 mL) and filtrated via cannula using a Schlenk flask. After a couple of days of cooling in the dry-box fridge at -30 °C, yellow crystals suitable for X ray diffraction studies were obtained.

The yellow crystals for complex [(dippe)Ni(CO3)] displayed a singlet in 31P{1H} NMR (THF-d8): 87.8 p.p.m., clearly this product raised from the carbonate present in the commercial KOH.

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.98 (methyl CH3), 0.99 (methylene CH2) and 1.00 Å (methine CH), and with Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed along the c axis, showing the short contacts between the symmetry equivalent for molecule A (blue), molecule B (green) and molecule C (red) extending along the a-b plane.
[1,2-Bis(diisopropylphosphanyl)ethane-κ2P,P'](carbonato-κ2O,O')nickel(II) top
Crystal data top
[Ni(CO3)(C14H32P2)]F(000) = 2448
Mr = 381.06Dx = 1.34 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4974 (4) ÅCell parameters from 6343 reflections
b = 46.582 (2) Åθ = 3.4–29.5°
c = 14.7342 (7) ŵ = 1.20 mm1
β = 103.618 (4)°T = 130 K
V = 5668.2 (5) Å3Needle, pale yellow
Z = 120.33 × 0.06 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
10329 independent reflections
Graphite monochromator7642 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.088
ω scansθmax = 25.4°, θmin = 3.4°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1010
Tmin = 0.813, Tmax = 0.965k = 5655
42978 measured reflectionsl = 1317
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0167P)2 + 0.6693P]
where P = (Fo2 + 2Fc2)/3
10329 reflections(Δ/σ)max = 0.001
592 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ni(CO3)(C14H32P2)]V = 5668.2 (5) Å3
Mr = 381.06Z = 12
Monoclinic, P21/nMo Kα radiation
a = 8.4974 (4) ŵ = 1.20 mm1
b = 46.582 (2) ÅT = 130 K
c = 14.7342 (7) Å0.33 × 0.06 × 0.03 mm
β = 103.618 (4)°
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
10329 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
7642 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.965Rint = 0.088
42978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.09Δρmax = 0.57 e Å3
10329 reflectionsΔρmin = 0.59 e Å3
592 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.0622 (4)0.19012 (9)0.3969 (3)0.0260 (11)
H1A10.06150.19640.46110.031*
H1A20.07220.1690.39690.031*
C2A0.2069 (5)0.20374 (10)0.3671 (3)0.0317 (12)
H2A10.23660.19190.31790.038*
H2A20.30140.20460.42120.038*
C3A0.2999 (5)0.24984 (10)0.2547 (3)0.0295 (11)
H3A0.41080.24720.29570.035*
C4A0.2828 (5)0.22929 (11)0.1706 (3)0.0365 (12)
H4A10.1760.23180.12830.055*
H4A20.29440.20940.19290.055*
H4A30.36720.23360.13730.055*
C5A0.2843 (5)0.28071 (11)0.2228 (4)0.0429 (14)
H5A10.36550.28490.18720.064*
H5A20.30150.29340.27740.064*
H5A30.17570.28390.18330.064*
C6A0.1872 (5)0.26167 (10)0.4291 (3)0.0334 (12)
H6A0.13190.25110.47190.04*
C7A0.3645 (5)0.26406 (12)0.4821 (3)0.0446 (14)
H7A10.42550.27450.4440.067*
H7A20.41040.24480.49550.067*
H7A30.37140.27440.54090.067*
C8A0.1082 (6)0.29068 (12)0.4154 (4)0.0540 (16)
H8A10.09550.2980.47560.081*
H8A20.00160.28910.37210.081*
H8A30.1760.30390.38950.081*
C9A0.1868 (5)0.17146 (9)0.2339 (3)0.0281 (11)
H9A0.19310.15360.27040.034*
C10A0.0589 (5)0.16688 (11)0.1779 (3)0.0404 (13)
H10A0.09140.15090.13430.061*
H10B0.04530.16240.22060.061*
H10C0.04840.18440.14280.061*
C11A0.3540 (5)0.17688 (10)0.1700 (3)0.0396 (13)
H11A0.35560.19580.14090.059*
H11B0.43610.17620.20690.059*
H11C0.37750.16210.12140.059*
C12A0.2795 (5)0.20298 (10)0.3847 (3)0.0304 (11)
H12A0.38670.20590.340.036*
C13A0.2494 (6)0.22872 (12)0.4501 (3)0.0444 (14)
H13A0.33570.230.48380.067*
H13B0.24840.24630.41360.067*
H13C0.14480.22650.49480.067*
C14A0.2903 (6)0.17527 (12)0.4394 (4)0.0522 (15)
H14A0.1880.17220.48550.078*
H14B0.31130.1590.39620.078*
H14C0.37870.1770.47150.078*
C15A0.2766 (5)0.27222 (9)0.1602 (3)0.0198 (10)
Ni1A0.09895 (6)0.241123 (11)0.25206 (4)0.01761 (14)
O1A0.3167 (3)0.24726 (6)0.1911 (2)0.0264 (7)
O2A0.1191 (3)0.27667 (6)0.18928 (19)0.0223 (7)
O3A0.3730 (3)0.28892 (6)0.11296 (19)0.0271 (7)
P1A0.12663 (12)0.20091 (2)0.31662 (8)0.0214 (3)
P2A0.15252 (12)0.24007 (3)0.32275 (8)0.0228 (3)
C1B0.4161 (4)0.03946 (9)0.1585 (3)0.0208 (10)
H1B10.44050.01880.17040.025*
H1B20.2970.04190.1440.025*
C2B0.4810 (4)0.04938 (9)0.0755 (3)0.0201 (10)
H2B10.42320.06690.04780.024*
H2B20.46380.03420.02710.024*
C3B0.7525 (5)0.07725 (9)0.0237 (3)0.0240 (10)
H3B0.71280.06660.03620.029*
C4B0.6691 (6)0.10641 (10)0.0144 (3)0.0397 (13)
H4B10.69320.1160.07530.06*
H4B20.55190.10380.00730.06*
H4B30.70870.11820.03070.06*
C5B0.9357 (5)0.08070 (11)0.0401 (3)0.0389 (13)
H5B10.96080.09250.00970.058*
H5B20.9860.06180.04010.058*
H5B30.97810.090.10060.058*
C6B0.7921 (4)0.02135 (9)0.1257 (3)0.0187 (10)
H6B0.72270.00850.15420.022*
C7B0.7946 (5)0.00803 (10)0.0308 (3)0.0270 (11)
H7B10.87360.01820.00370.04*
H7B20.68680.00960.01120.04*
H7B30.8250.01230.03930.04*
C8B0.9599 (4)0.02111 (10)0.1927 (3)0.0289 (11)
H8B10.99870.00130.20280.043*
H8B20.95310.02960.25260.043*
H8B31.03540.03230.16580.043*
C9B0.3595 (4)0.08739 (10)0.2764 (3)0.0267 (11)
H9B0.25380.07740.27250.032*
C10B0.4088 (5)0.10235 (11)0.3715 (4)0.0437 (14)
H10D0.5150.11140.3780.065*
H10E0.41460.08820.42130.065*
H10F0.32830.1170.37590.065*
C11B0.3360 (5)0.10932 (11)0.1977 (4)0.0439 (14)
H11D0.25130.1230.20370.066*
H11E0.30380.09940.13740.066*
H11F0.43770.11970.20120.066*
C12B0.5298 (4)0.03565 (10)0.3619 (3)0.0239 (10)
H12B0.56460.04730.42020.029*
C13B0.6622 (5)0.01380 (10)0.3618 (3)0.0307 (11)
H13D0.67620.00160.41730.046*
H13E0.76390.02380.36250.046*
H13F0.6320.00190.30550.046*
C14B0.3705 (5)0.02115 (11)0.3657 (3)0.0383 (13)
H14D0.33590.00860.31130.057*
H14E0.28760.03580.36510.057*
H14F0.38570.00980.4230.057*
C15B0.9336 (4)0.10590 (9)0.3390 (3)0.0195 (10)
Ni1B0.73598 (5)0.077729 (11)0.24982 (4)0.01499 (13)
O1B0.7989 (3)0.09799 (6)0.36375 (18)0.0198 (7)
O2B0.9390 (3)0.09517 (6)0.25715 (19)0.0204 (7)
O3B1.0375 (3)0.12153 (6)0.38621 (19)0.0250 (7)
P1B0.50899 (11)0.06037 (2)0.26289 (7)0.0180 (3)
P2B0.69677 (11)0.05682 (2)0.11706 (7)0.0153 (2)
C1C0.0137 (4)0.14384 (9)0.6708 (3)0.0212 (10)
H1C10.06190.14740.71150.025*
H1C20.02720.1620.63850.025*
C2C0.0556 (4)0.12052 (9)0.5987 (3)0.0229 (10)
H2C10.00370.12170.54530.027*
H2C20.17350.12340.57490.027*
C3C0.0352 (4)0.05938 (9)0.5589 (3)0.0188 (9)
H3C0.13380.06410.50910.023*
C4C0.1129 (5)0.06146 (10)0.5169 (3)0.0300 (11)
H4C10.20980.05560.56360.045*
H4C20.12570.08130.49780.045*
H4C30.0980.04880.46240.045*
C5C0.0524 (5)0.02856 (9)0.5923 (3)0.0237 (10)
H5C10.05820.01520.54020.036*
H5C20.15140.0270.61520.036*
H5C30.04150.02380.64280.036*
C6C0.1881 (4)0.08059 (10)0.7094 (3)0.0225 (10)
H6C0.20040.09930.74020.027*
C7C0.3499 (4)0.07530 (10)0.6393 (3)0.0290 (11)
H7C10.34720.05660.60940.044*
H7C20.36820.09040.59160.044*
H7C30.43790.07560.6720.044*
C8C0.1566 (5)0.05835 (10)0.7871 (3)0.0281 (11)
H8C10.24660.05830.81810.042*
H8C20.05580.0630.83250.042*
H8C30.1470.03930.76050.042*
C9C0.3637 (4)0.14924 (9)0.6907 (3)0.0233 (10)
H9C0.34680.17050.69170.028*
C10C0.3441 (5)0.14000 (11)0.5898 (3)0.0353 (12)
H10G0.42880.14890.56430.053*
H10H0.23760.1460.55310.053*
H10I0.35330.11910.58690.053*
C11C0.5336 (4)0.14270 (10)0.7485 (3)0.0286 (11)
H11G0.54980.12190.75260.043*
H11H0.54650.15070.81140.043*
H11I0.61370.15140.71870.043*
C12C0.2326 (5)0.14893 (9)0.8573 (3)0.0241 (10)
H12C0.34960.14750.89010.029*
C13C0.1385 (6)0.13196 (11)0.9153 (3)0.0457 (14)
H13G0.1590.14010.97840.069*
H13H0.17340.11190.91880.069*
H13I0.02250.1330.8860.069*
C14C0.1893 (5)0.18064 (10)0.8518 (3)0.0333 (12)
H14G0.0730.18290.82480.05*
H14H0.25040.19050.81250.05*
H14I0.21660.18890.91470.05*
C15C0.3927 (4)0.05090 (9)0.8190 (3)0.0196 (10)
Ni1C0.21570 (5)0.085830 (11)0.74854 (4)0.01691 (13)
O1C0.4212 (3)0.07890 (6)0.82835 (19)0.0234 (7)
O2C0.2466 (3)0.04613 (6)0.76615 (19)0.0220 (7)
O3C0.4888 (3)0.03226 (6)0.85383 (19)0.0231 (7)
P1C0.21058 (12)0.13190 (2)0.74185 (8)0.0189 (3)
P2C0.01785 (11)0.08543 (2)0.65341 (7)0.0171 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.030 (2)0.016 (3)0.028 (3)0.0080 (19)0.0017 (19)0.005 (2)
C2A0.026 (2)0.030 (3)0.035 (3)0.009 (2)0.001 (2)0.006 (2)
C3A0.018 (2)0.035 (3)0.034 (3)0.001 (2)0.0039 (19)0.001 (2)
C4A0.034 (3)0.041 (3)0.037 (3)0.001 (2)0.015 (2)0.003 (3)
C5A0.038 (3)0.047 (4)0.047 (4)0.008 (2)0.016 (2)0.012 (3)
C6A0.027 (2)0.035 (3)0.034 (3)0.004 (2)0.000 (2)0.010 (2)
C7A0.032 (3)0.054 (4)0.042 (3)0.004 (2)0.005 (2)0.014 (3)
C8A0.061 (3)0.046 (4)0.046 (4)0.009 (3)0.006 (3)0.017 (3)
C9A0.035 (2)0.011 (2)0.033 (3)0.0028 (19)0.004 (2)0.002 (2)
C10A0.050 (3)0.029 (3)0.039 (3)0.003 (2)0.004 (2)0.014 (2)
C11A0.041 (3)0.022 (3)0.045 (3)0.001 (2)0.011 (2)0.003 (2)
C12A0.034 (2)0.026 (3)0.033 (3)0.003 (2)0.011 (2)0.007 (2)
C13A0.048 (3)0.052 (4)0.039 (3)0.019 (3)0.021 (2)0.005 (3)
C14A0.054 (3)0.049 (4)0.060 (4)0.001 (3)0.027 (3)0.025 (3)
C15A0.031 (2)0.014 (2)0.013 (2)0.0052 (19)0.0028 (18)0.0026 (19)
Ni1A0.0189 (3)0.0126 (3)0.0195 (3)0.0011 (2)0.0009 (2)0.0015 (2)
O1A0.0207 (15)0.0216 (18)0.0339 (19)0.0012 (13)0.0005 (12)0.0099 (15)
O2A0.0219 (15)0.0147 (17)0.0279 (18)0.0003 (12)0.0011 (12)0.0043 (13)
O3A0.0320 (16)0.0214 (18)0.0234 (18)0.0081 (14)0.0024 (13)0.0046 (14)
P1A0.0227 (6)0.0149 (6)0.0240 (7)0.0013 (5)0.0001 (5)0.0031 (5)
P2A0.0190 (5)0.0212 (7)0.0257 (7)0.0001 (5)0.0004 (5)0.0001 (5)
C1B0.0146 (19)0.024 (3)0.021 (3)0.0017 (18)0.0000 (17)0.003 (2)
C2B0.0146 (19)0.027 (3)0.018 (2)0.0008 (18)0.0021 (16)0.004 (2)
C3B0.036 (2)0.023 (3)0.014 (2)0.010 (2)0.0070 (18)0.000 (2)
C4B0.064 (3)0.022 (3)0.031 (3)0.012 (2)0.007 (2)0.006 (2)
C5B0.045 (3)0.049 (4)0.027 (3)0.024 (3)0.018 (2)0.002 (2)
C6B0.018 (2)0.014 (2)0.023 (3)0.0004 (17)0.0038 (17)0.0015 (19)
C7B0.024 (2)0.025 (3)0.031 (3)0.0029 (19)0.0052 (19)0.011 (2)
C8B0.023 (2)0.029 (3)0.032 (3)0.002 (2)0.0027 (19)0.001 (2)
C9B0.019 (2)0.032 (3)0.031 (3)0.000 (2)0.0095 (18)0.011 (2)
C10B0.027 (2)0.049 (4)0.056 (4)0.003 (2)0.012 (2)0.027 (3)
C11B0.036 (3)0.034 (3)0.062 (4)0.013 (2)0.012 (2)0.002 (3)
C12B0.023 (2)0.032 (3)0.018 (3)0.010 (2)0.0069 (18)0.005 (2)
C13B0.037 (3)0.034 (3)0.022 (3)0.003 (2)0.008 (2)0.007 (2)
C14B0.034 (3)0.053 (4)0.030 (3)0.011 (2)0.012 (2)0.008 (3)
C15B0.023 (2)0.013 (2)0.018 (3)0.0016 (18)0.0032 (18)0.0047 (19)
Ni1B0.0141 (2)0.0162 (3)0.0144 (3)0.0024 (2)0.0028 (2)0.0025 (2)
O1B0.0186 (14)0.0237 (17)0.0173 (17)0.0043 (12)0.0044 (12)0.0058 (13)
O2B0.0173 (14)0.0265 (18)0.0169 (17)0.0090 (12)0.0031 (11)0.0040 (14)
O3B0.0250 (15)0.0214 (18)0.0246 (18)0.0047 (13)0.0021 (12)0.0014 (14)
P1B0.0153 (5)0.0207 (6)0.0184 (7)0.0013 (5)0.0047 (4)0.0047 (5)
P2B0.0162 (5)0.0151 (6)0.0145 (6)0.0025 (4)0.0036 (4)0.0006 (5)
C1C0.025 (2)0.013 (2)0.028 (3)0.0046 (18)0.0096 (18)0.009 (2)
C2C0.020 (2)0.022 (3)0.025 (3)0.0040 (19)0.0026 (18)0.001 (2)
C3C0.020 (2)0.021 (3)0.015 (2)0.0029 (18)0.0052 (17)0.0022 (19)
C4C0.041 (3)0.029 (3)0.023 (3)0.006 (2)0.014 (2)0.002 (2)
C5C0.026 (2)0.022 (3)0.024 (3)0.0001 (19)0.0064 (18)0.007 (2)
C6C0.020 (2)0.027 (3)0.022 (3)0.0052 (19)0.0075 (17)0.005 (2)
C7C0.023 (2)0.030 (3)0.035 (3)0.002 (2)0.0091 (19)0.004 (2)
C8C0.033 (2)0.031 (3)0.023 (3)0.004 (2)0.013 (2)0.001 (2)
C9C0.027 (2)0.013 (2)0.032 (3)0.0003 (18)0.0121 (19)0.004 (2)
C10C0.034 (3)0.044 (3)0.032 (3)0.001 (2)0.015 (2)0.012 (2)
C11C0.021 (2)0.028 (3)0.037 (3)0.004 (2)0.0090 (19)0.004 (2)
C12C0.032 (2)0.019 (3)0.023 (3)0.0006 (19)0.0099 (19)0.000 (2)
C13C0.074 (4)0.034 (3)0.040 (4)0.012 (3)0.034 (3)0.006 (3)
C14C0.044 (3)0.023 (3)0.034 (3)0.001 (2)0.010 (2)0.008 (2)
C15C0.019 (2)0.024 (3)0.017 (3)0.002 (2)0.0054 (18)0.004 (2)
Ni1C0.0175 (3)0.0123 (3)0.0202 (3)0.0011 (2)0.0029 (2)0.0022 (2)
O1C0.0202 (14)0.0162 (17)0.0295 (19)0.0020 (12)0.0030 (12)0.0007 (14)
O2C0.0171 (14)0.0165 (16)0.0277 (18)0.0028 (12)0.0039 (12)0.0004 (13)
O3C0.0216 (14)0.0179 (17)0.0268 (18)0.0047 (13)0.0004 (12)0.0065 (14)
P1C0.0198 (5)0.0145 (6)0.0228 (7)0.0012 (5)0.0061 (4)0.0027 (5)
P2C0.0183 (5)0.0142 (6)0.0185 (6)0.0021 (5)0.0039 (4)0.0007 (5)
Geometric parameters (Å, º) top
C1A—C2A1.537 (6)C9B—C10B1.532 (6)
C1A—P1A1.825 (4)C9B—P1B1.832 (4)
C1A—H1A10.99C9B—H9B1
C1A—H1A20.99C10B—H10D0.98
C2A—P2A1.833 (4)C10B—H10E0.98
C2A—H2A10.99C10B—H10F0.98
C2A—H2A20.99C11B—H11D0.98
C3A—C5A1.509 (6)C11B—H11E0.98
C3A—C4A1.545 (6)C11B—H11F0.98
C3A—P2A1.837 (4)C12B—C13B1.517 (6)
C3A—H3A1C12B—C14B1.525 (5)
C4A—H4A10.98C12B—P1B1.834 (4)
C4A—H4A20.98C12B—H12B1
C4A—H4A30.98C13B—H13D0.98
C5A—H5A10.98C13B—H13E0.98
C5A—H5A20.98C13B—H13F0.98
C5A—H5A30.98C14B—H14D0.98
C6A—C8A1.501 (6)C14B—H14E0.98
C6A—C7A1.530 (5)C14B—H14F0.98
C6A—P2A1.827 (5)C15B—O3B1.227 (4)
C6A—H6A1C15B—O2B1.316 (5)
C7A—H7A10.98C15B—O1B1.332 (4)
C7A—H7A20.98C15B—Ni1B2.287 (4)
C7A—H7A30.98Ni1B—O2B1.887 (2)
C8A—H8A10.98Ni1B—O1B1.890 (3)
C8A—H8A20.98Ni1B—P2B2.1399 (12)
C8A—H8A30.98Ni1B—P1B2.1415 (11)
C9A—C10A1.526 (6)C1C—C2C1.536 (6)
C9A—C11A1.529 (5)C1C—P1C1.838 (4)
C9A—P1A1.826 (4)C1C—H1C10.99
C9A—H9A1C1C—H1C20.99
C10A—H10A0.98C2C—P2C1.817 (4)
C10A—H10B0.98C2C—H2C10.99
C10A—H10C0.98C2C—H2C20.99
C11A—H11A0.98C3C—C4C1.531 (5)
C11A—H11B0.98C3C—C5C1.536 (6)
C11A—H11C0.98C3C—P2C1.827 (4)
C12A—C13A1.521 (7)C3C—H3C1
C12A—C14A1.536 (6)C4C—H4C10.98
C12A—P1A1.821 (4)C4C—H4C20.98
C12A—H12A1C4C—H4C30.98
C13A—H13A0.98C5C—H5C10.98
C13A—H13B0.98C5C—H5C20.98
C13A—H13C0.98C5C—H5C30.98
C14A—H14A0.98C6C—C8C1.520 (6)
C14A—H14B0.98C6C—C7C1.533 (5)
C14A—H14C0.98C6C—P2C1.841 (4)
C15A—O3A1.221 (4)C6C—H6C1
C15A—O2A1.322 (4)C7C—H7C10.98
C15A—O1A1.322 (5)C7C—H7C20.98
C15A—Ni1A2.291 (4)C7C—H7C30.98
Ni1A—O1A1.879 (2)C8C—H8C10.98
Ni1A—O2A1.885 (3)C8C—H8C20.98
Ni1A—P1A2.1390 (12)C8C—H8C30.98
Ni1A—P2A2.1460 (11)C9C—C10C1.520 (6)
C1B—C2B1.526 (5)C9C—C11C1.524 (5)
C1B—P1B1.835 (4)C9C—P1C1.837 (4)
C1B—H1B10.99C9C—H9C1
C1B—H1B20.99C10C—H10G0.98
C2B—P2B1.825 (3)C10C—H10H0.98
C2B—H2B10.99C10C—H10I0.98
C2B—H2B20.99C11C—H11G0.98
C3B—C4B1.523 (6)C11C—H11H0.98
C3B—C5B1.527 (5)C11C—H11I0.98
C3B—P2B1.825 (4)C12C—C14C1.520 (6)
C3B—H3B1C12C—C13C1.522 (6)
C4B—H4B10.98C12C—P1C1.847 (4)
C4B—H4B20.98C12C—H12C1
C4B—H4B30.98C13C—H13G0.98
C5B—H5B10.98C13C—H13H0.98
C5B—H5B20.98C13C—H13I0.98
C5B—H5B30.98C14C—H14G0.98
C6B—C8B1.532 (5)C14C—H14H0.98
C6B—C7B1.535 (5)C14C—H14I0.98
C6B—P2B1.831 (4)C15C—O3C1.220 (4)
C6B—H6B1C15C—O2C1.320 (4)
C7B—H7B10.98C15C—O1C1.328 (5)
C7B—H7B20.98C15C—Ni1C2.291 (4)
C7B—H7B30.98Ni1C—O2C1.877 (3)
C8B—H8B10.98Ni1C—O1C1.889 (2)
C8B—H8B20.98Ni1C—P2C2.1433 (10)
C8B—H8B30.98Ni1C—P1C2.1481 (12)
C9B—C11B1.523 (6)
C2A—C1A—P1A110.0 (3)C9B—C10B—H10F109.5
C2A—C1A—H1A1109.7H10D—C10B—H10F109.5
P1A—C1A—H1A1109.7H10E—C10B—H10F109.5
C2A—C1A—H1A2109.7C9B—C11B—H11D109.5
P1A—C1A—H1A2109.7C9B—C11B—H11E109.5
H1A1—C1A—H1A2108.2H11D—C11B—H11E109.5
C1A—C2A—P2A109.4 (3)C9B—C11B—H11F109.5
C1A—C2A—H2A1109.8H11D—C11B—H11F109.5
P2A—C2A—H2A1109.8H11E—C11B—H11F109.5
C1A—C2A—H2A2109.8C13B—C12B—C14B111.6 (4)
P2A—C2A—H2A2109.8C13B—C12B—P1B110.7 (3)
H2A1—C2A—H2A2108.2C14B—C12B—P1B112.8 (3)
C5A—C3A—C4A110.9 (4)C13B—C12B—H12B107.2
C5A—C3A—P2A112.6 (3)C14B—C12B—H12B107.2
C4A—C3A—P2A109.7 (3)P1B—C12B—H12B107.2
C5A—C3A—H3A107.8C12B—C13B—H13D109.5
C4A—C3A—H3A107.8C12B—C13B—H13E109.5
P2A—C3A—H3A107.8H13D—C13B—H13E109.5
C3A—C4A—H4A1109.5C12B—C13B—H13F109.5
C3A—C4A—H4A2109.5H13D—C13B—H13F109.5
H4A1—C4A—H4A2109.5H13E—C13B—H13F109.5
C3A—C4A—H4A3109.5C12B—C14B—H14D109.5
H4A1—C4A—H4A3109.5C12B—C14B—H14E109.5
H4A2—C4A—H4A3109.5H14D—C14B—H14E109.5
C3A—C5A—H5A1109.5C12B—C14B—H14F109.5
C3A—C5A—H5A2109.5H14D—C14B—H14F109.5
H5A1—C5A—H5A2109.5H14E—C14B—H14F109.5
C3A—C5A—H5A3109.5O3B—C15B—O2B124.7 (4)
H5A1—C5A—H5A3109.5O3B—C15B—O1B124.0 (4)
H5A2—C5A—H5A3109.5O2B—C15B—O1B111.3 (3)
C8A—C6A—C7A111.0 (4)O3B—C15B—Ni1B178.6 (3)
C8A—C6A—P2A113.8 (3)O2B—C15B—Ni1B55.59 (18)
C7A—C6A—P2A114.8 (3)O1B—C15B—Ni1B55.71 (18)
C8A—C6A—H6A105.4O2B—Ni1B—O1B70.75 (11)
C7A—C6A—H6A105.4O2B—Ni1B—P2B101.06 (9)
P2A—C6A—H6A105.4O1B—Ni1B—P2B171.81 (8)
C6A—C7A—H7A1109.5O2B—Ni1B—P1B171.17 (9)
C6A—C7A—H7A2109.5O1B—Ni1B—P1B100.44 (8)
H7A1—C7A—H7A2109.5P2B—Ni1B—P1B87.75 (4)
C6A—C7A—H7A3109.5O2B—Ni1B—C15B35.14 (13)
H7A1—C7A—H7A3109.5O1B—Ni1B—C15B35.62 (13)
H7A2—C7A—H7A3109.5P2B—Ni1B—C15B136.19 (11)
C6A—C8A—H8A1109.5P1B—Ni1B—C15B136.06 (12)
C6A—C8A—H8A2109.5C15B—O1B—Ni1B88.7 (2)
H8A1—C8A—H8A2109.5C15B—O2B—Ni1B89.3 (2)
C6A—C8A—H8A3109.5C9B—P1B—C12B106.5 (2)
H8A1—C8A—H8A3109.5C9B—P1B—C1B106.47 (18)
H8A2—C8A—H8A3109.5C12B—P1B—C1B106.0 (2)
C10A—C9A—C11A111.6 (4)C9B—P1B—Ni1B114.38 (15)
C10A—C9A—P1A110.0 (3)C12B—P1B—Ni1B112.86 (12)
C11A—C9A—P1A111.1 (3)C1B—P1B—Ni1B110.11 (13)
C10A—C9A—H9A108C2B—P2B—C3B105.38 (18)
C11A—C9A—H9A108C2B—P2B—C6B104.17 (18)
P1A—C9A—H9A108C3B—P2B—C6B109.5 (2)
C9A—C10A—H10A109.5C2B—P2B—Ni1B108.71 (14)
C9A—C10A—H10B109.5C3B—P2B—Ni1B116.09 (15)
H10A—C10A—H10B109.5C6B—P2B—Ni1B112.08 (13)
C9A—C10A—H10C109.5C2C—C1C—P1C109.2 (3)
H10A—C10A—H10C109.5C2C—C1C—H1C1109.8
H10B—C10A—H10C109.5P1C—C1C—H1C1109.8
C9A—C11A—H11A109.5C2C—C1C—H1C2109.8
C9A—C11A—H11B109.5P1C—C1C—H1C2109.8
H11A—C11A—H11B109.5H1C1—C1C—H1C2108.3
C9A—C11A—H11C109.5C1C—C2C—P2C109.3 (3)
H11A—C11A—H11C109.5C1C—C2C—H2C1109.8
H11B—C11A—H11C109.5P2C—C2C—H2C1109.8
C13A—C12A—C14A110.6 (4)C1C—C2C—H2C2109.8
C13A—C12A—P1A110.8 (3)P2C—C2C—H2C2109.8
C14A—C12A—P1A112.5 (3)H2C1—C2C—H2C2108.3
C13A—C12A—H12A107.5C4C—C3C—C5C109.7 (3)
C14A—C12A—H12A107.5C4C—C3C—P2C109.8 (3)
P1A—C12A—H12A107.5C5C—C3C—P2C111.9 (3)
C12A—C13A—H13A109.5C4C—C3C—H3C108.4
C12A—C13A—H13B109.5C5C—C3C—H3C108.4
H13A—C13A—H13B109.5P2C—C3C—H3C108.4
C12A—C13A—H13C109.5C3C—C4C—H4C1109.5
H13A—C13A—H13C109.5C3C—C4C—H4C2109.5
H13B—C13A—H13C109.5H4C1—C4C—H4C2109.5
C12A—C14A—H14A109.5C3C—C4C—H4C3109.5
C12A—C14A—H14B109.5H4C1—C4C—H4C3109.5
H14A—C14A—H14B109.5H4C2—C4C—H4C3109.5
C12A—C14A—H14C109.5C3C—C5C—H5C1109.5
H14A—C14A—H14C109.5C3C—C5C—H5C2109.5
H14B—C14A—H14C109.5H5C1—C5C—H5C2109.5
O3A—C15A—O2A125.2 (4)C3C—C5C—H5C3109.5
O3A—C15A—O1A124.3 (4)H5C1—C5C—H5C3109.5
O2A—C15A—O1A110.5 (3)H5C2—C5C—H5C3109.5
O3A—C15A—Ni1A178.5 (3)C8C—C6C—C7C111.7 (4)
O2A—C15A—Ni1A55.36 (18)C8C—C6C—P2C113.8 (3)
O1A—C15A—Ni1A55.10 (18)C7C—C6C—P2C113.1 (3)
O1A—Ni1A—O2A70.50 (11)C8C—C6C—H6C105.8
O1A—Ni1A—P1A98.44 (9)C7C—C6C—H6C105.8
O2A—Ni1A—P1A168.79 (8)P2C—C6C—H6C105.8
O1A—Ni1A—P2A172.56 (10)C6C—C7C—H7C1109.5
O2A—Ni1A—P2A102.91 (8)C6C—C7C—H7C2109.5
P1A—Ni1A—P2A88.01 (4)H7C1—C7C—H7C2109.5
O1A—Ni1A—C15A35.25 (13)C6C—C7C—H7C3109.5
O2A—Ni1A—C15A35.25 (12)H7C1—C7C—H7C3109.5
P1A—Ni1A—C15A133.66 (11)H7C2—C7C—H7C3109.5
P2A—Ni1A—C15A138.05 (11)C6C—C8C—H8C1109.5
C15A—O1A—Ni1A89.7 (2)C6C—C8C—H8C2109.5
C15A—O2A—Ni1A89.4 (2)H8C1—C8C—H8C2109.5
C12A—P1A—C1A106.8 (2)C6C—C8C—H8C3109.5
C12A—P1A—C9A106.5 (2)H8C1—C8C—H8C3109.5
C1A—P1A—C9A106.93 (19)H8C2—C8C—H8C3109.5
C12A—P1A—Ni1A111.46 (15)C10C—C9C—C11C111.2 (3)
C1A—P1A—Ni1A110.94 (14)C10C—C9C—P1C110.6 (3)
C9A—P1A—Ni1A113.81 (16)C11C—C9C—P1C110.6 (3)
C6A—P2A—C2A103.1 (2)C10C—C9C—H9C108.1
C6A—P2A—C3A109.8 (2)C11C—C9C—H9C108.1
C2A—P2A—C3A106.0 (2)P1C—C9C—H9C108.1
C6A—P2A—Ni1A110.17 (14)C9C—C10C—H10G109.5
C2A—P2A—Ni1A109.42 (14)C9C—C10C—H10H109.5
C3A—P2A—Ni1A117.29 (15)H10G—C10C—H10H109.5
C2B—C1B—P1B110.2 (3)C9C—C10C—H10I109.5
C2B—C1B—H1B1109.6H10G—C10C—H10I109.5
P1B—C1B—H1B1109.6H10H—C10C—H10I109.5
C2B—C1B—H1B2109.6C9C—C11C—H11G109.5
P1B—C1B—H1B2109.6C9C—C11C—H11H109.5
H1B1—C1B—H1B2108.1H11G—C11C—H11H109.5
C1B—C2B—P2B108.3 (3)C9C—C11C—H11I109.5
C1B—C2B—H2B1110H11G—C11C—H11I109.5
P2B—C2B—H2B1110H11H—C11C—H11I109.5
C1B—C2B—H2B2110C14C—C12C—C13C112.5 (4)
P2B—C2B—H2B2110C14C—C12C—P1C113.4 (3)
H2B1—C2B—H2B2108.4C13C—C12C—P1C110.0 (3)
C4B—C3B—C5B110.8 (4)C14C—C12C—H12C106.8
C4B—C3B—P2B109.6 (3)C13C—C12C—H12C106.8
C5B—C3B—P2B111.8 (3)P1C—C12C—H12C106.8
C4B—C3B—H3B108.2C12C—C13C—H13G109.5
C5B—C3B—H3B108.2C12C—C13C—H13H109.5
P2B—C3B—H3B108.2H13G—C13C—H13H109.5
C3B—C4B—H4B1109.5C12C—C13C—H13I109.5
C3B—C4B—H4B2109.5H13G—C13C—H13I109.5
H4B1—C4B—H4B2109.5H13H—C13C—H13I109.5
C3B—C4B—H4B3109.5C12C—C14C—H14G109.5
H4B1—C4B—H4B3109.5C12C—C14C—H14H109.5
H4B2—C4B—H4B3109.5H14G—C14C—H14H109.5
C3B—C5B—H5B1109.5C12C—C14C—H14I109.5
C3B—C5B—H5B2109.5H14G—C14C—H14I109.5
H5B1—C5B—H5B2109.5H14H—C14C—H14I109.5
C3B—C5B—H5B3109.5O3C—C15C—O2C124.9 (4)
H5B1—C5B—H5B3109.5O3C—C15C—O1C124.6 (3)
H5B2—C5B—H5B3109.5O2C—C15C—O1C110.5 (3)
C8B—C6B—C7B112.0 (3)O3C—C15C—Ni1C177.9 (3)
C8B—C6B—P2B112.4 (3)O2C—C15C—Ni1C55.01 (19)
C7B—C6B—P2B113.7 (3)O1C—C15C—Ni1C55.54 (19)
C8B—C6B—H6B106O2C—Ni1C—O1C70.55 (11)
C7B—C6B—H6B106O2C—Ni1C—P2C99.18 (8)
P2B—C6B—H6B106O1C—Ni1C—P2C169.54 (9)
C6B—C7B—H7B1109.5O2C—Ni1C—P1C172.35 (8)
C6B—C7B—H7B2109.5O1C—Ni1C—P1C101.83 (9)
H7B1—C7B—H7B2109.5P2C—Ni1C—P1C88.46 (4)
C6B—C7B—H7B3109.5O2C—Ni1C—C15C35.16 (12)
H7B1—C7B—H7B3109.5O1C—Ni1C—C15C35.40 (12)
H7B2—C7B—H7B3109.5P2C—Ni1C—C15C134.25 (11)
C6B—C8B—H8B1109.5P1C—Ni1C—C15C137.23 (11)
C6B—C8B—H8B2109.5C15C—O1C—Ni1C89.1 (2)
H8B1—C8B—H8B2109.5C15C—O2C—Ni1C89.8 (2)
C6B—C8B—H8B3109.5C9C—P1C—C1C105.72 (19)
H8B1—C8B—H8B3109.5C9C—P1C—C12C105.13 (19)
H8B2—C8B—H8B3109.5C1C—P1C—C12C106.01 (19)
C11B—C9B—C10B110.5 (4)C9C—P1C—Ni1C116.71 (14)
C11B—C9B—P1B110.3 (3)C1C—P1C—Ni1C109.53 (14)
C10B—C9B—P1B111.4 (3)C12C—P1C—Ni1C112.98 (14)
C11B—C9B—H9B108.2C2C—P2C—C3C106.6 (2)
C10B—C9B—H9B108.2C2C—P2C—C6C103.51 (19)
P1B—C9B—H9B108.2C3C—P2C—C6C109.25 (18)
C9B—C10B—H10D109.5C2C—P2C—Ni1C108.77 (13)
C9B—C10B—H10E109.5C3C—P2C—Ni1C113.61 (13)
H10D—C10B—H10E109.5C6C—P2C—Ni1C114.35 (13)
P1A—C1A—C2A—P2A37.1 (4)P2B—Ni1B—P1B—C9B120.77 (16)
O3A—C15A—Ni1A—O1A68 (13)C15B—Ni1B—P1B—C9B59.6 (2)
O2A—C15A—Ni1A—O1A179.5 (4)O2B—Ni1B—P1B—C12B58.2 (6)
O3A—C15A—Ni1A—O2A112 (13)O1B—Ni1B—P1B—C12B62.57 (18)
O1A—C15A—Ni1A—O2A179.5 (4)P2B—Ni1B—P1B—C12B117.26 (16)
O3A—C15A—Ni1A—P1A65 (13)C15B—Ni1B—P1B—C12B62.4 (2)
O2A—C15A—Ni1A—P1A177.52 (17)O2B—Ni1B—P1B—C1B176.4 (6)
O1A—C15A—Ni1A—P1A2.9 (3)O1B—Ni1B—P1B—C1B179.23 (17)
O3A—C15A—Ni1A—P2A106 (13)P2B—Ni1B—P1B—C1B0.95 (15)
O2A—C15A—Ni1A—P2A5.7 (3)C15B—Ni1B—P1B—C1B179.4 (2)
O1A—C15A—Ni1A—P2A174.78 (18)C1B—C2B—P2B—C3B165.3 (3)
O3A—C15A—O1A—Ni1A178.3 (4)C1B—C2B—P2B—C6B79.5 (3)
O2A—C15A—O1A—Ni1A0.4 (3)C1B—C2B—P2B—Ni1B40.2 (3)
O2A—Ni1A—O1A—C15A0.3 (2)C4B—C3B—P2B—C2B66.7 (3)
P1A—Ni1A—O1A—C15A177.8 (2)C5B—C3B—P2B—C2B170.0 (3)
P2A—Ni1A—O1A—C15A28.0 (9)C4B—C3B—P2B—C6B178.3 (3)
O3A—C15A—O2A—Ni1A178.3 (4)C5B—C3B—P2B—C6B58.5 (4)
O1A—C15A—O2A—Ni1A0.4 (3)C4B—C3B—P2B—Ni1B53.6 (3)
O1A—Ni1A—O2A—C15A0.3 (2)C5B—C3B—P2B—Ni1B69.7 (3)
P1A—Ni1A—O2A—C15A9.3 (6)C8B—C6B—P2B—C2B158.0 (3)
P2A—Ni1A—O2A—C15A176.1 (2)C7B—C6B—P2B—C2B73.5 (3)
C13A—C12A—P1A—C1A71.3 (4)C8B—C6B—P2B—C3B89.7 (3)
C14A—C12A—P1A—C1A53.2 (4)C7B—C6B—P2B—C3B38.8 (3)
C13A—C12A—P1A—C9A174.7 (3)C8B—C6B—P2B—Ni1B40.6 (3)
C14A—C12A—P1A—C9A60.8 (4)C7B—C6B—P2B—Ni1B169.2 (2)
C13A—C12A—P1A—Ni1A50.1 (4)O2B—Ni1B—P2B—C2B159.86 (17)
C14A—C12A—P1A—Ni1A174.5 (3)O1B—Ni1B—P2B—C2B160.4 (6)
C2A—C1A—P1A—C12A147.5 (3)P1B—Ni1B—P2B—C2B20.84 (15)
C2A—C1A—P1A—C9A98.8 (3)C15B—Ni1B—P2B—C2B159.5 (2)
C2A—C1A—P1A—Ni1A25.9 (3)O2B—Ni1B—P2B—C3B41.33 (17)
C10A—C9A—P1A—C12A176.3 (3)O1B—Ni1B—P2B—C3B41.8 (7)
C11A—C9A—P1A—C12A59.6 (4)P1B—Ni1B—P2B—C3B139.38 (15)
C10A—C9A—P1A—C1A62.3 (4)C15B—Ni1B—P2B—C3B41.0 (2)
C11A—C9A—P1A—C1A173.6 (3)O2B—Ni1B—P2B—C6B85.53 (16)
C10A—C9A—P1A—Ni1A60.5 (3)O1B—Ni1B—P2B—C6B85.0 (7)
C11A—C9A—P1A—Ni1A63.6 (3)P1B—Ni1B—P2B—C6B93.76 (14)
O1A—Ni1A—P1A—C12A53.44 (19)C15B—Ni1B—P2B—C6B85.9 (2)
O2A—Ni1A—P1A—C12A44.3 (5)P1C—C1C—C2C—P2C40.7 (3)
P2A—Ni1A—P1A—C12A122.83 (16)O3C—C15C—Ni1C—O2C89 (9)
C15A—Ni1A—P1A—C12A51.7 (2)O1C—C15C—Ni1C—O2C177.6 (4)
O1A—Ni1A—P1A—C1A172.34 (19)O3C—C15C—Ni1C—O1C94 (9)
O2A—Ni1A—P1A—C1A163.2 (5)O2C—C15C—Ni1C—O1C177.6 (4)
P2A—Ni1A—P1A—C1A3.92 (17)O3C—C15C—Ni1C—P2C84 (9)
C15A—Ni1A—P1A—C1A170.6 (2)O2C—C15C—Ni1C—P2C4.9 (3)
O1A—Ni1A—P1A—C9A67.01 (17)O1C—C15C—Ni1C—P2C177.53 (16)
O2A—Ni1A—P1A—C9A76.1 (5)O3C—C15C—Ni1C—P1C93 (9)
P2A—Ni1A—P1A—C9A116.72 (15)O2C—C15C—Ni1C—P1C178.66 (16)
C15A—Ni1A—P1A—C9A68.7 (2)O1C—C15C—Ni1C—P1C1.1 (3)
C8A—C6A—P2A—C2A163.5 (4)O3C—C15C—O1C—Ni1C177.4 (4)
C7A—C6A—P2A—C2A67.0 (4)O2C—C15C—O1C—Ni1C2.1 (3)
C8A—C6A—P2A—C3A83.8 (4)O2C—Ni1C—O1C—C15C1.5 (2)
C7A—C6A—P2A—C3A45.6 (4)P2C—Ni1C—O1C—C15C9.8 (6)
C8A—C6A—P2A—Ni1A46.8 (4)P1C—Ni1C—O1C—C15C179.3 (2)
C7A—C6A—P2A—Ni1A176.3 (3)O3C—C15C—O2C—Ni1C177.4 (4)
C1A—C2A—P2A—C6A82.8 (3)O1C—C15C—O2C—Ni1C2.1 (3)
C1A—C2A—P2A—C3A161.8 (3)O1C—Ni1C—O2C—C15C1.5 (2)
C1A—C2A—P2A—Ni1A34.4 (3)P2C—Ni1C—O2C—C15C176.5 (2)
C5A—C3A—P2A—C6A62.3 (4)P1C—Ni1C—O2C—C15C6.9 (8)
C4A—C3A—P2A—C6A173.7 (3)C10C—C9C—P1C—C1C60.6 (3)
C5A—C3A—P2A—C2A173.0 (3)C11C—C9C—P1C—C1C175.8 (3)
C4A—C3A—P2A—C2A63.0 (3)C10C—C9C—P1C—C12C172.5 (3)
C5A—C3A—P2A—Ni1A64.4 (4)C11C—C9C—P1C—C12C63.9 (3)
C4A—C3A—P2A—Ni1A59.5 (3)C10C—C9C—P1C—Ni1C61.4 (3)
O1A—Ni1A—P2A—C6A52.5 (8)C11C—C9C—P1C—Ni1C62.2 (3)
O2A—Ni1A—P2A—C6A79.8 (2)C2C—C1C—P1C—C9C98.3 (3)
P1A—Ni1A—P2A—C6A97.68 (18)C2C—C1C—P1C—C12C150.4 (3)
C15A—Ni1A—P2A—C6A76.4 (2)C2C—C1C—P1C—Ni1C28.2 (3)
O1A—Ni1A—P2A—C2A165.2 (8)C14C—C12C—P1C—C9C65.5 (3)
O2A—Ni1A—P2A—C2A167.56 (19)C13C—C12C—P1C—C9C167.6 (3)
P1A—Ni1A—P2A—C2A14.98 (17)C14C—C12C—P1C—C1C46.2 (3)
C15A—Ni1A—P2A—C2A170.9 (2)C13C—C12C—P1C—C1C80.7 (3)
O1A—Ni1A—P2A—C3A74.1 (8)C14C—C12C—P1C—Ni1C166.1 (3)
O2A—Ni1A—P2A—C3A46.8 (2)C13C—C12C—P1C—Ni1C39.2 (3)
P1A—Ni1A—P2A—C3A135.75 (18)O2C—Ni1C—P1C—C9C67.8 (7)
C15A—Ni1A—P2A—C3A50.1 (2)O1C—Ni1C—P1C—C9C62.63 (18)
P1B—C1B—C2B—P2B39.2 (3)P2C—Ni1C—P1C—C9C115.47 (16)
O3B—C15B—Ni1B—O2B102 (14)C15C—Ni1C—P1C—C9C62.0 (2)
O1B—C15B—Ni1B—O2B179.2 (4)O2C—Ni1C—P1C—C1C172.2 (7)
O3B—C15B—Ni1B—O1B79 (14)O1C—Ni1C—P1C—C1C177.35 (17)
O2B—C15B—Ni1B—O1B179.2 (4)P2C—Ni1C—P1C—C1C4.55 (15)
O3B—C15B—Ni1B—P2B101 (14)C15C—Ni1C—P1C—C1C178.0 (2)
O2B—C15B—Ni1B—P2B0.6 (3)O2C—Ni1C—P1C—C12C54.2 (7)
O1B—C15B—Ni1B—P2B179.80 (16)O1C—Ni1C—P1C—C12C59.43 (17)
O3B—C15B—Ni1B—P1B79 (14)P2C—Ni1C—P1C—C12C122.47 (15)
O2B—C15B—Ni1B—P1B178.89 (16)C15C—Ni1C—P1C—C12C60.1 (2)
O1B—C15B—Ni1B—P1B0.4 (3)C1C—C2C—P2C—C3C160.3 (3)
O3B—C15B—O1B—Ni1B178.3 (4)C1C—C2C—P2C—C6C84.6 (3)
O2B—C15B—O1B—Ni1B0.7 (3)C1C—C2C—P2C—Ni1C37.4 (3)
O2B—Ni1B—O1B—C15B0.5 (2)C4C—C3C—P2C—C2C73.4 (3)
P2B—Ni1B—O1B—C15B1.0 (8)C5C—C3C—P2C—C2C164.4 (3)
P1B—Ni1B—O1B—C15B179.7 (2)C4C—C3C—P2C—C6C175.3 (3)
O3B—C15B—O2B—Ni1B178.3 (4)C5C—C3C—P2C—C6C53.2 (3)
O1B—C15B—O2B—Ni1B0.7 (3)C4C—C3C—P2C—Ni1C46.3 (3)
O1B—Ni1B—O2B—C15B0.5 (2)C5C—C3C—P2C—Ni1C75.8 (3)
P2B—Ni1B—O2B—C15B179.6 (2)C8C—C6C—P2C—C2C159.7 (3)
P1B—Ni1B—O2B—C15B5.0 (7)C7C—C6C—P2C—C2C71.6 (3)
C11B—C9B—P1B—C12B179.1 (3)C8C—C6C—P2C—C3C87.1 (3)
C10B—C9B—P1B—C12B56.0 (4)C7C—C6C—P2C—C3C41.7 (4)
C11B—C9B—P1B—C1B68.2 (3)C8C—C6C—P2C—Ni1C41.5 (4)
C10B—C9B—P1B—C1B168.7 (3)C7C—C6C—P2C—Ni1C170.3 (3)
C11B—C9B—P1B—Ni1B53.7 (3)O2C—Ni1C—P2C—C2C164.43 (17)
C10B—C9B—P1B—Ni1B69.4 (4)O1C—Ni1C—P2C—C2C153.7 (5)
C13B—C12B—P1B—C9B175.1 (3)P1C—Ni1C—P2C—C2C16.01 (15)
C14B—C12B—P1B—C9B59.1 (4)C15C—Ni1C—P2C—C2C161.6 (2)
C13B—C12B—P1B—C1B71.8 (3)O2C—Ni1C—P2C—C3C45.93 (17)
C14B—C12B—P1B—C1B54.0 (4)O1C—Ni1C—P2C—C3C35.2 (6)
C13B—C12B—P1B—Ni1B48.8 (3)P1C—Ni1C—P2C—C3C134.52 (15)
C14B—C12B—P1B—Ni1B174.6 (3)C15C—Ni1C—P2C—C3C43.1 (2)
C2B—C1B—P1B—C9B101.0 (3)O2C—Ni1C—P2C—C6C80.43 (18)
C2B—C1B—P1B—C12B145.9 (3)O1C—Ni1C—P2C—C6C91.2 (5)
C2B—C1B—P1B—Ni1B23.5 (3)P1C—Ni1C—P2C—C6C99.12 (16)
O2B—Ni1B—P1B—C9B63.8 (6)C15C—Ni1C—P2C—C6C83.3 (2)
O1B—Ni1B—P1B—C9B59.40 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A1···O3Ai0.982.73.670 (5)169
C4A—H4A3···O1Ai0.982.693.448 (5)134
C8C—H8C1···O3Cii0.982.713.595 (5)150
C10B—H10F···O3Bii0.982.523.335 (5)141
C1A—H1A2···O3Bii0.992.233.204 (5)168
C1C—H1C2···O3Aiii0.992.53.443 (5)159
C9C—H9C···O2Aiii12.483.455 (5)165
C1B—H1B1···O3Civ0.992.53.452 (5)161
C6B—H6B···O3Civ12.63.516 (5)153
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(CO3)(C14H32P2)]
Mr381.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)130
a, b, c (Å)8.4974 (4), 46.582 (2), 14.7342 (7)
β (°) 103.618 (4)
V3)5668.2 (5)
Z12
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.33 × 0.06 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.813, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
42978, 10329, 7642
Rint0.088
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.096, 1.09
No. of reflections10329
No. of parameters592
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.59

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Selected bond lengths (Å) top
Ni1A—O1A1.879 (2)Ni1B—P2B2.1399 (12)
Ni1A—O2A1.885 (3)Ni1B—P1B2.1415 (11)
Ni1A—P1A2.1390 (12)Ni1C—O2C1.877 (3)
Ni1A—P2A2.1460 (11)Ni1C—O1C1.889 (2)
Ni1B—O2B1.887 (2)Ni1C—P2C2.1433 (10)
Ni1B—O1B1.890 (3)Ni1C—P1C2.1481 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A1···O3Ai0.982.73.670 (5)168.5
C4A—H4A3···O1Ai0.982.693.448 (5)134.2
C8C—H8C1···O3Cii0.982.713.595 (5)149.8
C10B—H10F···O3Bii0.982.523.335 (5)140.5
C1A—H1A2···O3Bii0.992.233.204 (5)167.8
C1C—H1C2···O3Aiii0.992.53.443 (5)159.3
C9C—H9C···O2Aiii12.483.455 (5)164.5
C1B—H1B1···O3Civ0.992.53.452 (5)161.1
C6B—H6B···O3Civ12.63.516 (5)152.8
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank PAPIIT-DGAPA-UNAM (IN-210613) and CONACYT (178265) for their financial support of this work.

References

First citationAnderson, J. S., Iluc, V. M. & Hillhouse, G. L. (2010). Inorg. Chem. 49, 10203–10207.   Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAngulo, I. M., Bouwman, E., van Gorkum, R., Lok, S. M., Lutz, M. & Spek, A. L. (2003). J. Mol. Catal. A Chem. 202, 97–106.   Web of Science CSD CrossRef CAS Google Scholar
First citationAresta, M. N., Nobile, C. F., Albano, V. G., Forni, E. & Manasero, M. (1975). J. Chem. Soc. Chem. Commun. pp. 636–637.  Google Scholar
First citationArévalo, A. & García, J. J. (2010). Eur. J. Inorg. Chem. pp. 4063–4074.  Google Scholar
First citationCañavera-Buelvas, F., Flores-Alamo, M. & García, J. J. (2011). Acta Cryst. E67, m501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCastellanos-Blanco, N. Y., García, J. J. & Flores-Alamo, M. (2011). Acta Cryst. E67, m871.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDahlenburg, L. & Kurth, V. (2001). Inorg. Chim. Acta, 319, 176–182.   Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGonzález-Sebastián, L., Flores-Alamo, M. & García, J. J. (2012). Organometallics, 31, 8200–8207.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicic, D. A. & Jones, W. D. (1997). J. Am. Chem. Soc. 119, 10855–10856.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m200-m201
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds