organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenazin-5-ium hydrogen sulfate monohydrate

aDepartment of Physics, Clark University, 950 Main St, Worcester, MA 01610, USA, and bDepartment of Chemistry, Clark University, 950 Main St, Worcester, MA 01610, USA
*Correspondence e-mail: mturnbull@clarku.edu

(Received 13 February 2013; accepted 26 February 2013; online 2 March 2013)

The crystal structure of the title salt, C12H9N2+·HSO4·H2O, comprises inversion-related pairs of phenazinium ions linked by C—H⋯N hydrogen bonds. The phenazinium N—H atoms are hydrogen bonded to the bis­ulfate anions. The bis­ulfate anions and water mol­ecules are linked by O—H⋯O hydrogen-bonding inter­actions into a structural ladder motif parallel to the a axis.

Related literature

For related structures, see: Sieroń (2007[Sieroń, L. (2007). Acta Cryst. E63, o2508.]) [phenazinium perchlorate]; Plasseraud et al. (2009[Plasseraud, L., Cattey, H., Richard, P. & Ballivet-Tkatchenko, D. (2009). J. Organomet. Chem. 694, 2386-2394.]) [phenazinium trifluoro­methane­sulfonate]; Braga et al. (2010[Braga, D., Grepioni, F., Maini, L., Mazzeo, P. P. & Rubini, K. (2010). Thermochim. Acta, 507, 1-8.]) [phenazinium chloride and phenazine monohydrate]; G.-X. Zhang et al. (2012[Zhang, N.-Q., Li, P., Dong, J. & Chen, H.-Y. (2012). Acta Cryst. E68, o2101.]) [phenazinium bromide]; N.-Q. Zhang et al. (2012[Zhang, G.-X., Li, P., Dong, J. & Chen, H.-Y. (2012). Acta Cryst. E68, o2204.]) [phenazinium methane­sulfonate]. For copper(II) salts of phenazine, see: Schneider et al. (2007[Schneider, R. T., Landee, C. P., Turnbull, M. M., Awwadi, F. F. & Twamley, B. (2007). Polyhedron, 26, 1849-58.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N2+·HSO4·H2O

  • Mr = 296.30

  • Triclinic, [P \overline 1]

  • a = 5.6565 (4) Å

  • b = 10.4019 (6) Å

  • c = 10.9500 (5) Å

  • α = 89.693 (4)°

  • β = 87.202 (5)°

  • γ = 76.412 (5)°

  • V = 625.49 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.53 mm−1

  • T = 120 K

  • 0.45 × 0.40 × 0.30 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.786, Tmax = 1.000

  • 3789 measured reflections

  • 2341 independent reflections

  • 2276 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.09

  • 2341 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 (2) 1.81 (2) 2.6685 (18) 173.3 (19)
O2—H2⋯O1S 0.93 (2) 1.59 (2) 2.5223 (16) 177 (2)
O1S—H1A⋯O4i 0.89 (2) 1.87 (2) 2.7577 (18) 176 (2)
O1S—H1B⋯O3ii 0.84 (2) 1.90 (2) 2.7405 (18) 173 (2)
C6—H6⋯N8iii 0.93 2.61 3.538 (2) 172
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+2; (iii) -x-2, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Phenazinium bisulfate monohydrate (Figure 1) crystallized originally as a biproduct of our work with copper (II) salts of phenazine (Schneider, et al., 2007). The phenazinium ions crystallize as weakly hydrogen bonded centrosymmetric dimers (see Figure 2), forming R22(8) rings (Bernstein et al., 1995), similar to the structures of the chloride [Braga, et al., 2010] and perchlorate salts [Sierón, 2007] and to the phenazinium trifluoromethanesulfonate:phenazine co-crystal [Plasseraud, et al., 2009]. The phenazinium proton is involved in a strong hydrogen bond to one of the bisulfate oxygen atoms [dD···A = 2.6685 (18) Å] (see Figure 1). The phenazinium rings are stacked parallel to the a-axis with a distance of 3.9156 (9) Å between the ring centroids of the diazine rings and a slip angle of 30.1°.

Perhaps the most interesting aspect of the structure results from the hydrogen bonding between the bisulfate anions and the solvent water molecule. This results in the formation of a ladder motif that runs parallel to the a-axis (see Figure 3). Each bisulfate ion serves as a hydrogen bond donor to one water molecule and a hydrogen bond acceptor from a second water molecule forming the rails of the ladder, of form C22(6). The rungs are formed via a second water-donor/bisulfate-acceptor pair, which generates rings within the ladder structure (two rungs and two rail sections in each ring), R44(12). There are two chemically different rings formed in this case since one involves rail sections with water molecules serving as the hydrogen bond donor and the other involves the bisulfate ion serving as the hydrogen bond donor.

Related literature top

For related structures, see: Sieroń (2007) [phenazinium perchlorate]; Plasseraud et al. (2009) [phenazinium trifluoromethanesulfonate]; Braga et al. (2010)[phenazinium chloride and phenazine monohydrate]; G.-X. Zhang et al. (2012)[phenazinium bromide]; N.-Q. Zhang et al. (2012) [phenazinium methanesulfonate]. For copper(II) salts of phenazine, see: Schneider et al. (2007). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

Phenazine was dissolved methanol (90 ml) to which 40% aqueous sulfuric acid (2.5 ml) had been added. Small, prismatic, ruby red crystals formed over the course of two months of slow evaporation at room temperature.

Refinement top

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C). Hydrogen atoms bonded to oxygen or nitrogen atoms were located in a difference map and their positions refined using fixed isotropic U values. There are two Level-B warnings in the checkCIF file for short intermolecular H···H distances. These result from the very strong hydrogen bond between the bisulfate ion and the solvent water molecule (dD···A = 2.5223 (16) Å.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (50% probability) of compound 1. Hydrogen atoms are shown as spheres of arbitrary size and only hydrogen atoms whose positions were refined are labeled.
[Figure 2] Fig. 2. Thermal ellipsoid plot of 1 (50% probability) showing two inversion related asymmetric units. Only those H-atoms involved in hydrogen bonding are labeled. Hydrogen atoms are shown as spheres of arbitrary size.
[Figure 3] Fig. 3. Packing diagram showing the structure of the ladder motif formed by hydrogen bonding between the bisulfate ions and water molecules. Details of the hydrogen bonding may be found in Table 1.
Phenazin-5-ium hydrogen sulfate monohydrate top
Crystal data top
C12H9N2+·HSO4·H2OZ = 2
Mr = 296.30F(000) = 308
Triclinic, P1Dx = 1.573 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 5.6565 (4) ÅCell parameters from 3015 reflections
b = 10.4019 (6) Åθ = 4.0–73.7°
c = 10.9500 (5) ŵ = 2.53 mm1
α = 89.693 (4)°T = 120 K
β = 87.202 (5)°Prism, red
γ = 76.412 (5)°0.45 × 0.40 × 0.30 mm
V = 625.49 (6) Å3
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2341 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2276 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.013
Detector resolution: 10.6501 pixels mm-1θmax = 70.1°, θmin = 4.0°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.786, Tmax = 1.000l = 1310
3789 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.3904P]
where P = (Fo2 + 2Fc2)/3
2341 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C12H9N2+·HSO4·H2Oγ = 76.412 (5)°
Mr = 296.30V = 625.49 (6) Å3
Triclinic, P1Z = 2
a = 5.6565 (4) ÅCu Kα radiation
b = 10.4019 (6) ŵ = 2.53 mm1
c = 10.9500 (5) ÅT = 120 K
α = 89.693 (4)°0.45 × 0.40 × 0.30 mm
β = 87.202 (5)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2341 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2276 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 1.000Rint = 0.013
3789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.30 e Å3
2341 reflectionsΔρmin = 0.39 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2593 (2)0.82964 (13)0.67912 (12)0.0146 (3)
H10.121 (4)0.782 (2)0.6983 (18)0.018*
C20.3721 (3)0.78622 (15)0.58835 (14)0.0147 (3)
C30.2635 (3)0.66885 (16)0.52306 (15)0.0196 (3)
H30.11040.61940.54200.024*
C40.3861 (3)0.62898 (17)0.43183 (15)0.0223 (4)
H40.31610.55140.38900.027*
C50.6203 (3)0.70454 (17)0.40110 (15)0.0217 (4)
H50.69990.67600.33790.026*
C60.7286 (3)0.81763 (17)0.46292 (15)0.0192 (3)
H60.88100.86600.44160.023*
C70.6090 (3)0.86222 (15)0.56042 (14)0.0152 (3)
N80.7194 (2)0.97138 (13)0.62387 (12)0.0170 (3)
C90.6022 (3)1.00957 (15)0.71603 (14)0.0156 (3)
C100.7157 (3)1.12367 (16)0.78748 (15)0.0195 (3)
H100.87131.17140.77080.023*
C110.5958 (3)1.16250 (16)0.88007 (15)0.0211 (4)
H110.67131.23640.92690.025*
C120.3575 (3)1.09182 (16)0.90608 (15)0.0209 (4)
H120.27821.12140.96880.025*
C130.2415 (3)0.98128 (16)0.84123 (15)0.0186 (3)
H130.08570.93520.85970.022*
C140.3633 (3)0.93855 (15)0.74565 (14)0.0142 (3)
S10.28595 (6)0.63836 (3)0.83817 (3)0.01403 (14)
O10.1783 (2)0.67614 (11)0.72006 (10)0.0209 (3)
O20.3077 (2)0.48835 (11)0.85361 (11)0.0193 (3)
H20.155 (4)0.469 (2)0.8530 (18)0.023*
O30.1275 (2)0.70674 (11)0.93855 (11)0.0214 (3)
O40.5331 (2)0.65395 (12)0.84063 (12)0.0247 (3)
O1S0.0979 (2)0.42771 (13)0.84748 (11)0.0207 (3)
H1A0.221 (4)0.498 (2)0.8448 (19)0.025*
H1B0.120 (4)0.387 (2)0.912 (2)0.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0135 (6)0.0134 (6)0.0161 (6)0.0012 (5)0.0020 (5)0.0022 (5)
C20.0157 (7)0.0149 (7)0.0140 (7)0.0043 (6)0.0002 (6)0.0024 (6)
C30.0195 (8)0.0184 (8)0.0189 (8)0.0002 (6)0.0016 (6)0.0003 (6)
C40.0276 (9)0.0197 (8)0.0190 (8)0.0043 (7)0.0006 (7)0.0036 (6)
C50.0248 (9)0.0272 (9)0.0158 (8)0.0108 (7)0.0044 (6)0.0006 (6)
C60.0170 (8)0.0238 (8)0.0179 (8)0.0062 (6)0.0041 (6)0.0040 (6)
C70.0144 (7)0.0163 (7)0.0154 (7)0.0045 (6)0.0005 (6)0.0033 (6)
N80.0152 (7)0.0173 (7)0.0183 (7)0.0030 (5)0.0017 (5)0.0022 (5)
C90.0152 (7)0.0147 (7)0.0169 (7)0.0035 (6)0.0008 (6)0.0028 (6)
C100.0182 (8)0.0150 (8)0.0229 (8)0.0007 (6)0.0006 (6)0.0011 (6)
C110.0264 (9)0.0137 (8)0.0215 (8)0.0019 (6)0.0011 (7)0.0012 (6)
C120.0276 (9)0.0181 (8)0.0183 (8)0.0074 (7)0.0039 (7)0.0013 (6)
C130.0184 (8)0.0181 (8)0.0196 (8)0.0040 (6)0.0048 (6)0.0016 (6)
C140.0159 (7)0.0115 (7)0.0150 (7)0.0034 (6)0.0007 (6)0.0020 (6)
S10.0126 (2)0.0130 (2)0.0160 (2)0.00190 (14)0.00241 (14)0.00158 (14)
O10.0199 (6)0.0211 (6)0.0178 (6)0.0032 (5)0.0026 (5)0.0026 (4)
O20.0169 (6)0.0131 (6)0.0272 (6)0.0019 (4)0.0025 (5)0.0015 (4)
O30.0240 (6)0.0181 (6)0.0201 (6)0.0012 (5)0.0001 (5)0.0022 (4)
O40.0172 (6)0.0248 (6)0.0338 (7)0.0080 (5)0.0048 (5)0.0066 (5)
O1S0.0175 (6)0.0211 (6)0.0223 (6)0.0022 (5)0.0007 (5)0.0008 (5)
Geometric parameters (Å, º) top
N1—C21.342 (2)C9—C141.431 (2)
N1—C141.347 (2)C10—C111.360 (2)
N1—H10.86 (2)C10—H100.9300
C2—C31.412 (2)C11—C121.417 (2)
C2—C71.433 (2)C11—H110.9300
C3—C41.363 (2)C12—C131.366 (2)
C3—H30.9300C12—H120.9300
C4—C51.428 (2)C13—C141.410 (2)
C4—H40.9300C13—H130.9300
C5—C61.359 (2)S1—O41.4465 (12)
C5—H50.9300S1—O31.4595 (12)
C6—C71.427 (2)S1—O11.4685 (12)
C6—H60.9300S1—O21.5452 (11)
C7—N81.340 (2)O2—H20.93 (2)
N8—C91.345 (2)O1S—H1A0.89 (2)
C9—C101.427 (2)O1S—H1B0.84 (2)
C2—N1—C14122.42 (14)C10—C9—C14118.10 (14)
C2—N1—H1117.8 (13)C11—C10—C9119.91 (15)
C14—N1—H1119.6 (13)C11—C10—H10120.0
N1—C2—C3121.43 (14)C9—C10—H10120.0
N1—C2—C7117.80 (14)C10—C11—C12120.87 (15)
C3—C2—C7120.77 (14)C10—C11—H11119.6
C4—C3—C2119.09 (15)C12—C11—H11119.6
C4—C3—H3120.5C13—C12—C11121.57 (15)
C2—C3—H3120.5C13—C12—H12119.2
C3—C4—C5121.01 (15)C11—C12—H12119.2
C3—C4—H4119.5C12—C13—C14118.48 (15)
C5—C4—H4119.5C12—C13—H13120.8
C6—C5—C4120.90 (15)C14—C13—H13120.8
C6—C5—H5119.5N1—C14—C13121.24 (14)
C4—C5—H5119.5N1—C14—C9117.71 (14)
C5—C6—C7120.12 (15)C13—C14—C9121.05 (14)
C5—C6—H6119.9O4—S1—O3113.27 (7)
C7—C6—H6119.9O4—S1—O1112.32 (7)
N8—C7—C6120.05 (14)O3—S1—O1110.75 (7)
N8—C7—C2121.85 (14)O4—S1—O2104.85 (7)
C6—C7—C2118.09 (14)O3—S1—O2107.93 (7)
C7—N8—C9118.37 (14)O1—S1—O2107.28 (7)
N8—C9—C10120.09 (14)S1—O2—H2111.1 (13)
N8—C9—C14121.81 (14)H1A—O1S—H1B107 (2)
C14—N1—C2—C3177.42 (14)C7—N8—C9—C10178.66 (14)
C14—N1—C2—C71.9 (2)C7—N8—C9—C141.3 (2)
N1—C2—C3—C4179.87 (15)N8—C9—C10—C11179.55 (15)
C7—C2—C3—C40.6 (2)C14—C9—C10—C110.5 (2)
C2—C3—C4—C50.5 (3)C9—C10—C11—C120.7 (2)
C3—C4—C5—C60.7 (3)C10—C11—C12—C131.3 (3)
C4—C5—C6—C70.3 (3)C11—C12—C13—C140.6 (2)
C5—C6—C7—N8177.83 (15)C2—N1—C14—C13179.42 (14)
C5—C6—C7—C21.4 (2)C2—N1—C14—C90.6 (2)
N1—C2—C7—N81.6 (2)C12—C13—C14—N1179.43 (15)
C3—C2—C7—N8177.64 (15)C12—C13—C14—C90.6 (2)
N1—C2—C7—C6179.15 (13)N8—C9—C14—N11.1 (2)
C3—C2—C7—C61.6 (2)C10—C9—C14—N1178.86 (14)
C6—C7—N8—C9179.27 (14)N8—C9—C14—C13178.92 (14)
C2—C7—N8—C90.1 (2)C10—C9—C14—C131.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.86 (2)1.81 (2)2.6685 (18)173.3 (19)
O2—H2···O1S0.93 (2)1.59 (2)2.5223 (16)177 (2)
O1S—H1A···O4i0.89 (2)1.87 (2)2.7577 (18)176 (2)
O1S—H1B···O3ii0.84 (2)1.90 (2)2.7405 (18)173 (2)
C6—H6···N8iii0.932.613.538 (2)172
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+2; (iii) x2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC12H9N2+·HSO4·H2O
Mr296.30
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)5.6565 (4), 10.4019 (6), 10.9500 (5)
α, β, γ (°)89.693 (4), 87.202 (5), 76.412 (5)
V3)625.49 (6)
Z2
Radiation typeCu Kα
µ (mm1)2.53
Crystal size (mm)0.45 × 0.40 × 0.30
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.786, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3789, 2341, 2276
Rint0.013
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.09
No. of reflections2341
No. of parameters193
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.39

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.86 (2)1.81 (2)2.6685 (18)173.3 (19)
O2—H2···O1S0.93 (2)1.59 (2)2.5223 (16)177 (2)
O1S—H1A···O4i0.89 (2)1.87 (2)2.7577 (18)176 (2)
O1S—H1B···O3ii0.84 (2)1.90 (2)2.7405 (18)173 (2)
C6—H6···N8iii0.932.613.538 (2)172.2
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+2; (iii) x2, y+2, z+1.
 

Acknowledgements

We are grateful to Dr Jan Wikaira (University of Canterbury, New Zealand) for assistance with the data collection.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBraga, D., Grepioni, F., Maini, L., Mazzeo, P. P. & Rubini, K. (2010). Thermochim. Acta, 507, 1–8.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPlasseraud, L., Cattey, H., Richard, P. & Ballivet-Tkatchenko, D. (2009). J. Organomet. Chem. 694, 2386–2394.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchneider, R. T., Landee, C. P., Turnbull, M. M., Awwadi, F. F. & Twamley, B. (2007). Polyhedron, 26, 1849–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L. (2007). Acta Cryst. E63, o2508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, N.-Q., Li, P., Dong, J. & Chen, H.-Y. (2012). Acta Cryst. E68, o2101.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, G.-X., Li, P., Dong, J. & Chen, H.-Y. (2012). Acta Cryst. E68, o2204.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds