organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[(2-oxo-2H-chromen-7-yl)­­oxy]acetate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and cDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 20 February 2013; accepted 26 February 2013; online 6 March 2013)

In the title compound, C13H12O5, the mean plane of the 2H-chromene ring system (r.m.s deviation = 0.026 Å) forms a dihedral angle of 81.71 (6)° with the mean plane of ethyl 2-hy­droxy­acetate moiety (r.m.s deviation = 0.034 Å). In the crystal, C—H⋯O hydrogen bonds result in the formation of zigzag layers parallel to the bc plane.

Related literature

For general background to and the high emission quantum yield, photo stability and good solubility in common solvents of coumarin derivatives, see: Xie et al. (2012[Xie, L., Chen, Y., Wu, W., Guo, H., Zhao, J. & Yu, X. (2012). Dyes Pigm. 92, 1361-1369.]); Liu et al. (2012[Liu, X., Cole, J. M., Waddell, P. G., Lin, T. C., Radia, J. & Zeidler, A. (2012). J. Phys. Chem. A, 116, 727-737.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For related structures, see: Arshad et al. (2010a[Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o1632-o1633.],b[Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1446-o1447.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12O5

  • Mr = 248.23

  • Monoclinic, P 21 /c

  • a = 8.1435 (2) Å

  • b = 16.4887 (4) Å

  • c = 10.5506 (3) Å

  • β = 125.882 (2)°

  • V = 1147.84 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.31 × 0.24 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.988

  • 12656 measured reflections

  • 3344 independent reflections

  • 2308 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.114

  • S = 1.04

  • 3344 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.93 2.38 3.2913 (19) 166
C5—H5A⋯O5ii 0.93 2.55 3.373 (2) 147
C10—H10B⋯O2i 0.97 2.48 3.353 (2) 149
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarins are attractive fluorescent molecules due to their high emission quantum yield, photo stability and good solubility in common solvents. As a consequence of these features, coumarins are widely used as laser dyes (Xie et al., 2012; Liu et al., 2012). Herein, we report the crystal structure of ethyl 2-(2-oxo-2H-chromen-7-yloxy)acetate.

In the title molecule, Fig. 1, the mean plane of 2H-chromene ring system (O1/C1-C9, r.m.s deviation = 0.026 Å) forms a dihedral angle of 81.71 (6)° with the mean plane of ethyl 2-hydroxyacetate moiety (O1/N3/C9/C10, r.m.s deviation = 0.034 Å). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those observed in related structures (Arshad et al., 2010a, 2010b).

In the crystal structure (Fig. 2), molecules are linked via intermolecular C1–H1A···O2, C5–H5A···O5 and C10–H10B···O2 hydrogen bonds (Table 1) into zigzag layers parallel to the bc plane.

Related literature top

For general background to and the high emission quantum yield, photo stability and good solubility in common solvents of coumarin derivatives, see: Xie et al. (2012); Liu et al. (2012). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For related structures, see: Arshad et al. (2010a,b).

Experimental top

To a stirred solution of 7-hydroxycoumarin (500 mg, 3 mmol) in dry acetone, potassium carbonate (900 mg, 6 mmol) was added. After stirring for five minutes, ethyl chloroacetate (564 mg, 4.6 mmol) and a catalytic amount of TBAB were added to it. The whole reaction mixture was further stirred for 12 h at room temperature. After evaporation, water was added to it and the reaction mixture was extracted with chloroform thrice. The organic solvents were combined together and dried over anhydrous sodium sulphate and evaporated under reduced pressure. The crude product was purified through column chromatography (silica gel, 100-200 mesh size) using 15% ethyl acetate in petroleum ether as eluent to afford a pure colourless crystalline solid. Yield: 98%. M. p. 74-76 °C.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
Ethyl 2-[(2-oxo-2H-chromen-7-yl)oxy]acetate top
Crystal data top
C13H12O5F(000) = 520
Mr = 248.23Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3372 reflections
a = 8.1435 (2) Åθ = 2.5–29.4°
b = 16.4887 (4) ŵ = 0.11 mm1
c = 10.5506 (3) ÅT = 100 K
β = 125.882 (2)°Block, colourless
V = 1147.84 (5) Å30.31 × 0.24 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3344 independent reflections
Radiation source: fine-focus sealed tube2308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 911
Tmin = 0.966, Tmax = 0.988k = 2315
12656 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.040P)2 + 0.4605P]
where P = (Fo2 + 2Fc2)/3
3344 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H12O5V = 1147.84 (5) Å3
Mr = 248.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1435 (2) ŵ = 0.11 mm1
b = 16.4887 (4) ÅT = 100 K
c = 10.5506 (3) Å0.31 × 0.24 × 0.11 mm
β = 125.882 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3344 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2308 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.988Rint = 0.035
12656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
3344 reflectionsΔρmin = 0.24 e Å3
164 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39589 (16)0.81519 (6)0.17293 (12)0.0225 (2)
O20.48206 (18)0.71922 (7)0.07680 (13)0.0311 (3)
O30.23054 (17)1.01606 (6)0.40644 (13)0.0273 (3)
O40.06112 (16)0.85696 (7)0.53551 (13)0.0284 (3)
O50.09962 (17)0.91734 (7)0.30015 (13)0.0305 (3)
C10.3155 (2)0.91211 (9)0.29088 (17)0.0211 (3)
H1A0.33890.87320.36350.025*
C20.3385 (2)0.89394 (9)0.17359 (16)0.0193 (3)
C30.4238 (2)0.78861 (10)0.06252 (18)0.0246 (3)
C40.3788 (2)0.84577 (10)0.05922 (18)0.0268 (3)
H4A0.38900.82910.13860.032*
C50.3227 (2)0.92215 (10)0.05837 (18)0.0270 (3)
H5A0.29570.95790.13670.032*
C60.3039 (2)0.94961 (9)0.06176 (17)0.0221 (3)
C70.2475 (2)1.02864 (10)0.07243 (18)0.0254 (3)
H7A0.22481.06770.00010.031*
C80.2255 (2)1.04899 (9)0.18806 (18)0.0243 (3)
H8A0.19001.10160.19470.029*
C90.2567 (2)0.98993 (9)0.29621 (17)0.0225 (3)
C100.2416 (2)0.95782 (10)0.51046 (18)0.0253 (3)
H10A0.26690.98530.60170.030*
H10B0.35410.92130.54540.030*
C110.0474 (2)0.90906 (9)0.43309 (17)0.0232 (3)
C120.1214 (2)0.80927 (10)0.4789 (2)0.0301 (4)
H12A0.15820.77760.38820.036*
H12B0.23360.84490.44890.036*
C130.0765 (3)0.75434 (11)0.6084 (2)0.0381 (4)
H13A0.19450.72260.57430.057*
H13B0.04000.78620.69750.057*
H13C0.03370.71900.63650.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0289 (6)0.0198 (5)0.0218 (5)0.0002 (4)0.0166 (5)0.0001 (4)
O20.0396 (7)0.0241 (6)0.0342 (6)0.0001 (5)0.0243 (6)0.0039 (5)
O30.0382 (6)0.0211 (6)0.0293 (6)0.0009 (5)0.0236 (5)0.0021 (5)
O40.0249 (6)0.0342 (6)0.0231 (5)0.0025 (5)0.0125 (5)0.0046 (5)
O50.0309 (6)0.0332 (7)0.0220 (6)0.0021 (5)0.0125 (5)0.0023 (5)
C10.0242 (7)0.0208 (7)0.0189 (7)0.0017 (6)0.0129 (6)0.0021 (6)
C20.0181 (7)0.0183 (7)0.0185 (7)0.0015 (5)0.0091 (6)0.0009 (5)
C30.0237 (7)0.0282 (9)0.0227 (8)0.0039 (6)0.0140 (7)0.0054 (6)
C40.0269 (8)0.0334 (9)0.0218 (8)0.0023 (7)0.0152 (7)0.0011 (7)
C50.0268 (8)0.0342 (9)0.0203 (7)0.0013 (7)0.0139 (7)0.0047 (7)
C60.0191 (7)0.0263 (8)0.0183 (7)0.0021 (6)0.0095 (6)0.0021 (6)
C70.0237 (7)0.0246 (8)0.0255 (8)0.0001 (6)0.0130 (7)0.0067 (6)
C80.0242 (8)0.0187 (8)0.0285 (8)0.0008 (6)0.0146 (7)0.0006 (6)
C90.0232 (7)0.0237 (8)0.0216 (7)0.0036 (6)0.0136 (6)0.0027 (6)
C100.0289 (8)0.0270 (8)0.0219 (7)0.0006 (7)0.0160 (7)0.0016 (6)
C110.0280 (8)0.0224 (8)0.0213 (7)0.0038 (6)0.0156 (7)0.0000 (6)
C120.0256 (8)0.0314 (9)0.0295 (8)0.0033 (7)0.0142 (7)0.0025 (7)
C130.0324 (9)0.0384 (10)0.0474 (11)0.0026 (8)0.0257 (9)0.0110 (9)
Geometric parameters (Å, º) top
O1—C21.3814 (17)C5—H5A0.9300
O1—C31.3827 (17)C6—C71.408 (2)
O2—C31.2136 (19)C7—C81.375 (2)
O3—C91.3692 (17)C7—H7A0.9300
O3—C101.4211 (18)C8—C91.405 (2)
O4—C111.3328 (18)C8—H8A0.9300
O4—C121.4642 (19)C10—C111.516 (2)
O5—C111.2045 (18)C10—H10A0.9700
C1—C91.382 (2)C10—H10B0.9700
C1—C21.389 (2)C12—C131.495 (2)
C1—H1A0.9300C12—H12A0.9700
C2—C61.387 (2)C12—H12B0.9700
C3—C41.456 (2)C13—H13A0.9600
C4—C51.341 (2)C13—H13B0.9600
C4—H4A0.9300C13—H13C0.9600
C5—C61.436 (2)
C2—O1—C3121.70 (12)C9—C8—H8A120.1
C9—O3—C10118.20 (12)O3—C9—C1123.83 (13)
C11—O4—C12115.63 (12)O3—C9—C8115.29 (13)
C9—C1—C2117.86 (13)C1—C9—C8120.85 (14)
C9—C1—H1A121.1O3—C10—C11111.63 (12)
C2—C1—H1A121.1O3—C10—H10A109.3
O1—C2—C6121.23 (13)C11—C10—H10A109.3
O1—C2—C1115.48 (12)O3—C10—H10B109.3
C6—C2—C1123.28 (14)C11—C10—H10B109.3
O2—C3—O1116.08 (14)H10A—C10—H10B108.0
O2—C3—C4126.72 (14)O5—C11—O4124.81 (15)
O1—C3—C4117.20 (14)O5—C11—C10125.30 (14)
C5—C4—C3120.84 (14)O4—C11—C10109.86 (12)
C5—C4—H4A119.6O4—C12—C13107.85 (13)
C3—C4—H4A119.6O4—C12—H12A110.1
C4—C5—C6120.98 (14)C13—C12—H12A110.1
C4—C5—H5A119.5O4—C12—H12B110.1
C6—C5—H5A119.5C13—C12—H12B110.1
C2—C6—C7117.25 (14)H12A—C12—H12B108.5
C2—C6—C5117.92 (14)C12—C13—H13A109.5
C7—C6—C5124.81 (14)C12—C13—H13B109.5
C8—C7—C6121.00 (14)H13A—C13—H13B109.5
C8—C7—H7A119.5C12—C13—H13C109.5
C6—C7—H7A119.5H13A—C13—H13C109.5
C7—C8—C9119.71 (14)H13B—C13—H13C109.5
C7—C8—H8A120.1
C3—O1—C2—C60.8 (2)C2—C6—C7—C80.8 (2)
C3—O1—C2—C1179.82 (13)C5—C6—C7—C8177.46 (15)
C9—C1—C2—O1179.53 (12)C6—C7—C8—C90.9 (2)
C9—C1—C2—C60.6 (2)C10—O3—C9—C17.5 (2)
C2—O1—C3—O2177.16 (13)C10—O3—C9—C8174.34 (13)
C2—O1—C3—C43.51 (19)C2—C1—C9—O3179.32 (13)
O2—C3—C4—C5177.40 (16)C2—C1—C9—C81.3 (2)
O1—C3—C4—C53.4 (2)C7—C8—C9—O3179.80 (13)
C3—C4—C5—C60.5 (2)C7—C8—C9—C12.0 (2)
O1—C2—C6—C7179.50 (13)C9—O3—C10—C1178.32 (16)
C1—C2—C6—C71.6 (2)C12—O4—C11—O51.9 (2)
O1—C2—C6—C52.1 (2)C12—O4—C11—C10176.37 (12)
C1—C2—C6—C5176.81 (14)O3—C10—C11—O50.2 (2)
C4—C5—C6—C22.2 (2)O3—C10—C11—O4178.06 (12)
C4—C5—C6—C7179.51 (15)C11—O4—C12—C13179.49 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.932.383.2913 (19)166
C5—H5A···O5ii0.932.553.373 (2)147
C10—H10B···O2i0.972.483.353 (2)149
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC13H12O5
Mr248.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.1435 (2), 16.4887 (4), 10.5506 (3)
β (°) 125.882 (2)
V3)1147.84 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.31 × 0.24 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.966, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
12656, 3344, 2308
Rint0.035
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.114, 1.04
No. of reflections3344
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.93002.38003.2913 (19)166.00
C5—H5A···O5ii0.93002.55003.373 (2)147.00
C10—H10B···O2i0.97002.48003.353 (2)149.00
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the RUC grant (Structure Determination of 50 kDa Outer Membrane Proteins from S. typhi by X-ray Protein Crystallography, No. 1001/PSKBP/8630013) and APEX DE2012 grant (No.1002/PFIZIK/910323). The authors also thank the CSIR and DST, Government of India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o1632–o1633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1446–o1447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, X., Cole, J. M., Waddell, P. G., Lin, T. C., Radia, J. & Zeidler, A. (2012). J. Phys. Chem. A, 116, 727–737.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, L., Chen, Y., Wu, W., Guo, H., Zhao, J. & Yu, X. (2012). Dyes Pigm. 92, 1361–1369.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds