organic compounds
Phenazin-5-ium hydrogen sulfate monohydrate
aDepartment of Physics, Clark University, 950 Main St, Worcester, MA 01610, USA, and bDepartment of Chemistry, Clark University, 950 Main St, Worcester, MA 01610, USA
*Correspondence e-mail: mturnbull@clarku.edu
The 12H9N2+·HSO4−·H2O, comprises inversion-related pairs of phenazinium ions linked by C—H⋯N hydrogen bonds. The phenazinium N—H atoms are hydrogen bonded to the bisulfate anions. The bisulfate anions and water molecules are linked by O—H⋯O hydrogen-bonding interactions into a structural ladder motif parallel to the a axis.
of the title salt, CRelated literature
For related structures, see: Sieroń (2007) [phenazinium perchlorate]; Plasseraud et al. (2009) [phenazinium trifluoromethanesulfonate]; Braga et al. (2010) [phenazinium chloride and phenazine monohydrate]; G.-X. Zhang et al. (2012) [phenazinium bromide]; N.-Q. Zhang et al. (2012) [phenazinium methanesulfonate]. For copper(II) salts of phenazine, see: Schneider et al. (2007). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).
Supporting information
10.1107/S160053681300562X/sj5299sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681300562X/sj5299Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681300562X/sj5299Isup3.cml
Phenazine was dissolved methanol (90 ml) to which 40% aqueous sulfuric acid (2.5 ml) had been added. Small, prismatic, ruby red crystals formed over the course of two months of slow evaporation at room temperature.
All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C). Hydrogen atoms bonded to oxygen or nitrogen atoms were located in a difference map and their positions refined using fixed isotropic U values. There are two Level-B warnings in the checkCIF file for short intermolecular H···H distances. These result from the very strong hydrogen bond between the bisulfate ion and the solvent water molecule (dD···A = 2.5223 (16) Å.
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).Fig. 1. Thermal ellipsoid plot (50% probability) of compound 1. Hydrogen atoms are shown as spheres of arbitrary size and only hydrogen atoms whose positions were refined are labeled. | |
Fig. 2. Thermal ellipsoid plot of 1 (50% probability) showing two inversion related asymmetric units. Only those H-atoms involved in hydrogen bonding are labeled. Hydrogen atoms are shown as spheres of arbitrary size. | |
Fig. 3. Packing diagram showing the structure of the ladder motif formed by hydrogen bonding between the bisulfate ions and water molecules. Details of the hydrogen bonding may be found in Table 1. |
C12H9N2+·HSO4−·H2O | Z = 2 |
Mr = 296.30 | F(000) = 308 |
Triclinic, P1 | Dx = 1.573 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 5.6565 (4) Å | Cell parameters from 3015 reflections |
b = 10.4019 (6) Å | θ = 4.0–73.7° |
c = 10.9500 (5) Å | µ = 2.53 mm−1 |
α = 89.693 (4)° | T = 120 K |
β = 87.202 (5)° | Prism, red |
γ = 76.412 (5)° | 0.45 × 0.40 × 0.30 mm |
V = 625.49 (6) Å3 |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2341 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 2276 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.013 |
Detector resolution: 10.6501 pixels mm-1 | θmax = 70.1°, θmin = 4.0° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −12→12 |
Tmin = 0.786, Tmax = 1.000 | l = −13→10 |
3789 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0466P)2 + 0.3904P] where P = (Fo2 + 2Fc2)/3 |
2341 reflections | (Δ/σ)max < 0.001 |
193 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C12H9N2+·HSO4−·H2O | γ = 76.412 (5)° |
Mr = 296.30 | V = 625.49 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.6565 (4) Å | Cu Kα radiation |
b = 10.4019 (6) Å | µ = 2.53 mm−1 |
c = 10.9500 (5) Å | T = 120 K |
α = 89.693 (4)° | 0.45 × 0.40 × 0.30 mm |
β = 87.202 (5)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2341 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 2276 reflections with I > 2σ(I) |
Tmin = 0.786, Tmax = 1.000 | Rint = 0.013 |
3789 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.30 e Å−3 |
2341 reflections | Δρmin = −0.39 e Å−3 |
193 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | −0.2593 (2) | 0.82964 (13) | 0.67912 (12) | 0.0146 (3) | |
H1 | −0.121 (4) | 0.782 (2) | 0.6983 (18) | 0.018* | |
C2 | −0.3721 (3) | 0.78622 (15) | 0.58835 (14) | 0.0147 (3) | |
C3 | −0.2635 (3) | 0.66885 (16) | 0.52306 (15) | 0.0196 (3) | |
H3 | −0.1104 | 0.6194 | 0.5420 | 0.024* | |
C4 | −0.3861 (3) | 0.62898 (17) | 0.43183 (15) | 0.0223 (4) | |
H4 | −0.3161 | 0.5514 | 0.3890 | 0.027* | |
C5 | −0.6203 (3) | 0.70454 (17) | 0.40110 (15) | 0.0217 (4) | |
H5 | −0.6999 | 0.6760 | 0.3379 | 0.026* | |
C6 | −0.7286 (3) | 0.81763 (17) | 0.46292 (15) | 0.0192 (3) | |
H6 | −0.8810 | 0.8660 | 0.4416 | 0.023* | |
C7 | −0.6090 (3) | 0.86222 (15) | 0.56042 (14) | 0.0152 (3) | |
N8 | −0.7194 (2) | 0.97138 (13) | 0.62387 (12) | 0.0170 (3) | |
C9 | −0.6022 (3) | 1.00957 (15) | 0.71603 (14) | 0.0156 (3) | |
C10 | −0.7157 (3) | 1.12367 (16) | 0.78748 (15) | 0.0195 (3) | |
H10 | −0.8713 | 1.1714 | 0.7708 | 0.023* | |
C11 | −0.5958 (3) | 1.16250 (16) | 0.88007 (15) | 0.0211 (4) | |
H11 | −0.6713 | 1.2364 | 0.9269 | 0.025* | |
C12 | −0.3575 (3) | 1.09182 (16) | 0.90608 (15) | 0.0209 (4) | |
H12 | −0.2782 | 1.1214 | 0.9688 | 0.025* | |
C13 | −0.2415 (3) | 0.98128 (16) | 0.84123 (15) | 0.0186 (3) | |
H13 | −0.0857 | 0.9352 | 0.8597 | 0.022* | |
C14 | −0.3633 (3) | 0.93855 (15) | 0.74565 (14) | 0.0142 (3) | |
S1 | 0.28595 (6) | 0.63836 (3) | 0.83817 (3) | 0.01403 (14) | |
O1 | 0.1783 (2) | 0.67614 (11) | 0.72006 (10) | 0.0209 (3) | |
O2 | 0.3077 (2) | 0.48835 (11) | 0.85361 (11) | 0.0193 (3) | |
H2 | 0.155 (4) | 0.469 (2) | 0.8530 (18) | 0.023* | |
O3 | 0.1275 (2) | 0.70674 (11) | 0.93855 (11) | 0.0214 (3) | |
O4 | 0.5331 (2) | 0.65395 (12) | 0.84063 (12) | 0.0247 (3) | |
O1S | −0.0979 (2) | 0.42771 (13) | 0.84748 (11) | 0.0207 (3) | |
H1A | −0.221 (4) | 0.498 (2) | 0.8448 (19) | 0.025* | |
H1B | −0.120 (4) | 0.387 (2) | 0.912 (2) | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0135 (6) | 0.0134 (6) | 0.0161 (6) | −0.0012 (5) | −0.0020 (5) | 0.0022 (5) |
C2 | 0.0157 (7) | 0.0149 (7) | 0.0140 (7) | −0.0043 (6) | −0.0002 (6) | 0.0024 (6) |
C3 | 0.0195 (8) | 0.0184 (8) | 0.0189 (8) | −0.0002 (6) | −0.0016 (6) | −0.0003 (6) |
C4 | 0.0276 (9) | 0.0197 (8) | 0.0190 (8) | −0.0043 (7) | −0.0006 (7) | −0.0036 (6) |
C5 | 0.0248 (9) | 0.0272 (9) | 0.0158 (8) | −0.0108 (7) | −0.0044 (6) | −0.0006 (6) |
C6 | 0.0170 (8) | 0.0238 (8) | 0.0179 (8) | −0.0062 (6) | −0.0041 (6) | 0.0040 (6) |
C7 | 0.0144 (7) | 0.0163 (7) | 0.0154 (7) | −0.0045 (6) | −0.0005 (6) | 0.0033 (6) |
N8 | 0.0152 (7) | 0.0173 (7) | 0.0183 (7) | −0.0030 (5) | −0.0017 (5) | 0.0022 (5) |
C9 | 0.0152 (7) | 0.0147 (7) | 0.0169 (7) | −0.0035 (6) | −0.0008 (6) | 0.0028 (6) |
C10 | 0.0182 (8) | 0.0150 (8) | 0.0229 (8) | 0.0007 (6) | 0.0006 (6) | 0.0011 (6) |
C11 | 0.0264 (9) | 0.0137 (8) | 0.0215 (8) | −0.0019 (6) | 0.0011 (7) | −0.0012 (6) |
C12 | 0.0276 (9) | 0.0181 (8) | 0.0183 (8) | −0.0074 (7) | −0.0039 (7) | −0.0013 (6) |
C13 | 0.0184 (8) | 0.0181 (8) | 0.0196 (8) | −0.0040 (6) | −0.0048 (6) | 0.0016 (6) |
C14 | 0.0159 (7) | 0.0115 (7) | 0.0150 (7) | −0.0034 (6) | 0.0007 (6) | 0.0020 (6) |
S1 | 0.0126 (2) | 0.0130 (2) | 0.0160 (2) | −0.00190 (14) | −0.00241 (14) | 0.00158 (14) |
O1 | 0.0199 (6) | 0.0211 (6) | 0.0178 (6) | 0.0032 (5) | −0.0026 (5) | 0.0026 (4) |
O2 | 0.0169 (6) | 0.0131 (6) | 0.0272 (6) | −0.0019 (4) | −0.0025 (5) | 0.0015 (4) |
O3 | 0.0240 (6) | 0.0181 (6) | 0.0201 (6) | −0.0012 (5) | 0.0001 (5) | −0.0022 (4) |
O4 | 0.0172 (6) | 0.0248 (6) | 0.0338 (7) | −0.0080 (5) | −0.0048 (5) | 0.0066 (5) |
O1S | 0.0175 (6) | 0.0211 (6) | 0.0223 (6) | −0.0022 (5) | −0.0007 (5) | 0.0008 (5) |
N1—C2 | 1.342 (2) | C9—C14 | 1.431 (2) |
N1—C14 | 1.347 (2) | C10—C11 | 1.360 (2) |
N1—H1 | 0.86 (2) | C10—H10 | 0.9300 |
C2—C3 | 1.412 (2) | C11—C12 | 1.417 (2) |
C2—C7 | 1.433 (2) | C11—H11 | 0.9300 |
C3—C4 | 1.363 (2) | C12—C13 | 1.366 (2) |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
C4—C5 | 1.428 (2) | C13—C14 | 1.410 (2) |
C4—H4 | 0.9300 | C13—H13 | 0.9300 |
C5—C6 | 1.359 (2) | S1—O4 | 1.4465 (12) |
C5—H5 | 0.9300 | S1—O3 | 1.4595 (12) |
C6—C7 | 1.427 (2) | S1—O1 | 1.4685 (12) |
C6—H6 | 0.9300 | S1—O2 | 1.5452 (11) |
C7—N8 | 1.340 (2) | O2—H2 | 0.93 (2) |
N8—C9 | 1.345 (2) | O1S—H1A | 0.89 (2) |
C9—C10 | 1.427 (2) | O1S—H1B | 0.84 (2) |
C2—N1—C14 | 122.42 (14) | C10—C9—C14 | 118.10 (14) |
C2—N1—H1 | 117.8 (13) | C11—C10—C9 | 119.91 (15) |
C14—N1—H1 | 119.6 (13) | C11—C10—H10 | 120.0 |
N1—C2—C3 | 121.43 (14) | C9—C10—H10 | 120.0 |
N1—C2—C7 | 117.80 (14) | C10—C11—C12 | 120.87 (15) |
C3—C2—C7 | 120.77 (14) | C10—C11—H11 | 119.6 |
C4—C3—C2 | 119.09 (15) | C12—C11—H11 | 119.6 |
C4—C3—H3 | 120.5 | C13—C12—C11 | 121.57 (15) |
C2—C3—H3 | 120.5 | C13—C12—H12 | 119.2 |
C3—C4—C5 | 121.01 (15) | C11—C12—H12 | 119.2 |
C3—C4—H4 | 119.5 | C12—C13—C14 | 118.48 (15) |
C5—C4—H4 | 119.5 | C12—C13—H13 | 120.8 |
C6—C5—C4 | 120.90 (15) | C14—C13—H13 | 120.8 |
C6—C5—H5 | 119.5 | N1—C14—C13 | 121.24 (14) |
C4—C5—H5 | 119.5 | N1—C14—C9 | 117.71 (14) |
C5—C6—C7 | 120.12 (15) | C13—C14—C9 | 121.05 (14) |
C5—C6—H6 | 119.9 | O4—S1—O3 | 113.27 (7) |
C7—C6—H6 | 119.9 | O4—S1—O1 | 112.32 (7) |
N8—C7—C6 | 120.05 (14) | O3—S1—O1 | 110.75 (7) |
N8—C7—C2 | 121.85 (14) | O4—S1—O2 | 104.85 (7) |
C6—C7—C2 | 118.09 (14) | O3—S1—O2 | 107.93 (7) |
C7—N8—C9 | 118.37 (14) | O1—S1—O2 | 107.28 (7) |
N8—C9—C10 | 120.09 (14) | S1—O2—H2 | 111.1 (13) |
N8—C9—C14 | 121.81 (14) | H1A—O1S—H1B | 107 (2) |
C14—N1—C2—C3 | −177.42 (14) | C7—N8—C9—C10 | −178.66 (14) |
C14—N1—C2—C7 | 1.9 (2) | C7—N8—C9—C14 | 1.3 (2) |
N1—C2—C3—C4 | 179.87 (15) | N8—C9—C10—C11 | −179.55 (15) |
C7—C2—C3—C4 | 0.6 (2) | C14—C9—C10—C11 | 0.5 (2) |
C2—C3—C4—C5 | 0.5 (3) | C9—C10—C11—C12 | 0.7 (2) |
C3—C4—C5—C6 | −0.7 (3) | C10—C11—C12—C13 | −1.3 (3) |
C4—C5—C6—C7 | −0.3 (3) | C11—C12—C13—C14 | 0.6 (2) |
C5—C6—C7—N8 | −177.83 (15) | C2—N1—C14—C13 | 179.42 (14) |
C5—C6—C7—C2 | 1.4 (2) | C2—N1—C14—C9 | −0.6 (2) |
N1—C2—C7—N8 | −1.6 (2) | C12—C13—C14—N1 | −179.43 (15) |
C3—C2—C7—N8 | 177.64 (15) | C12—C13—C14—C9 | 0.6 (2) |
N1—C2—C7—C6 | 179.15 (13) | N8—C9—C14—N1 | −1.1 (2) |
C3—C2—C7—C6 | −1.6 (2) | C10—C9—C14—N1 | 178.86 (14) |
C6—C7—N8—C9 | 179.27 (14) | N8—C9—C14—C13 | 178.92 (14) |
C2—C7—N8—C9 | 0.1 (2) | C10—C9—C14—C13 | −1.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 (2) | 1.81 (2) | 2.6685 (18) | 173.3 (19) |
O2—H2···O1S | 0.93 (2) | 1.59 (2) | 2.5223 (16) | 177 (2) |
O1S—H1A···O4i | 0.89 (2) | 1.87 (2) | 2.7577 (18) | 176 (2) |
O1S—H1B···O3ii | 0.84 (2) | 1.90 (2) | 2.7405 (18) | 173 (2) |
C6—H6···N8iii | 0.93 | 2.61 | 3.538 (2) | 172 |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z+2; (iii) −x−2, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C12H9N2+·HSO4−·H2O |
Mr | 296.30 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 5.6565 (4), 10.4019 (6), 10.9500 (5) |
α, β, γ (°) | 89.693 (4), 87.202 (5), 76.412 (5) |
V (Å3) | 625.49 (6) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 2.53 |
Crystal size (mm) | 0.45 × 0.40 × 0.30 |
Data collection | |
Diffractometer | Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.786, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3789, 2341, 2276 |
Rint | 0.013 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.088, 1.09 |
No. of reflections | 2341 |
No. of parameters | 193 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.39 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 (2) | 1.81 (2) | 2.6685 (18) | 173.3 (19) |
O2—H2···O1S | 0.93 (2) | 1.59 (2) | 2.5223 (16) | 177 (2) |
O1S—H1A···O4i | 0.89 (2) | 1.87 (2) | 2.7577 (18) | 176 (2) |
O1S—H1B···O3ii | 0.84 (2) | 1.90 (2) | 2.7405 (18) | 173 (2) |
C6—H6···N8iii | 0.93 | 2.61 | 3.538 (2) | 172.2 |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z+2; (iii) −x−2, −y+2, −z+1. |
Acknowledgements
We are grateful to Dr Jan Wikaira (University of Canterbury, New Zealand) for assistance with the data collection.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Braga, D., Grepioni, F., Maini, L., Mazzeo, P. P. & Rubini, K. (2010). Thermochim. Acta, 507, 1–8. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Plasseraud, L., Cattey, H., Richard, P. & Ballivet-Tkatchenko, D. (2009). J. Organomet. Chem. 694, 2386–2394. Web of Science CSD CrossRef CAS Google Scholar
Schneider, R. T., Landee, C. P., Turnbull, M. M., Awwadi, F. F. & Twamley, B. (2007). Polyhedron, 26, 1849–58. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sieroń, L. (2007). Acta Cryst. E63, o2508. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, N.-Q., Li, P., Dong, J. & Chen, H.-Y. (2012). Acta Cryst. E68, o2101. CSD CrossRef IUCr Journals Google Scholar
Zhang, G.-X., Li, P., Dong, J. & Chen, H.-Y. (2012). Acta Cryst. E68, o2204. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phenazinium bisulfate monohydrate (Figure 1) crystallized originally as a biproduct of our work with copper (II) salts of phenazine (Schneider, et al., 2007). The phenazinium ions crystallize as weakly hydrogen bonded centrosymmetric dimers (see Figure 2), forming R22(8) rings (Bernstein et al., 1995), similar to the structures of the chloride [Braga, et al., 2010] and perchlorate salts [Sierón, 2007] and to the phenazinium trifluoromethanesulfonate:phenazine co-crystal [Plasseraud, et al., 2009]. The phenazinium proton is involved in a strong hydrogen bond to one of the bisulfate oxygen atoms [dD···A = 2.6685 (18) Å] (see Figure 1). The phenazinium rings are stacked parallel to the a-axis with a distance of 3.9156 (9) Å between the ring centroids of the diazine rings and a slip angle of 30.1°.
Perhaps the most interesting aspect of the structure results from the hydrogen bonding between the bisulfate anions and the solvent water molecule. This results in the formation of a ladder motif that runs parallel to the a-axis (see Figure 3). Each bisulfate ion serves as a hydrogen bond donor to one water molecule and a hydrogen bond acceptor from a second water molecule forming the rails of the ladder, of form C22(6). The rungs are formed via a second water-donor/bisulfate-acceptor pair, which generates rings within the ladder structure (two rungs and two rail sections in each ring), R44(12). There are two chemically different rings formed in this case since one involves rail sections with water molecules serving as the hydrogen bond donor and the other involves the bisulfate ion serving as the hydrogen bond donor.