organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o464-o465

3-(4-Chloro­phen­yl)-5-(4-eth­­oxy­phen­yl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide ethanol monosolvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and dFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 19 February 2013; accepted 25 February 2013; online 2 March 2013)

The asymmetric unit of the title compound, C18H18ClN3OS·C2H5OH, comprises a pyrazoline derivative and an ethanol solvent mol­ecule. In the mol­ecule of the pyrazoline derivative, the pyrazole ring adopts an envelope conformation with the C atom bearing the eth­oxy­phenyl substituent as the flap. The dihedral angle between the benzene rings is 74.22 (7)°. The eth­oxy group is coplanar with the attached benzene ring [C—O—C—Cmeth­yl = 175.50 (11)° and r.m.s. deviation = 0.0459 (1) Å for the nine non-H atoms]. In the crystal, the pyrazoline mol­ecules are linked by N—H⋯Oeth­oxy hydrogen bonds into chains along the c axis and are further linked with the solvent ethanol mol­ecules by N—H⋯Oethanol and Oethanol—H⋯S hydrogen bonds. C—H⋯π inter­actions are also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Chantrapromma et al. (2012[Chantrapromma, S., Nonthason, P., Suwunwong, T. & Fun, H.-K. (2012). Acta Cryst. E68, o830-o831.]); Nonthason et al. (2011[Nonthason, P., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3501-o3502.]). For background to and applications of pyrazoline derivatives, see: Bilgin et al. (1992[Bilgin, A. A., Palaska, E. & Sunal, R. (1992). Arzneim. Forschung. Drug Res. 42, 1271-1273.], 1993[Bilgin, A. A., Palaska, E. & Sunal, R. (1993). Arzneim. Forschung. Drug Res. 43, 1041-1044.], 1994[Bilgin, A. A., Palaska, E., Sunal, R. & Gumuxsel, B. (1994). Pharmazie, 49, 67-69.]); Gokhan et al. (2003[Gokhan, N., Yesilada, A., Ucar, G., Erol, K. & Bilgin, A. A. (2003). Arch. Pharm. Med. Chem. 336, 362-371.]); Ruhoglu et al. (2005[Ruhoglu, O., Ozdemir, Z., Calis, U., Gumusel, B. & Bilgin, A. A. (2005). Arzneim. Forschung. Drug Res. 55, 431-436.]); Zhang et al. (2000[Zhang, X. H., Wu, S. K., Gao, Z. Q., Lee, C. S., Lee, S. T. & Kwong, H. L. (2000). Thin Solid Films, 371, 40-46.]). For the fluorescent properties and anti­oxidant activity of pyrazoline derivatives by DPPH scavenging, see: Molyneux (2004[Molyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211-219.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18ClN3OS·C2H6O

  • Mr = 405.94

  • Monoclinic, P 21 /c

  • a = 9.3145 (4) Å

  • b = 25.3673 (12) Å

  • c = 9.5565 (5) Å

  • β = 115.082 (1)°

  • V = 2045.12 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.49 × 0.24 × 0.24 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.864, Tmax = 0.929

  • 17996 measured reflections

  • 3514 independent reflections

  • 3228 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.06

  • 3514 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H2N3⋯O1i 0.879 (18) 2.225 (18) 3.0531 (16) 157.1 (17)
N3—H1N3⋯O2i 0.857 (19) 2.019 (19) 2.8324 (18) 158.0 (16)
O2—H1O2⋯S2ii 0.85 (2) 2.43 (2) 3.2340 (12) 159.1 (16)
C5—H5ACg2iii 0.95 2.96 3.5701 (15) 123
C8—H8ACg1iv 0.99 2.89 3.8543 (17) 165
Symmetry codes: (i) x, y, z-1; (ii) -x+2, -y, -z+1; (iii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The studies of pyrazoline derivatives have gained increasing interests in the therapeutic research field due to their broad spectrum of biological properties such as antihypotensive, muscle relaxant, anticonvulsant, psychoanaleptic and antidepressant activities (Bilgin et al., 1992; Bilgin et al., 1993; Bilgin et al., 1994; Gokhan et al., 2003; Ruhoglu et al., 2005). The previous studies by Bilgin and co-workers (Bilgin et al., 1993) reported the synthesis of thiocarbamoyl pyrazoline derivatives which exhibited significant antidepressant activity. Moreover pyrazoline derivatives with the phenyl group at the 5-position have been shown to exhibit excellent blue photoluminescence (Zhang et al., 2000). In view of the importance of pyrazoline derivatives, we have synthesized a series of thiocarbamoyl pyrazoline derivatives by the cyclization reaction between chalcones and thiosemicarbazide and have studied their fluorescence, antioxidant and antityrosinase activities. The title compound (I) was synthesized and evaluated for fluorescent property and antioxidant activity by DPPH scavenging (Molyneux, 2004). Unfortunately our results show that (I) did not exhibit fluorescence and was found to be inactive for antioxidant and antityrosinase activities. Herein we report the synthesis and crystal structure of (I).

In the molecule of the title ethanol monosolvated pyrazoline derivative (Fig. 1), C18H18ClN3OS.C2H5OH, the pyrazole ring adopts an envelope conformation with the slightly puckered C9 atom having the maximum deviation of -0.0950 (15) Å, and the puckering parameter Q = 0.1508 (15) Å and ϕ = 257.2 (5)° (Cremer & Pople, 1975). The mean plane through the pyrazole ring forms dihedral angles of 15.82 (8) and 82.29 (8)° with the chloro-substituted and ethoxy-substituted rings, respectively, whereas the dihedral angle between the chloro-substituted and ethoxy-substituted rings is 74.22 (7)°. The conformation of the carbothioamide unit with respect to the pyrazole ring can be indicated by the torsion angles N1–N2–C18–N3 = -6.07 (18)° and N1–N2–C18–S2 = 173.50 (9)°. The ethoxy group lies nearly on the same plane of the attached benzene ring with the torsion angle C13–O1–C16–C17 = 175.50 (11)°, and r.m.s. of 0.0459 (1) Å for the nine non H atoms (C10, C11, C12, C13, C14, C15, O1, C16 and C17). Bond distances of (I) are in normal range (Allen et al., 1987) and comparable with those observed in related structures (Chantrapromma et al., 2012; Nonthason et al., 2011)

In the crystal packing (Fig.2), the pyrazoline molecules are linked together by N—H···Oethoxy hydrogen bonds (Table 1) into chains along the [0 0 1] direction and are further linked with the solvent ethanol molecules by N—H···Oethanol and Oethanol—H···S hydrogen bonds (Table 1). C—H···π interactions were also presented (Table 1). Fig. 3 shows the stacking of pyrazoline molecules along the c axis.

Related literature top

For bond-length data, see: Allen et al. (1987). For ring conformational analysis, see: Cremer & Pople (1975). For related structures, see: Chantrapromma et al. (2012); Nonthason et al. (2011). For background to and applications of pyrazoline derivatives, see: Bilgin et al. (1992, 1993, 1994); Gokhan et al. (2003); Ruhoglu et al. (2005); Zhang et al. (2000). For the fluorescent properties and antioxidant activity of pyrazoline derivatives by DPPH scavenging, see: Molyneux (2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by dissolving (E)-1-(4-chlorophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one (0.29 g, 1 mmol) in ethanol (10 ml) and the solution of an excess thiosemicarbazide (0.18 g, 2 mmol) in a solution of KOH (0.11 g, 2 mmol) in ethanol (15 ml) was then added. The reaction mixture was vigorously stirred and refluxed for 4 h. The pale yellow solid of the title compound was obtained after cooling of the reaction and was then filtered off under vacuum. Pale yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from CH3OH/C2H5OH (1:1 v/v) by slow evaporation of the solvent at room temperature after several days. M. p.: 406–407 K.

Refinement top

Amide and ethanol H atoms were located from difference Fourier maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.95 Å for aromatic, 1.00 Å for CH, 0.99 Å for CH2 and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Only H atoms involved in hydrogen bonding were shown for the sake of clarity. Hydrogen bonds were drawn as dashed lines.
[Figure 3] Fig. 3. The crystal packing of the the title compound viewed along the c axis, showing the stacking of pyrazoline derivatives. Solvent ethanol molecules are omitted and for the sake of clarity, only H atoms involved in hydrogen bonding are shown. Hydrogen bonds were drawn as dashed lines.
3-(4-Chlorophenyl)-5-(4-ethoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide ethanol monosolvate top
Crystal data top
C18H18ClN3OS·C2H6OF(000) = 856
Mr = 405.94Dx = 1.318 Mg m3
Monoclinic, P21/cMelting point = 406–407 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.3145 (4) ÅCell parameters from 3514 reflections
b = 25.3673 (12) Åθ = 1.6–25.0°
c = 9.5565 (5) ŵ = 0.31 mm1
β = 115.082 (1)°T = 100 K
V = 2045.12 (17) Å3Block, pale yellow
Z = 40.49 × 0.24 × 0.24 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3514 independent reflections
Radiation source: sealed tube3228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1110
Tmin = 0.864, Tmax = 0.929k = 3030
17996 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0305P)2 + 1.0598P]
where P = (Fo2 + 2Fc2)/3
3514 reflections(Δ/σ)max = 0.001
258 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H18ClN3OS·C2H6OV = 2045.12 (17) Å3
Mr = 405.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3145 (4) ŵ = 0.31 mm1
b = 25.3673 (12) ÅT = 100 K
c = 9.5565 (5) Å0.49 × 0.24 × 0.24 mm
β = 115.082 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3514 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3228 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.929Rint = 0.023
17996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.29 e Å3
3514 reflectionsΔρmin = 0.21 e Å3
258 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11105 (4)0.286557 (14)0.62261 (5)0.03191 (12)
S20.90677 (4)0.091862 (13)0.20892 (4)0.01689 (10)
O10.45072 (11)0.07649 (4)0.58383 (11)0.0186 (2)
O20.89420 (12)0.00951 (4)0.81489 (12)0.0234 (2)
N10.51075 (13)0.15074 (4)0.10757 (13)0.0156 (2)
N20.63750 (13)0.13984 (4)0.03376 (12)0.0153 (2)
N30.70567 (15)0.07278 (5)0.08430 (14)0.0188 (3)
C10.22275 (15)0.18609 (5)0.35513 (16)0.0170 (3)
H1A0.25290.15060.36000.020*
C20.09364 (16)0.20717 (5)0.47764 (16)0.0191 (3)
H2A0.03430.18640.56630.023*
C30.05218 (16)0.25928 (6)0.46868 (16)0.0198 (3)
C40.13604 (16)0.29046 (5)0.34122 (17)0.0194 (3)
H4A0.10600.32600.33770.023*
C50.26506 (16)0.26870 (5)0.21847 (16)0.0167 (3)
H5A0.32350.28960.13000.020*
C60.30981 (15)0.21648 (5)0.22366 (15)0.0152 (3)
C70.44749 (15)0.19435 (5)0.09361 (15)0.0145 (3)
C80.53006 (16)0.21960 (5)0.06381 (15)0.0166 (3)
H8A0.45380.22890.10710.020*
H8B0.58880.25160.05950.020*
C90.64433 (15)0.17545 (5)0.15886 (15)0.0150 (3)
H9A0.75400.18980.21600.018*
C100.59077 (15)0.14822 (5)0.26960 (15)0.0144 (3)
C110.66466 (15)0.15890 (5)0.42750 (15)0.0157 (3)
H11A0.75160.18270.46620.019*
C120.61322 (15)0.13533 (5)0.52878 (15)0.0163 (3)
H12A0.66370.14340.63580.020*
C130.48746 (15)0.09970 (5)0.47389 (15)0.0149 (3)
C140.41061 (16)0.08924 (5)0.31602 (16)0.0183 (3)
H14A0.32310.06570.27700.022*
C150.46348 (16)0.11366 (5)0.21675 (15)0.0182 (3)
H15A0.41090.10650.10920.022*
C160.32760 (16)0.03716 (6)0.53447 (16)0.0204 (3)
H16A0.35200.00880.47680.024*
H16B0.22450.05310.46630.024*
C170.32115 (19)0.01539 (6)0.67807 (19)0.0280 (3)
H17A0.23860.01170.64950.042*
H17B0.29670.04390.73380.042*
H17C0.42390.00020.74450.042*
C180.74149 (15)0.10126 (5)0.04269 (15)0.0149 (3)
C191.0976 (2)0.07701 (7)0.8804 (2)0.0324 (4)
H19A1.13490.10570.83530.049*
H19B1.18430.05200.93230.049*
H19C1.06230.09160.95550.049*
C200.96096 (18)0.04889 (6)0.75385 (18)0.0272 (3)
H20A0.87810.07490.69480.033*
H20B0.99870.03220.68180.033*
H2N30.620 (2)0.0803 (7)0.168 (2)0.025 (4)*
H1N30.772 (2)0.0504 (7)0.0899 (19)0.023 (4)*
H1O20.957 (2)0.0164 (8)0.835 (2)0.044 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0265 (2)0.02200 (19)0.0290 (2)0.00534 (14)0.00589 (16)0.00216 (15)
S20.01535 (17)0.01703 (18)0.01616 (18)0.00211 (12)0.00463 (14)0.00103 (12)
O10.0217 (5)0.0193 (5)0.0151 (5)0.0045 (4)0.0081 (4)0.0002 (4)
O20.0202 (5)0.0218 (5)0.0279 (6)0.0030 (4)0.0099 (4)0.0036 (4)
N10.0148 (5)0.0188 (6)0.0127 (5)0.0017 (4)0.0052 (5)0.0019 (4)
N20.0162 (5)0.0172 (6)0.0110 (5)0.0035 (4)0.0043 (5)0.0007 (4)
N30.0180 (6)0.0205 (6)0.0165 (6)0.0054 (5)0.0059 (5)0.0017 (5)
C10.0186 (7)0.0153 (6)0.0190 (7)0.0011 (5)0.0099 (6)0.0002 (5)
C20.0187 (7)0.0199 (7)0.0169 (7)0.0014 (5)0.0058 (6)0.0016 (5)
C30.0155 (6)0.0207 (7)0.0194 (7)0.0020 (5)0.0039 (6)0.0044 (6)
C40.0197 (7)0.0150 (7)0.0232 (7)0.0028 (5)0.0090 (6)0.0012 (5)
C50.0176 (6)0.0176 (7)0.0160 (7)0.0005 (5)0.0080 (6)0.0010 (5)
C60.0146 (6)0.0178 (7)0.0159 (7)0.0002 (5)0.0090 (6)0.0024 (5)
C70.0165 (6)0.0151 (6)0.0146 (7)0.0005 (5)0.0093 (5)0.0011 (5)
C80.0202 (7)0.0150 (6)0.0144 (7)0.0018 (5)0.0073 (6)0.0010 (5)
C90.0167 (6)0.0150 (6)0.0138 (6)0.0003 (5)0.0069 (5)0.0011 (5)
C100.0154 (6)0.0128 (6)0.0145 (6)0.0036 (5)0.0057 (5)0.0008 (5)
C110.0141 (6)0.0142 (6)0.0167 (7)0.0004 (5)0.0045 (5)0.0009 (5)
C120.0182 (6)0.0165 (6)0.0115 (6)0.0012 (5)0.0038 (5)0.0006 (5)
C130.0174 (6)0.0139 (6)0.0147 (7)0.0032 (5)0.0083 (5)0.0023 (5)
C140.0170 (7)0.0189 (7)0.0171 (7)0.0039 (5)0.0053 (6)0.0018 (5)
C150.0190 (7)0.0216 (7)0.0114 (6)0.0016 (5)0.0038 (6)0.0016 (5)
C160.0197 (7)0.0195 (7)0.0232 (7)0.0039 (5)0.0103 (6)0.0007 (6)
C170.0324 (8)0.0263 (8)0.0321 (9)0.0050 (6)0.0203 (7)0.0027 (6)
C180.0161 (6)0.0145 (6)0.0167 (7)0.0010 (5)0.0096 (6)0.0019 (5)
C190.0400 (9)0.0287 (8)0.0365 (9)0.0080 (7)0.0240 (8)0.0059 (7)
C200.0263 (8)0.0299 (8)0.0259 (8)0.0076 (6)0.0116 (7)0.0047 (6)
Geometric parameters (Å, º) top
Cl1—C31.7488 (14)C8—H8A0.9900
S2—C181.6962 (13)C8—H8B0.9900
O1—C131.3685 (16)C9—C101.5145 (19)
O1—C161.4402 (16)C9—H9A1.0000
O2—C201.4256 (19)C10—C151.3863 (19)
O2—H1O20.85 (2)C10—C111.3941 (19)
N1—C71.2866 (18)C11—C121.385 (2)
N1—N21.3938 (15)C11—H11A0.9500
N2—C181.3539 (17)C12—C131.3939 (19)
N2—C91.4782 (17)C12—H12A0.9500
N3—C181.3276 (18)C13—C141.3941 (19)
N3—H2N30.879 (19)C14—C151.387 (2)
N3—H1N30.856 (18)C14—H14A0.9500
C1—C21.3817 (19)C15—H15A0.9500
C1—C61.4024 (19)C16—C171.504 (2)
C1—H1A0.9500C16—H16A0.9900
C2—C31.390 (2)C16—H16B0.9900
C2—H2A0.9500C17—H17A0.9800
C3—C41.383 (2)C17—H17B0.9800
C4—C51.3892 (19)C17—H17C0.9800
C4—H4A0.9500C19—C201.512 (2)
C5—C61.3958 (19)C19—H19A0.9800
C5—H5A0.9500C19—H19B0.9800
C6—C71.4673 (18)C19—H19C0.9800
C7—C81.5112 (18)C20—H20A0.9900
C8—C91.5468 (18)C20—H20B0.9900
C13—O1—C16118.05 (10)C11—C10—C9120.66 (12)
C20—O2—H1O2104.9 (14)C12—C11—C10120.95 (12)
C7—N1—N2107.89 (11)C12—C11—H11A119.5
C18—N2—N1119.61 (11)C10—C11—H11A119.5
C18—N2—C9127.33 (11)C11—C12—C13120.10 (12)
N1—N2—C9113.00 (10)C11—C12—H12A119.9
C18—N3—H2N3119.5 (11)C13—C12—H12A119.9
C18—N3—H1N3120.6 (11)O1—C13—C12115.71 (11)
H2N3—N3—H1N3119.2 (16)O1—C13—C14124.62 (12)
C2—C1—C6120.76 (12)C12—C13—C14119.66 (12)
C2—C1—H1A119.6C15—C14—C13119.14 (12)
C6—C1—H1A119.6C15—C14—H14A120.4
C1—C2—C3118.72 (13)C13—C14—H14A120.4
C1—C2—H2A120.6C10—C15—C14122.03 (12)
C3—C2—H2A120.6C10—C15—H15A119.0
C4—C3—C2122.02 (13)C14—C15—H15A119.0
C4—C3—Cl1118.66 (11)O1—C16—C17106.85 (11)
C2—C3—Cl1119.32 (11)O1—C16—H16A110.4
C3—C4—C5118.68 (13)C17—C16—H16A110.4
C3—C4—H4A120.7O1—C16—H16B110.4
C5—C4—H4A120.7C17—C16—H16B110.4
C4—C5—C6120.77 (13)H16A—C16—H16B108.6
C4—C5—H5A119.6C16—C17—H17A109.5
C6—C5—H5A119.6C16—C17—H17B109.5
C5—C6—C1119.05 (12)H17A—C17—H17B109.5
C5—C6—C7119.99 (12)C16—C17—H17C109.5
C1—C6—C7120.95 (12)H17A—C17—H17C109.5
N1—C7—C6121.02 (12)H17B—C17—H17C109.5
N1—C7—C8113.92 (11)N3—C18—N2116.09 (12)
C6—C7—C8125.05 (11)N3—C18—S2123.80 (11)
C7—C8—C9102.17 (10)N2—C18—S2120.11 (10)
C7—C8—H8A111.3C20—C19—H19A109.5
C9—C8—H8A111.3C20—C19—H19B109.5
C7—C8—H8B111.3H19A—C19—H19B109.5
C9—C8—H8B111.3C20—C19—H19C109.5
H8A—C8—H8B109.2H19A—C19—H19C109.5
N2—C9—C10111.87 (10)H19B—C19—H19C109.5
N2—C9—C8100.63 (10)O2—C20—C19111.65 (13)
C10—C9—C8113.08 (11)O2—C20—H20A109.3
N2—C9—H9A110.3C19—C20—H20A109.3
C10—C9—H9A110.3O2—C20—H20B109.3
C8—C9—H9A110.3C19—C20—H20B109.3
C15—C10—C11118.09 (12)H20A—C20—H20B108.0
C15—C10—C9121.20 (12)
C7—N1—N2—C18168.23 (12)C7—C8—C9—N213.98 (12)
C7—N1—N2—C99.16 (14)C7—C8—C9—C10105.49 (12)
C6—C1—C2—C30.5 (2)N2—C9—C10—C1539.66 (16)
C1—C2—C3—C40.0 (2)C8—C9—C10—C1573.12 (15)
C1—C2—C3—Cl1179.93 (11)N2—C9—C10—C11142.87 (12)
C2—C3—C4—C50.3 (2)C8—C9—C10—C11104.34 (14)
Cl1—C3—C4—C5179.57 (11)C15—C10—C11—C120.53 (19)
C3—C4—C5—C60.3 (2)C9—C10—C11—C12178.07 (12)
C4—C5—C6—C10.1 (2)C10—C11—C12—C131.0 (2)
C4—C5—C6—C7179.33 (12)C16—O1—C13—C12176.59 (11)
C2—C1—C6—C50.5 (2)C16—O1—C13—C142.15 (19)
C2—C1—C6—C7179.69 (12)C11—C12—C13—O1176.78 (11)
N2—N1—C7—C6179.82 (11)C11—C12—C13—C142.0 (2)
N2—N1—C7—C81.51 (15)O1—C13—C14—C15177.19 (12)
C5—C6—C7—N1165.56 (13)C12—C13—C14—C151.5 (2)
C1—C6—C7—N113.6 (2)C11—C10—C15—C141.1 (2)
C5—C6—C7—C813.0 (2)C9—C10—C15—C14178.60 (12)
C1—C6—C7—C8167.88 (13)C13—C14—C15—C100.1 (2)
N1—C7—C8—C910.54 (15)C13—O1—C16—C17175.50 (11)
C6—C7—C8—C9170.85 (12)N1—N2—C18—N36.07 (18)
C18—N2—C9—C1077.42 (16)C9—N2—C18—N3176.96 (12)
N1—N2—C9—C10105.44 (12)N1—N2—C18—S2173.50 (9)
C18—N2—C9—C8162.24 (12)C9—N2—C18—S23.47 (18)
N1—N2—C9—C814.90 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H2N3···O1i0.879 (18)2.225 (18)3.0531 (16)157.1 (17)
N3—H1N3···O2i0.857 (19)2.019 (19)2.8324 (18)158.0 (16)
O2—H1O2···S2ii0.85 (2)2.43 (2)3.2340 (12)159.1 (16)
C5—H5A···Cg2iii0.952.963.5701 (15)123
C8—H8A···Cg1iv0.992.893.8543 (17)165
Symmetry codes: (i) x, y, z1; (ii) x+2, y, z+1; (iii) x, y1/2, z3/2; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H18ClN3OS·C2H6O
Mr405.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.3145 (4), 25.3673 (12), 9.5565 (5)
β (°) 115.082 (1)
V3)2045.12 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.49 × 0.24 × 0.24
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.864, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
17996, 3514, 3228
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.06
No. of reflections3514
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H2N3···O1i0.879 (18)2.225 (18)3.0531 (16)157.1 (17)
N3—H1N3···O2i0.857 (19)2.019 (19)2.8324 (18)158.0 (16)
O2—H1O2···S2ii0.85 (2)2.43 (2)3.2340 (12)159.1 (16)
C5—H5A···Cg2iii0.952.963.5701 (15)123
C8—H8A···Cg1iv0.992.893.8543 (17)165
Symmetry codes: (i) x, y, z1; (ii) x+2, y, z+1; (iii) x, y1/2, z3/2; (iv) x, y1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

This work was supported by the Thailand Research Fund (TRF) through the Royal Golden Jubilee Ph.D. Program (PHD/0257/2553). The authors extend their appreciation to Prince of Songkla University and the Malaysian Government and Universiti Sains Malaysia for APEX DE2012 grant (No. 1002/PFIZIK/910323) and RUC grant (Structure Determination of 50 kDa Outer Membrane Proteins From S.typhi By X-ray Protein Crystallography, No. 1001/PSKBP/8630013).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBilgin, A. A., Palaska, E. & Sunal, R. (1992). Arzneim. Forschung. Drug Res. 42, 1271–1273.  CAS Google Scholar
First citationBilgin, A. A., Palaska, E. & Sunal, R. (1993). Arzneim. Forschung. Drug Res. 43, 1041–1044.  CAS Google Scholar
First citationBilgin, A. A., Palaska, E., Sunal, R. & Gumuxsel, B. (1994). Pharmazie, 49, 67–69.  CAS PubMed Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Nonthason, P., Suwunwong, T. & Fun, H.-K. (2012). Acta Cryst. E68, o830–o831.  CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGokhan, N., Yesilada, A., Ucar, G., Erol, K. & Bilgin, A. A. (2003). Arch. Pharm. Med. Chem. 336, 362–371.  Google Scholar
First citationMolyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211–219.  CAS Google Scholar
First citationNonthason, P., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3501–o3502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRuhoglu, O., Ozdemir, Z., Calis, U., Gumusel, B. & Bilgin, A. A. (2005). Arzneim. Forschung. Drug Res. 55, 431–436.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. H., Wu, S. K., Gao, Z. Q., Lee, C. S., Lee, S. T. & Kwong, H. L. (2000). Thin Solid Films, 371, 40–46.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o464-o465
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds