organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o604-o605

(Z)-1-(2-Hy­dr­oxy­eth­yl)-4-(2-meth­­oxy­benzyl­­idene)-2-methyl-1H-imidazol-5(4H)-one

aDepartment of Chemistry, Southern University, Baton Rouge, LA 70813, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 8 March 2013; accepted 20 March 2013; online 28 March 2013)

In the title compound, C14H16N2O3, an analog of the chromophore in green fluorescent protein, the meth­oxy­phenyl substituent and the imidazole N adopt a Z conformation with respect to the C=C bond. Aside from the hy­droxy­ethyl group, the mol­ecule is approximately planar, with the five- and six-membered ring planes forming a dihedral angle of 9.3 (1)°. An intra­molecular C—H⋯N contact occurs. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules, forming chains along the b-axis direction. C—H⋯O hydrogen bonds are also observed.

Related literature

For background to green fluorescent protein, see: Shimomura et al. (1962[Shimomura, O., Johnson, F. H. & Saiga, Y. (1962). J. Cell. Comp. Physiol. 59, 223-239.]); Shimomura (2009[Shimomura, O. (2009). Angew. Chem. Int. Ed. Engl. 48, 5590-5602.]); Remington (2006[Remington, S. J. (2006). Curr. Opin. Struct. Biol. 16, 714-721.]); Tsien (1998[Tsien, R. Y. (1998). Annu. Rev. Biochem. 67, 509-544.]); Chalfie et al. (1994[Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. (1994). Science, 263, 802-805.]); Prasher et al. (1992[Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. (1992). Gene, 111, 229-233.]). For the synthesis, see: Yampolsky et al. (2005[Yampolsky, I. V., Remington, S. J., Martynov, V. I., Potapov, V. K., Lukyanov, S. & Lukyanov, K. A. (2005). Biochemistry, 44, 5788-5793.]); Bailly et al.(2004[Bailly, F., Maurin, C., Teissier, E., Vezin, H. & Cotelle, P. (2004). Bioorg. Med. Chem. 12, 5611-5618.]); Wenge & Wagenknecht (2011[Wenge, U. & Wagenknecht, H.-A. (2011). Synthesis, 3, 0502-0508.]). For related structures, see: Naumov et al. (2010[Naumov, P., Kowalik, J., Solntsev, K. M., Baldridge, A., Moon, J.-S., Kranz, C. & Tolbert, L. M. (2010). J. Am. Chem. Soc. 132, 5845-5857.]); Bhattacharjya et al. (2005[Bhattacharjya, G., Govardhan, S. & Ramanathan, G. (2005). J. Mol. Struct. 752, 98-103.]); Oshimi et al. (2002[Oshimi, K., Kubo, K., Kawasaki, A., Maekawa, K., Igarashi, T. & Sakurai, T. (2002). Tetrahedron Lett. 43, 3291-3294.]); Dong et al. (2009[Dong, J., Solntsev, K. M. & Tolbert, L. M. (2009). J. Am. Chem. Soc. 131, 662-670.]). For Bijvoet pair analysis, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O3

  • Mr = 260.29

  • Monoclinic, P 21

  • a = 9.2188 (5) Å

  • b = 7.2767 (4) Å

  • c = 9.5620 (5) Å

  • β = 93.625 (6)°

  • V = 640.16 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 90 K

  • 0.35 × 0.25 × 0.17 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.984

  • 9385 measured reflections

  • 4943 independent reflections

  • 4720 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.06

  • 4943 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1605 Friedel pairs

  • Flack parameter: −0.9 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N2i 0.879 (16) 2.001 (16) 2.8771 (9) 174.2 (15)
C4—H4B⋯O1ii 0.99 2.54 3.2993 (10) 133
C9—H9⋯N2 0.95 2.52 3.1729 (10) 126
C14—H14A⋯O1iii 0.98 2.52 3.3475 (12) 141
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound is an analog of the chromophore in green fluorescent protein (GFP). GFP was first identified and separated from the jellyfish Aequorea victoria in the 1960s. Since then, GFP has found broad use in many areas of science and medicine, especially as fluorescent labels for cell biology and biotechnology. (Shimomura et al., 1962; Shimomura, 2009; Remington, 2006; Tsien, 1998; Chalfie et al., 1994) Though the GFP is a protein composed of more than two hundred amino acid residues, its chromophore (p-hydroxybenzylidene-imidazol-5-one) is relatively small. In nature, the GFP chromophore is formed via the sequential cyclization-oxidation-dehydration of the Ser65—Tyr66—Gly67 tripeptide motif. (Prasher et al., 1992)

Preparation of the title compound starts with the Erlenmeyer azlactone synthesis, which involves the condensation of hippuric acid derivatives with aromatic aldehydes (Yampolsky et al., 2005; Bailly et al., 2004), Fig. 1. Further reaction of the resulting azlactone with ethanolamine leads to the formation of the title compound. We report the crystal structure of the compound here, which shows the compound has a Z-configuration. The compound is used as a model compound in our study of E, Z-isomerization of chromophores in fluorescent proteins.

The structure of the molecule is shown in Fig. 2. The Z configuration is evidenced by the torsion angle N2–C3–C7–C8 3.33 (14)° about the central double bond. The hydroxyethyl group is twisted away from coplanarity with the rest of the molecule (C1–N1–C4–C5 torsion angle -74.77 (9)°), but otherwise, the molecule is relatively planar, with the phenyl and imidazole rings forming a dihedral angle of 9.3 (1)°.

The OH group O3 forms a near-linear intermolecular hydrogen bond to the imidazole nitrogen atom N2 (at -x, y-1/2, 1-z), forming chains in the b direction, propagated by the screw axis. Several intermolecular C–H···O hydrogen bonds and an intramolecular C–H···N contact also exist, as given in Table 1.

Related literature top

For background to green fluorescent protein, see: Shimomura et al. (1962); Shimomura (2009); Remington (2006); Tsien (1998); Chalfie et al. (1994); Prasher et al. (1992). For the synthesis, see: Yampolsky et al. (2005); Bailly et al.(2004); Wenge & Wagenknecht (2011). For related structures, see: Naumov et al. (2010); Bhattacharjya et al. (2005); Oshimi et al. (2002); Dong et al. (2009). For Bijvoet pair analysis, see: Hooft et al. (2008).

Experimental top

A mixture of o-anisaldehyde (6.95 g, 50.0 mmol), N-acetylglycine (5.97 g, 50.5 mmol) and anhydrous sodium acetate (4.35 g, 52.5 mmol) were dissolved in 20 ml acetic anhydride. The mixture was stirred at 100° C for 6 h. Upon completion, the reaction mixture was cooled to room temperature. After the addition of 10 ml ice-cold water, the resulting precipitate was collected by gravity filtration. The filtrand was then washed three times with ice-cold water and dried in vacuum, yielding (1) as a yellow powder (8.41 g, 64.7%). Title compound (2) was synthesized by reacting (1) with ethanolamine in 2-propanol. To a suspension of compound (1) (3.30 g, 15.2 mmol) in dried 2-propanol (30 ml), ethanolamine (1.14 ml, 18.8 mmol) was added gradually. The reaction mixture was refluxed for 8 h. The solvent was then removed under vacuo. The crude product was recrystallized from a n-butanol/diethyl ether (1/1, v/v) mixture. Yellow crystals of the title compound (2) were obtained in a yield of 2.77 g (58%). The sample crystal was grown by evaporation from methanol.

FT—IR Characterization (cm-1): 3237, 2944, 1711, 1635, 1423, 1256

NMR Characterization: 1H NMR (400 MHz, CD3Cl): δ 2.39 (s, 3 H, CH3C), 3.74 (t, J = 5.9 Hz, 2H, CH2), 3.81 (t, J=5.9 Hz, 2H, CH2),3.89 (s, 3 H, CH3O), 6.89 (m, 1 H, ArH), 7.02(m, 1 H, ArH), 7.35 (m, 1H, ArH), 7.67 (s, 1 H, HCC), 8.68 (m, 1 H, ArH); 13C NMR (100 MHz, CD3Cl): δ = 15.9(CH3C), 43.7 (CH2), 55.6(CH3O), 62.0 (CH2), 110.7 (ArCH), 120.9 (ArCH), 122.0 (HCC),123.1 (ArCC), 131.8 (ArCH), 132.9 (ArCH), 137.7 (HCC), 159.2(C—O), 162.3 (CN), 171.3 (CO).

Refinement top

H atoms on C were located from difference maps, but were placed in idealized positions with C—H distance 0.95 - 0.99 Å, depending on atom type. A torsional parameter was refined for each methyl group. Coordinates for the hydroxy H atom were refined. Uiso for H were assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl and OH). Refinement of the Flack (1983) parameter was inconclusive; however, analysis of the Bijvoet pairs by the Hooft et al. (2008) method yielded a P2(true) value of 1.000. Although the molecule is not inherently chiral, we consider the reported coordinates to likely represent the correct absolute structure of the crystal studied, and the pairs were kept separate in the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Scheme showing the synthesis.
[Figure 2] Fig. 2. Ellipsoids at the 50% level, with H atoms having arbitrary radius.
(Z)-1-(2-Hydroxyethyl)-4-(2-methoxybenzylidene)-2-methyl-1H-imidazol-5(4H)-one top
Crystal data top
C14H16N2O3F(000) = 276
Mr = 260.29Dx = 1.350 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6251 reflections
a = 9.2188 (5) Åθ = 3.2–37.7°
b = 7.2767 (4) ŵ = 0.10 mm1
c = 9.5620 (5) ÅT = 90 K
β = 93.625 (6)°Needle, yellow
V = 640.16 (6) Å30.35 × 0.25 × 0.17 mm
Z = 2
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4943 independent reflections
Radiation source: fine-focus sealed tube4720 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 37.8°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1513
Tmin = 0.967, Tmax = 0.984k = 812
9385 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.0209P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4943 reflectionsΔρmax = 0.42 e Å3
177 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 1605 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.9 (5)
Crystal data top
C14H16N2O3V = 640.16 (6) Å3
Mr = 260.29Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.2188 (5) ŵ = 0.10 mm1
b = 7.2767 (4) ÅT = 90 K
c = 9.5620 (5) Å0.35 × 0.25 × 0.17 mm
β = 93.625 (6)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4943 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4720 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.984Rint = 0.017
9385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087Δρmax = 0.42 e Å3
S = 1.06Δρmin = 0.24 e Å3
4943 reflectionsAbsolute structure: Flack (1983), 1605 Friedel pairs
177 parametersAbsolute structure parameter: 0.9 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46857 (7)0.27870 (9)0.59877 (7)0.01987 (12)
O20.52843 (7)0.87448 (9)0.79824 (7)0.01835 (11)
O30.11188 (6)0.14749 (9)0.32174 (6)0.01679 (11)
H3O0.0433 (16)0.064 (2)0.3128 (15)0.025*
N10.23432 (7)0.16329 (9)0.60614 (7)0.01255 (10)
N20.12395 (7)0.39039 (9)0.72030 (7)0.01344 (11)
C10.34363 (8)0.29285 (10)0.63215 (8)0.01374 (12)
C20.10888 (8)0.22969 (11)0.65921 (7)0.01237 (11)
C30.26991 (8)0.44057 (10)0.70824 (8)0.01307 (12)
C40.25234 (8)0.00285 (10)0.51780 (8)0.01355 (12)
H4A0.17480.08770.53350.016*
H4B0.34730.05580.54310.016*
C50.24500 (8)0.05885 (12)0.36415 (8)0.01478 (12)
H5A0.32680.14280.34810.018*
H5B0.25630.05190.30570.018*
C60.02821 (9)0.12268 (11)0.64852 (9)0.01714 (13)
H6A0.10190.18600.70020.026*
H6B0.01080.00010.68850.026*
H6C0.06260.11120.54980.026*
C70.34421 (8)0.59176 (10)0.75311 (8)0.01367 (12)
H70.44190.59650.72720.016*
C80.29964 (8)0.74799 (10)0.83426 (7)0.01242 (11)
C90.16563 (8)0.75856 (11)0.89605 (8)0.01475 (12)
H90.09690.66220.88070.018*
C100.13176 (9)0.90681 (13)0.97897 (8)0.01816 (14)
H100.04080.91151.02030.022*
C110.23173 (9)1.04896 (12)1.00136 (8)0.01849 (14)
H110.20811.15111.05750.022*
C120.36595 (9)1.04289 (11)0.94234 (8)0.01678 (13)
H120.43381.14000.95840.020*
C130.39992 (8)0.89311 (10)0.85941 (7)0.01325 (11)
C140.64199 (10)1.00233 (13)0.83403 (11)0.02252 (16)
H14A0.61381.12430.79840.034*
H14B0.73120.96290.79210.034*
H14C0.65901.00760.93620.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0123 (2)0.0188 (3)0.0289 (3)0.0010 (2)0.0046 (2)0.0056 (2)
O20.0164 (2)0.0172 (3)0.0220 (2)0.0070 (2)0.00527 (19)0.0056 (2)
O30.0147 (2)0.0152 (2)0.0201 (2)0.00069 (19)0.00168 (18)0.0018 (2)
N10.0115 (2)0.0103 (2)0.0159 (2)0.00049 (19)0.00164 (18)0.0022 (2)
N20.0120 (2)0.0111 (2)0.0174 (2)0.00118 (19)0.00251 (19)0.0013 (2)
C10.0126 (3)0.0119 (3)0.0168 (3)0.0009 (2)0.0014 (2)0.0022 (2)
C20.0119 (3)0.0103 (2)0.0150 (3)0.0010 (2)0.0021 (2)0.0005 (2)
C30.0120 (3)0.0109 (3)0.0164 (3)0.0007 (2)0.0021 (2)0.0018 (2)
C40.0156 (3)0.0096 (3)0.0155 (3)0.0011 (2)0.0008 (2)0.0015 (2)
C50.0141 (3)0.0154 (3)0.0149 (3)0.0009 (2)0.0013 (2)0.0004 (2)
C60.0132 (3)0.0135 (3)0.0250 (3)0.0035 (2)0.0034 (2)0.0009 (3)
C70.0129 (3)0.0116 (3)0.0167 (3)0.0018 (2)0.0020 (2)0.0026 (2)
C80.0134 (3)0.0109 (3)0.0129 (2)0.0003 (2)0.0002 (2)0.0008 (2)
C90.0132 (3)0.0157 (3)0.0154 (3)0.0001 (2)0.0012 (2)0.0022 (2)
C100.0176 (3)0.0191 (3)0.0179 (3)0.0020 (3)0.0029 (2)0.0041 (3)
C110.0224 (3)0.0162 (3)0.0169 (3)0.0018 (3)0.0012 (2)0.0048 (3)
C120.0207 (3)0.0132 (3)0.0162 (3)0.0015 (3)0.0000 (2)0.0028 (2)
C130.0149 (3)0.0117 (3)0.0132 (2)0.0019 (2)0.0009 (2)0.0006 (2)
C140.0187 (3)0.0176 (3)0.0313 (4)0.0080 (3)0.0022 (3)0.0031 (3)
Geometric parameters (Å, º) top
O1—C11.2188 (9)C6—H6A0.9800
O2—C131.3608 (9)C6—H6B0.9800
O2—C141.4259 (10)C6—H6C0.9800
O3—C51.4225 (10)C7—C81.4504 (10)
O3—H3O0.879 (16)C7—H70.9500
N1—C21.3794 (9)C8—C91.4048 (10)
N1—C11.3908 (10)C8—C131.4141 (10)
N1—C41.4566 (10)C9—C101.3861 (11)
N2—C21.3105 (10)C9—H90.9500
N2—C31.4061 (10)C10—C111.3929 (12)
C1—C31.4863 (10)C10—H100.9500
C2—C61.4825 (11)C11—C121.3928 (12)
C3—C71.3515 (11)C11—H110.9500
C4—C51.5221 (11)C12—C131.3950 (11)
C4—H4A0.9900C12—H120.9500
C4—H4B0.9900C14—H14A0.9800
C5—H5A0.9900C14—H14B0.9800
C5—H5B0.9900C14—H14C0.9800
C13—O2—C14118.54 (7)C2—C6—H6C109.5
C5—O3—H3O108.3 (10)H6A—C6—H6C109.5
C2—N1—C1108.16 (6)H6B—C6—H6C109.5
C2—N1—C4128.54 (6)C3—C7—C8130.76 (7)
C1—N1—C4122.62 (6)C3—C7—H7114.6
C2—N2—C3105.67 (6)C8—C7—H7114.6
O1—C1—N1125.59 (7)C9—C8—C13118.06 (7)
O1—C1—C3131.16 (7)C9—C8—C7123.67 (7)
N1—C1—C3103.25 (6)C13—C8—C7118.17 (6)
N2—C2—N1114.13 (6)C10—C9—C8121.27 (7)
N2—C2—C6124.42 (7)C10—C9—H9119.4
N1—C2—C6121.44 (7)C8—C9—H9119.4
C7—C3—N2130.83 (7)C9—C10—C11119.67 (7)
C7—C3—C1120.39 (7)C9—C10—H10120.2
N2—C3—C1108.78 (6)C11—C10—H10120.2
N1—C4—C5110.21 (6)C12—C11—C10120.68 (7)
N1—C4—H4A109.6C12—C11—H11119.7
C5—C4—H4A109.6C10—C11—H11119.7
N1—C4—H4B109.6C11—C12—C13119.49 (7)
C5—C4—H4B109.6C11—C12—H12120.3
H4A—C4—H4B108.1C13—C12—H12120.3
O3—C5—C4112.42 (6)O2—C13—C12123.71 (7)
O3—C5—H5A109.1O2—C13—C8115.47 (6)
C4—C5—H5A109.1C12—C13—C8120.81 (7)
O3—C5—H5B109.1O2—C14—H14A109.5
C4—C5—H5B109.1O2—C14—H14B109.5
H5A—C5—H5B107.9H14A—C14—H14B109.5
C2—C6—H6A109.5O2—C14—H14C109.5
C2—C6—H6B109.5H14A—C14—H14C109.5
H6A—C6—H6B109.5H14B—C14—H14C109.5
C2—N1—C1—O1179.73 (8)N1—C4—C5—O358.15 (8)
C4—N1—C1—O18.46 (12)N2—C3—C7—C83.33 (14)
C2—N1—C1—C30.98 (8)C1—C3—C7—C8176.57 (7)
C4—N1—C1—C3172.26 (6)C3—C7—C8—C97.28 (13)
C3—N2—C2—N10.45 (8)C3—C7—C8—C13176.50 (8)
C3—N2—C2—C6179.24 (7)C13—C8—C9—C100.22 (11)
C1—N1—C2—N20.96 (9)C7—C8—C9—C10176.44 (7)
C4—N1—C2—N2171.57 (7)C8—C9—C10—C110.31 (12)
C1—N1—C2—C6179.80 (7)C9—C10—C11—C120.59 (13)
C4—N1—C2—C69.60 (11)C10—C11—C12—C130.33 (12)
C2—N2—C3—C7179.70 (8)C14—O2—C13—C128.09 (11)
C2—N2—C3—C10.21 (8)C14—O2—C13—C8171.68 (7)
O1—C1—C3—C70.05 (13)C11—C12—C13—O2179.54 (7)
N1—C1—C3—C7179.18 (7)C11—C12—C13—C80.22 (11)
O1—C1—C3—N2179.97 (9)C9—C8—C13—O2179.29 (7)
N1—C1—C3—N20.74 (8)C7—C8—C13—O22.86 (10)
C2—N1—C4—C594.61 (9)C9—C8—C13—C120.49 (11)
C1—N1—C4—C574.77 (9)C7—C8—C13—C12176.92 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···N2i0.879 (16)2.001 (16)2.8771 (9)174.2 (15)
C4—H4B···O1ii0.992.543.2993 (10)133
C9—H9···N20.952.523.1729 (10)126
C14—H14A···O1iii0.982.523.3475 (12)141
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H16N2O3
Mr260.29
Crystal system, space groupMonoclinic, P21
Temperature (K)90
a, b, c (Å)9.2188 (5), 7.2767 (4), 9.5620 (5)
β (°) 93.625 (6)
V3)640.16 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.25 × 0.17
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.967, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9385, 4943, 4720
Rint0.017
(sin θ/λ)max1)0.862
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.06
No. of reflections4943
No. of parameters177
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.24
Absolute structureFlack (1983), 1605 Friedel pairs
Absolute structure parameter0.9 (5)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···N2i0.879 (16)2.001 (16)2.8771 (9)174.2 (15)
C4—H4B···O1ii0.992.543.2993 (10)133
C9—H9···N20.952.523.1729 (10)126
C14—H14A···O1iii0.982.523.3475 (12)141
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y+1, z.
 

Acknowledgements

This research was made possible by a grant supplied by the National Science Foundation's Early CAREER program (Cooperative Agreement DMR-0449886)and by the National Science Foundations HBCU–RISE program (Cooperative Agreement HRD-1036588) at Southern University. The purchase of the NMR was made possible by the National Science Foundation's Major Research Instrument program (Cooperative Agreement CHE-0321591) at Southern University. The purchase of the FTIR at Southern University was made possible by the support from Louisiana Board of Regents (grant No. LEQSF(2005–2007)-ENH-TR-65). We also want to thank the US Department of Education: Title III Part B HBGI program (grant No. P031B040030) at Southern University. Upgrade of the diffractometer at LSU was made possible by grant No. LEQSF(2011–12)-ENH-TR-01, adminis­tered by the Louisiana Board of Regents.

References

First citationBailly, F., Maurin, C., Teissier, E., Vezin, H. & Cotelle, P. (2004). Bioorg. Med. Chem. 12, 5611–5618.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhattacharjya, G., Govardhan, S. & Ramanathan, G. (2005). J. Mol. Struct. 752, 98–103.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. (1994). Science, 263, 802–805.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDong, J., Solntsev, K. M. & Tolbert, L. M. (2009). J. Am. Chem. Soc. 131, 662–670.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNaumov, P., Kowalik, J., Solntsev, K. M., Baldridge, A., Moon, J.-S., Kranz, C. & Tolbert, L. M. (2010). J. Am. Chem. Soc. 132, 5845–5857.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOshimi, K., Kubo, K., Kawasaki, A., Maekawa, K., Igarashi, T. & Sakurai, T. (2002). Tetrahedron Lett. 43, 3291–3294.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. (1992). Gene, 111, 229–233.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRemington, S. J. (2006). Curr. Opin. Struct. Biol. 16, 714–721.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimomura, O. (2009). Angew. Chem. Int. Ed. Engl. 48, 5590–5602.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShimomura, O., Johnson, F. H. & Saiga, Y. (1962). J. Cell. Comp. Physiol. 59, 223–239.  CrossRef PubMed CAS Web of Science Google Scholar
First citationTsien, R. Y. (1998). Annu. Rev. Biochem. 67, 509–544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWenge, U. & Wagenknecht, H.-A. (2011). Synthesis, 3, 0502–0508.  Google Scholar
First citationYampolsky, I. V., Remington, S. J., Martynov, V. I., Potapov, V. K., Lukyanov, S. & Lukyanov, K. A. (2005). Biochemistry, 44, 5788–5793.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o604-o605
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds