inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages i21-i22

Ammonium diphosphitoindate(III)

aLaboratoire Sciences des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia, 16111 Bab-Ezzouar Alger, Algeria, and bEcole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc CS 50837, 35708 Rennes Cedex 7, France
*Correspondence e-mail: eric.le-fur@ensc-rennes.fr

(Received 8 March 2013; accepted 20 March 2013; online 28 March 2013)

The crystal structure of the title compound, NH4[In(HPO3)2], is built up from InIII cations (site symmetry 3m.) adopting an octa­hedral environment and two different phosphite anions (each with site symmetry 3m.) exhibiting a triangular–pyramidal geometry. Each InO6 octa­hedron shares its six apices with hydrogen phosphite groups. Reciprocally, each HPO3 group shares all its O atoms with three different metal cations, leading to [In(HPO3)2] layers which propagate in the ab plane. The ammonium cation likewise has site symmetry 3m.. In the structure, the cations are located between the [In(HPO3)2] layers of the host framework. The sheets are held together by hydrogen bonds formed between the NH4+ cations and the O atoms of the framework.

Related literature

For general background, see: Natarajan & Mandal (2008[Natarajan, S. & Mandal, S. (2008). Angew. Chem. Int. Ed. Engl. 47, 4798-4828.]); Marcos et al. (1993[Marcos, M. D., Amoros, P. & Le Bail, A. (1993). J. Solid State Chem. 107, 250-257.]). For related structures, see: Li et al. (2013[Li, H., Zhang, L., Huo, Q. & Liu, Y. (2013). J. Solid State Chem. 197, 75-80.]); Hamchaoui et al. (2013[Hamchaoui, F., Alonzo, V., Venegas-Yazigi, D., Rebbah, H. & Le Fur, E. (2013). J. Solid State Chem. 198, 295-302.]); Giester (2000[Giester, G. (2000). J. Alloys Compd, 308, 71-76.]); Graeber & Rosen­zweig (1971[Graeber, E. J. & Rosenzweig, A. (1971). Am. Mineral. 56, 1917-1933.]). For potential applications of open-framework transition metal phosphates, see: Cheetham et al. (1999[Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. Engl. 38, 3268-3292.]). For the synthesis of the first organically templated vanadium phosphite with an open framework, see: Bonavia et al. (1995[Bonavia, G., DeBord, J., Haushalter, R. C., Rose, D. & Zubieta, J. (1995). Chem. Mater. 7, 1995-1998.]). Structures of purely inorganic phosphite compounds have been evidenced with magnetic and non-magnetic cations (Marcos et al., 1993[Marcos, M. D., Amoros, P. & Le Bail, A. (1993). J. Solid State Chem. 107, 250-257.]; Morris et al., 1994[Morris, R. E., Attfield, M. P. & Cheetham, A. K. (1994). Acta Cryst. C50, 473-476.]; Orive et al., 2011[Orive, J., Mesa, J. L., Balda, R., Fernandez, J., Rodrıguez Fernández, J., Rojo, T. & Arriortua, M. I. (2011). Inorg. Chem. 50, 12463-12476.]) while closely related structures can be obtained by replacing organic cations by inorganic ones as observed in the AxMn3(HPO3)4 system [A = en (Fernández et al., 2000[Fernández, S., Mesa, J. L., Pizarro, J. L., Lezama, L., Arriortua, M. I., Olazcuaga, R. & Rojo, T. (2000). Chem. Mater. 12, 2092-2098.]); A = K (Hamchaoui et al., 2009[Hamchaoui, F., Alonzo, V., Roisnel, T., Rebbah, H. & Le Fur, E. (2009). Acta Cryst. C65, i33-i35.])].

Experimental

Crystal data
  • NH4[In(HPO3)2]

  • Mr = 292.82

  • Hexagonal, P 63 m c

  • a = 5.4705 (1) Å

  • c = 13.0895 (4) Å

  • V = 339.24 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.93 mm−1

  • T = 293 K

  • 0.10 × 0.05 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002)[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.] Tmin = 0.66, Tmax = 0.92

  • 7774 measured reflections

  • 962 independent reflections

  • 912 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.041

  • S = 1.26

  • 962 reflections

  • 30 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −1.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 459 Friedel pairs

  • Flack parameter: −0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O1 0.86 (2) 2.38 (2) 3.066 (2) 138 (2)
N1—HN1⋯O1i 0.86 (2) 2.38 (2) 3.066 (2) 138 (2)
N1—HN2⋯O2ii 0.89 (1) 2.41 (1) 3.109 (4) 135 (1)
N1—HN2⋯O2iii 0.89 (1) 2.41 (1) 3.109 (4) 135 (1)
N1—HN2⋯O2iv 0.89 (1) 2.41 (1) 3.109 (4) 135 (1)
N1—HN2⋯O2v 0.89 (1) 2.41 (1) 3.109 (4) 135 (1)
Symmetry codes: (i) -x+y-1, -x, z; (ii) [x-y, x, z-{\script{1\over 2}}]; (iii) [-x-1, -y, z-{\script{1\over 2}}]; (iv) [y-1, -x+y-1, z-{\script{1\over 2}}]; (v) [y-1, x, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg, 1998[Duisenberg, A. J. M. (1998). Thesis, Utrecht University, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

After the discovery of microporous aluminophosphates, considerable efforts have been directed towards the synthesis of new open-framework transition metal phosphates because of their potential applications (Cheetham et al., 1999). The replacement of phosphate by phosphite in transition metal phosphates has recently attracted effort, notably since the synthesis of the first organically templated vanadium phosphite with an open framework (Bonavia et al., 1995). Consequently the literature is currently dominated by reports of organically template phosphite frame- works (Natarajan & Mandal, 2008). Purely inorganic phosphite structures have also been evidenced with magnetic and non-magnetic cations (Marcos et al., 1993, Morris et al., 1994, Orive et al., 2011) while, interestingly, closely related structures can be obtained by replacing organic cations by inorganic ones as observed in the AxMn3(HPO3)4 system. (A = en: Fernández et al., 2000, A = K: Hamchaoui et al., 2009).

The structure of the title compound is built up from In(HPO3)2 layers separated by NH4 cations. It is isostructural to (H3O)In(HPO3)2 (Li et al., 2013) and to the A[M(HPO3)2] family (A = K, Rb, NH4 and M = V, Fe) (Hamchaoui et al., 2013). The structural model is also related to the yavapaiite aluns type (Graeber & Rosenzweig, 1971) and the mixed selenite-selenate [(RbFe(SeO4)(SeO3)](Giester, 2000). As shown in Fig. 1, the asymmetric unit contains one crystallographic independant InIII cation and two ones for both phosphorus and oxygen atoms. Six oxygen atoms define an octahedral geometry around the metallic center while three oxygen atoms and one hydrogen atom define the triangular pyramidal environment of the phosphorus atom. The quaternary ammonium ions are displayed between the [M(HPO3)2]- layers of the host framework (Fig. 2). They exhibit N—H bond distances in the range usually found for this cation and the angles are similar to those expected for sp3 hybridization. Thus for 1 the sheets are held together by hydrogen bonds formed between and the oxygen atoms of the framework. This H-bonding arrangement is illustrated in Fig. 3. It shows that the ammonium ion is firmly fixed in the structure by means of nine N—H···O hydrogen bonds, which prevent free ammonium-ion rotation at 298 K. The ammonium cations are located at the center of the six-ring windows of the upper layer.

Related literature top

For general background, see: Natarajan & Mandal (2008); Marcos et al. (1993). For related structures, see: Li et al. (2013); Hamchaoui et al. (2013); Giester (2000); Graeber & Rosenzweig (1971). For potential applications of open-framework transition metal phosphates, see: Cheetham et al. (1999). For the synthesis of the first organically templated vanadium phosphite with an open framework, see: Bonavia et al. (1995). Purely inorganic phosphite structures have been evidenced with magnetic and non-magnetic cations (Marcos et al., 1993; Morris et al., 1994; Orive et al., 2011) while closely related structures can be obtained by replacing organic cations by inorganic ones as observed in the AxMn3(HPO3)4 system [A = en (Fernández et al., 2000); A = K (Hamchaoui et al., 2009)].

Experimental top

The title compound was prepared under mild hydrothermal conditions and autogenous pressure. The starting reagents were InCl3 (Sigma-Aldrich, 98%), H3PO3 (Aldrich, 99%), (NH4)2CO3 (Fluka, 30–33% of NH3) and deionized water in a 2:15:4:280 molar ratio. The mixture was placed in a 23 ml Teflon-lined steel autoclave, heated at 453 K for 72 h and followed by slow cooling to room temperature. Well formed colorless crystals were recovered by vacuum filtration, washed with deionized water and dried in a desiccator.

Refinement top

Part of the H atoms was localized from a difference Fourier map (HP2 and HN1) others were placed in calculated position according to geometrical constraints. Hydrogen atom positions of the ammonium cation were refined with their N—H and H—H distances restrained to one common refined value (0.87 Å and 1.33 Å respectively)

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit and symmetry-related atoms of NH4[In(HPO3)2], shown with 50% probability displacement ellipsoids. [symmetry codes: (i) -y, x-y + 1, z; (ii) -x + y - 1, -x, z; (iii) -y - 1, x-y, z; (iv) -x + y - 1, -x - 1, z; (v) -y, x-y, z; (vi) -x + y, -x, z].
[Figure 2] Fig. 2. Projection along the [010] direction, showing the two-dimensional framework in NH4[In(HPO3)2].
[Figure 3] Fig. 3. H-bonding arrangement between the ammonium cations and the host framework [symmetry codes: (ii) -x + y - 1, -x, z; (iii) -y - 1, x-y, z; (iv) -x + y - 1, -x - 1, z; (v) -y, x-y, z; (vii) x - 1, y - 1, z; (viii) x-y, x, -0.5 + z, (ix) y - 1, -x + y - 1, -0.5 + z; (x) -x - 1, -y, -0.5 + z].
Ammonium diphosphitoindate(III) top
Crystal data top
NH4[In(HPO3)2]Dx = 2.867 Mg m3
Mr = 292.82Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63mcCell parameters from 1590 reflections
a = 5.4705 (1) Åθ = 2.9–42.1°
c = 13.0895 (4) ŵ = 3.93 mm1
V = 339.24 (1) Å3T = 293 K
Z = 2Block, colourless
F(000) = 2800.1 × 0.05 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
962 independent reflections
Radiation source: fine-focus sealed tube912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
CCD rotation images, thick slices scansθmax = 42.0°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 109
Tmin = 0.66, Tmax = 0.92k = 109
7774 measured reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0183P)2 + 0.0737P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max = 0.003
S = 1.26Δρmax = 0.51 e Å3
962 reflectionsΔρmin = 1.39 e Å3
30 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.092 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 459 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (2)
Crystal data top
NH4[In(HPO3)2]Z = 2
Mr = 292.82Mo Kα radiation
Hexagonal, P63mcµ = 3.93 mm1
a = 5.4705 (1) ÅT = 293 K
c = 13.0895 (4) Å0.1 × 0.05 × 0.02 mm
V = 339.24 (1) Å3
Data collection top
Nonius KappaCCD
diffractometer
962 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
912 reflections with I > 2σ(I)
Tmin = 0.66, Tmax = 0.92Rint = 0.024
7774 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041Δρmax = 0.51 e Å3
S = 1.26Δρmin = 1.39 e Å3
962 reflectionsAbsolute structure: Flack (1983), 459 Friedel pairs
30 parametersAbsolute structure parameter: 0.01 (2)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.33330.33330.59850.01029 (5)
P10.66670.33330.47231 (7)0.00954 (13)
P20.00000.00000.65957 (6)0.00968 (14)
O10.15240 (16)0.15240 (16)0.69716 (14)0.0201 (3)
O20.5126 (2)0.0252 (4)0.5013 (2)0.0276 (4)
N10.66670.33330.8024 (3)0.0222 (7)
HP10.66670.33330.378 (9)0.027*
HP20.00000.00000.553 (6)0.027*
HN10.5809 (18)0.162 (4)0.782 (3)0.027*
HN20.66670.33330.8705 (8)0.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.00741 (6)0.00741 (6)0.01606 (8)0.00371 (3)0.0000.000
P10.00840 (19)0.00840 (19)0.0118 (3)0.00420 (9)0.0000.000
P20.00826 (19)0.00826 (19)0.0125 (4)0.00413 (9)0.0000.000
O10.0275 (7)0.0275 (7)0.0188 (6)0.0240 (8)0.0001 (2)0.0001 (2)
O20.0282 (7)0.0120 (7)0.0374 (9)0.0060 (4)0.0053 (4)0.0106 (7)
N10.0232 (10)0.0232 (10)0.0203 (16)0.0116 (5)0.0000.000
Geometric parameters (Å, º) top
In1—O2i2.1226 (19)P1—O2iii1.5082 (18)
In1—O22.1226 (19)P1—O21.5082 (18)
In1—O2ii2.1226 (19)P1—O2iv1.5082 (18)
In1—O12.1461 (17)P2—O1v1.5255 (16)
In1—O1ii2.1461 (17)P2—O1vi1.5255 (16)
In1—O1i2.1461 (17)P2—O11.5255 (15)
O2i—In1—O287.75 (10)O2ii—In1—O1i92.35 (6)
O2i—In1—O2ii87.75 (10)O1—In1—O1i87.55 (7)
O2—In1—O2ii87.75 (10)O1ii—In1—O1i87.55 (7)
O2i—In1—O192.35 (6)O2iii—P1—O2113.89 (9)
O2—In1—O192.35 (6)O2iii—P1—O2iv113.89 (9)
O2ii—In1—O1179.86 (9)O2—P1—O2iv113.89 (9)
O2i—In1—O1ii179.86 (9)O1v—P2—O1vi110.12 (7)
O2—In1—O1ii92.35 (6)O1v—P2—O1110.12 (7)
O2ii—In1—O1ii92.35 (6)O1vi—P2—O1110.12 (7)
O1—In1—O1ii87.55 (7)P2—O1—In1124.21 (11)
O2i—In1—O1i92.35 (6)P1—O2—In1157.74 (17)
O2—In1—O1i179.86 (10)
Symmetry codes: (i) y, xy+1, z; (ii) x+y1, x, z; (iii) y1, xy, z; (iv) x+y1, x1, z; (v) y, xy, z; (vi) x+y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O10.86 (2)2.38 (2)3.066 (2)138 (2)
N1—HN1···O1ii0.86 (2)2.38 (2)3.066 (2)138 (2)
N1—HN2···O2vii0.89 (1)2.41 (1)3.109 (4)135 (1)
N1—HN2···O2viii0.89 (1)2.41 (1)3.109 (4)135 (1)
N1—HN2···O2ix0.89 (1)2.41 (1)3.109 (4)135 (1)
N1—HN2···O2x0.89 (1)2.41 (1)3.109 (4)135 (1)
Symmetry codes: (ii) x+y1, x, z; (vii) xy, x, z1/2; (viii) x1, y, z1/2; (ix) y1, x+y1, z1/2; (x) y1, x, z1/2.

Experimental details

Crystal data
Chemical formulaNH4[In(HPO3)2]
Mr292.82
Crystal system, space groupHexagonal, P63mc
Temperature (K)293
a, c (Å)5.4705 (1), 13.0895 (4)
V3)339.24 (1)
Z2
Radiation typeMo Kα
µ (mm1)3.93
Crystal size (mm)0.1 × 0.05 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.66, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
7774, 962, 912
Rint0.024
(sin θ/λ)max1)0.941
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.041, 1.26
No. of reflections962
No. of parameters30
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 1.39
Absolute structureFlack (1983), 459 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: COLLECT (Nonius, 1998), DIRAX/LSQ (Duisenberg, 1992), EVALCCD (Duisenberg, 1998), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O10.86 (2)2.38 (2)3.066 (2)137.8 (15)
N1—HN1···O1i0.86 (2)2.38 (2)3.066 (2)137.8 (15)
N1—HN2···O2ii0.891 (11)2.412 (8)3.109 (4)135.23 (18)
N1—HN2···O2iii0.891 (11)2.412 (8)3.109 (4)135.23 (18)
N1—HN2···O2iv0.891 (11)2.412 (8)3.109 (4)135.23 (18)
N1—HN2···O2v0.891 (11)2.412 (8)3.109 (4)135.23 (18)
Symmetry codes: (i) x+y1, x, z; (ii) xy, x, z1/2; (iii) x1, y, z1/2; (iv) y1, x+y1, z1/2; (v) y1, x, z1/2.
 

Footnotes

Université Européenne de Bretagne.

Acknowledgements

This work was supported by the Algerian–French program CMEP-PHC Tassili 10 MDU 819. The authors are indebted to T. Roisnel for the data collection at the Centre de Diffractométrie des Rayons X (CDIFX).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBonavia, G., DeBord, J., Haushalter, R. C., Rose, D. & Zubieta, J. (1995). Chem. Mater. 7, 1995–1998.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. Engl. 38, 3268–3292.  CrossRef PubMed CAS Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M. (1998). Thesis, Utrecht University, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFernández, S., Mesa, J. L., Pizarro, J. L., Lezama, L., Arriortua, M. I., Olazcuaga, R. & Rojo, T. (2000). Chem. Mater. 12, 2092–2098.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGiester, G. (2000). J. Alloys Compd, 308, 71–76.  Web of Science CrossRef CAS Google Scholar
First citationGraeber, E. J. & Rosenzweig, A. (1971). Am. Mineral. 56, 1917–1933.  CAS Google Scholar
First citationHamchaoui, F., Alonzo, V., Roisnel, T., Rebbah, H. & Le Fur, E. (2009). Acta Cryst. C65, i33–i35.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamchaoui, F., Alonzo, V., Venegas-Yazigi, D., Rebbah, H. & Le Fur, E. (2013). J. Solid State Chem. 198, 295–302.  Web of Science CrossRef CAS Google Scholar
First citationLi, H., Zhang, L., Huo, Q. & Liu, Y. (2013). J. Solid State Chem. 197, 75–80.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarcos, M. D., Amoros, P. & Le Bail, A. (1993). J. Solid State Chem. 107, 250–257.  CrossRef CAS Web of Science Google Scholar
First citationMorris, R. E., Attfield, M. P. & Cheetham, A. K. (1994). Acta Cryst. C50, 473–476.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNatarajan, S. & Mandal, S. (2008). Angew. Chem. Int. Ed. Engl. 47, 4798–4828.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOrive, J., Mesa, J. L., Balda, R., Fernandez, J., Rodrıguez Fernández, J., Rojo, T. & Arriortua, M. I. (2011). Inorg. Chem. 50, 12463–12476.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages i21-i22
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds