metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­(3,5-di­nitro­benzoato-κO1)magnesium tetra­hydrate

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 11 March 2013; accepted 11 March 2013; online 16 March 2013)

In the structure of the title compound, [Mg(C7H3N2O6)2(H2O)4]·4H2O, the slightly distorted octa­hedral MgO6 coord­in­ation polyhedron comprises two trans-related carboxyl­ate O-atom donors from mononodentate 3,5-dinitro­benzoate ligands, and four water mol­ecules. The coordinating water mol­ecules and the four water mol­ecules of solvation give both intra- and inter-unit O—H⋯O hydrogen-bonding inter­actions with carboxyl­ate, water and nitro O-atom acceptors, forming a three-dimensional structure.

Related literature

For the structures of some magnesium complexes with nitro-substituted benzoic acids, see: Morgant et al. (2006[Morgant, G., Bouhmaida, N., Balde, L., Ghemani, N. E. & d'Angelo, J. (2006). Polyhedron, 25, 2229-2235.]); Srinivasan et al. (2007[Srinivasan, B. R., Sawant, J. V., Näther, C. & Bensch, W. (2007). J. Chem. Sci. (Bangalore, India), 119, 243-252.], 2011[Srinivasan, B. R., Shetgaonker, S. Y. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 130-136.]); Arlin et al. (2011[Arlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). Cryst. Growth Des. 11, 1318-1327.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C7H3N2O6)2(H2O)4]·4H2O

  • Mr = 590.67

  • Triclinic, [P \overline 1]

  • a = 7.1748 (3) Å

  • b = 11.7299 (6) Å

  • c = 15.0103 (7) Å

  • α = 103.224 (4)°

  • β = 98.569 (4)°

  • γ = 92.181 (4)°

  • V = 1212.62 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 200 K

  • 0.32 × 0.22 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.970, Tmax = 0.980

  • 15059 measured reflections

  • 4764 independent reflections

  • 3969 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 0.94

  • 4764 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Selected bond lengths (Å)

Mg1—O1W 2.0929 (14)
Mg1—O2W 2.0732 (13)
Mg1—O3W 2.1024 (14)
Mg1—O4W 2.0804 (13)
Mg1—O11A 2.0304 (13)
Mg1—O11B 2.0237 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O8W 0.91 1.79 2.700 (2) 179
O1W—H12W⋯O6Wi 0.88 1.93 2.7934 (19) 170
O2W—H21W⋯O12A 0.76 2.11 2.8001 (18) 152
O2W—H22W⋯O6W 0.87 1.87 2.7375 (18) 178
O3W—H31W⋯O7W 0.80 2.02 2.8213 (19) 170
O3W—H32W⋯O5Wii 0.90 1.89 2.7722 (18) 170
O4W—H41W⋯O12B 0.80 2.00 2.7310 (18) 151
O4W—H42W⋯O5Wiii 0.83 1.97 2.7986 (18) 174
O5W—H51W⋯O7Wiii 0.86 2.11 2.9449 (19) 164
O5W—H52W⋯O1W 0.86 2.17 2.9702 (19) 155
O6W—H61W⋯O12Ai 0.86 2.00 2.8404 (19) 163
O6W—H62W⋯O3Wiv 0.86 2.14 2.9522 (19) 159
O7W—H71W⋯O12Bv 0.89 1.87 2.708 (2) 158
O7W—H72W⋯O32Bvi 0.86 2.50 3.236 (2) 145
O8W—H81W⋯O12Ai 0.90 1.99 2.7737 (19) 145
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+2, -y+1, -z+1; (v) -x+2, -y, -z+1; (vi) x, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Magnesium complexes involving monoanionic nitro-substituted benzoate ligands (L) show both the common [Mg(H2O)6]2+ 2(L) form, e.g. a dihydrate: L = 4-nitrobenzoate (Srinivasan et al., 2007; Arlin et al., 2011), as well as examples in which the ligand is coordinated, e.g. [MgL(H2O)5] (L). HL. H2O (a complex acid adduct: L = 4-nitro-3-hydroxybenzoate) (Morgant et al., 2006) and [MgL2(H2O)4]: (L = 2-nitrobenzoate) (Srinivasan et al., 2011; Arlin et al., 2011). All known examples are monomeric and have essentially octahedral metal stereochemistry.

The title complex, [Mg(C7H3N2O6)2(H2O)4]. 4H2O was obtained from the reaction of 3,5-dinitrobenzoic acid acid with MgCO3 in aqueous ethanol and the structure is reported here. In this structure (Fig. 1), the slightly distorted octahedral MgO6 coordination polyhedron comprises two trans-related carboxyl O-atom donors from mononodentate 3,5-dinitrobenzoate ligands, and four water molecules [bond range Mg—O, 2.0237 (13)–2.1024 (14) Å (Table 1)]. The coordinated water molecules and the four water molecules of solvation give both intra- and inter-unit O—H···O hydrogen-bonding interactions with carboxyl, water and nitro O-atom acceptors (Table 2), giving a three-dimensional structure (Fig. 2).

In the present complex, the two 3,5-dinitrobenzoate ligands are conformationally similar, with the carboxyl groups lying essentially in the plane of the benzene ring [torsion angles C2—C1—C11—O11 = 178.01 (14)° (A) and 178.90 (14)° (B)]. The C5 nitro groups are variously rotated out of the benzene plane [torsion angles C2—C3—N3—O32 = 154.31 (17)° (A) and 159.03 (15)° (B): C4—C5—N5—O52 = 167.74 (15)° (A) and 163.06 (15)° (B)].

Related literature top

For the structures of some magnesium complexes with nitro-substituted benzoic acids, see: Morgant et al. (2006); Srinivasan et al. (2007, 2011); Arlin et al. (2011).

Experimental top

The title compound was synthesized by the addition of excess MgCO3 to 15 ml of a hot aqueous ethanolic solution (10:1) of 3,5-dinitrobenzoic acid (0.1 g). After completion of the reaction, the excess MgCO3 was removed by filtration and the solution was allowed to evaporate to partial dryness at room temperature, giving colourless plates of the title compound from which a specimen was cleaved for the X-ray analysis.

Refinement top

Hydrogen atoms on all water molecules were located by difference methods and both positional and isotropic displacement parameters were initially refined but these were then allowed to ride, with Uiso(H) = 1.5Ueq(O). Other H-atoms were included in the refinement at calculated positions [C—H = 0.93 Å] with Uiso(H) = 1.2Ueq(C) also using a riding-model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the title complex, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A perspective view of the title complex showing hydrogen-bonding interactions as dashed lines and with non-associative H-atoms omitted. For symmetry code (i), see Table 2.
Tetraaquabis(3,5-dinitrobenzoato-κO1)magnesium tetrahydrate top
Crystal data top
[Mg(C7H3N2O6)2(H2O)4]·4H2OZ = 2
Mr = 590.67F(000) = 612
Triclinic, P1Dx = 1.618 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1748 (3) ÅCell parameters from 4480 reflections
b = 11.7299 (6) Åθ = 3.3–28.8°
c = 15.0103 (7) ŵ = 0.18 mm1
α = 103.224 (4)°T = 200 K
β = 98.569 (4)°Plate, colourless
γ = 92.181 (4)°0.32 × 0.22 × 0.10 mm
V = 1212.62 (10) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
4764 independent reflections
Radiation source: Enhance(Mo) X-ray source3969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1414
Tmin = 0.970, Tmax = 0.980l = 1818
15059 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.5437P]
where P = (Fo2 + 2Fc2)/3
4764 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Mg(C7H3N2O6)2(H2O)4]·4H2Oγ = 92.181 (4)°
Mr = 590.67V = 1212.62 (10) Å3
Triclinic, P1Z = 2
a = 7.1748 (3) ÅMo Kα radiation
b = 11.7299 (6) ŵ = 0.18 mm1
c = 15.0103 (7) ÅT = 200 K
α = 103.224 (4)°0.32 × 0.22 × 0.10 mm
β = 98.569 (4)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
4764 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3969 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.027
15059 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 0.94Δρmax = 0.29 e Å3
4764 reflectionsΔρmin = 0.20 e Å3
352 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.72688 (8)0.24686 (5)0.49442 (4)0.0206 (2)
O1W0.45776 (18)0.27809 (11)0.43347 (9)0.0315 (4)
O2W0.80173 (18)0.42361 (10)0.55275 (8)0.0287 (4)
O3W0.99516 (17)0.20820 (11)0.55261 (9)0.0289 (4)
O4W0.65142 (18)0.06937 (10)0.43663 (8)0.0283 (4)
O11A0.62746 (18)0.23370 (10)0.61171 (8)0.0255 (4)
O11B0.83217 (18)0.26394 (10)0.37996 (8)0.0278 (4)
O12A0.5701 (2)0.41362 (10)0.68573 (9)0.0318 (4)
O12B0.8071 (2)0.08551 (11)0.28425 (9)0.0325 (4)
O31A0.31477 (19)0.44416 (11)0.97944 (9)0.0340 (4)
O31B0.8787 (2)0.06471 (11)0.04095 (9)0.0351 (4)
O32A0.4359 (3)0.33267 (14)1.06560 (10)0.0526 (6)
O32B1.0519 (2)0.20264 (14)0.06886 (10)0.0476 (5)
O51A0.5101 (2)0.07040 (12)0.88966 (10)0.0432 (5)
O51B1.0734 (2)0.59134 (12)0.13968 (10)0.0420 (5)
O52A0.6406 (2)0.08279 (12)0.76731 (10)0.0429 (5)
O52B0.9300 (2)0.60972 (12)0.25868 (10)0.0447 (5)
N3A0.3977 (2)0.35844 (14)0.99081 (10)0.0303 (5)
N3B0.9615 (2)0.16217 (13)0.01841 (10)0.0273 (5)
N5A0.5629 (2)0.02866 (13)0.82933 (11)0.0300 (5)
N5B0.9901 (2)0.55022 (13)0.19201 (11)0.0288 (5)
C1A0.5416 (2)0.25645 (14)0.75959 (11)0.0191 (5)
C1B0.8897 (2)0.25074 (15)0.22763 (11)0.0221 (5)
C2A0.4858 (2)0.32878 (14)0.83639 (11)0.0215 (5)
C2B0.9050 (2)0.18121 (15)0.14109 (11)0.0229 (5)
C3A0.4564 (2)0.28082 (15)0.90967 (11)0.0235 (5)
C3B0.9496 (2)0.23575 (15)0.07369 (11)0.0227 (5)
C4A0.4796 (2)0.16471 (15)0.91068 (12)0.0255 (5)
C4B0.9805 (2)0.35601 (15)0.08781 (12)0.0245 (5)
C5A0.5332 (2)0.09582 (14)0.83218 (12)0.0226 (5)
C5B0.9603 (2)0.42181 (15)0.17419 (12)0.0228 (5)
C6A0.5640 (2)0.13877 (14)0.75691 (11)0.0211 (5)
C6B0.9152 (2)0.37241 (15)0.24432 (11)0.0227 (5)
C11A0.5832 (2)0.30567 (14)0.67950 (11)0.0211 (5)
C11B0.8402 (2)0.19519 (15)0.30354 (12)0.0234 (5)
O5W0.21801 (18)0.07011 (11)0.44221 (9)0.0295 (4)
O6W0.75569 (18)0.58555 (11)0.44724 (9)0.0298 (4)
O7W1.0086 (2)0.11013 (12)0.70823 (9)0.0413 (5)
O8W0.4051 (3)0.34282 (12)0.27062 (10)0.0526 (6)
H2A0.468600.407500.838600.0260*
H2B0.885700.099900.128800.0270*
H4A0.460400.134700.961100.0310*
H4B1.013100.390600.041800.0290*
H6A0.599200.089600.705200.0250*
H6B0.902300.419700.301600.0270*
H11W0.439300.300800.379100.0470*
H12W0.379600.318800.465300.0470*
H21W0.738900.444400.588900.0430*
H22W0.790400.474600.518900.0430*
H31W1.011000.184700.599300.0430*
H32W1.056400.163800.511100.0430*
H41W0.698300.049700.391200.0420*
H42W0.688200.023700.469600.0420*
H51W0.165200.022800.391500.0440*
H52W0.308100.113200.431400.0440*
H61W0.667700.574200.399400.0450*
H62W0.846700.631400.441300.0450*
H71W1.078400.056100.726300.0620*
H72W1.000000.161000.758200.0620*
H81W0.422100.414700.260200.0790*
H82W0.406700.286500.220200.0790*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0281 (3)0.0207 (3)0.0153 (3)0.0025 (2)0.0077 (2)0.0060 (2)
O1W0.0356 (7)0.0391 (8)0.0244 (7)0.0139 (6)0.0088 (5)0.0129 (6)
O2W0.0430 (8)0.0220 (6)0.0251 (7)0.0031 (5)0.0129 (6)0.0089 (5)
O3W0.0328 (7)0.0321 (7)0.0250 (7)0.0092 (5)0.0088 (5)0.0097 (6)
O4W0.0399 (7)0.0237 (6)0.0228 (6)0.0013 (5)0.0099 (5)0.0059 (5)
O11A0.0404 (7)0.0216 (6)0.0179 (6)0.0038 (5)0.0136 (5)0.0056 (5)
O11B0.0415 (7)0.0256 (6)0.0190 (6)0.0001 (5)0.0136 (5)0.0055 (5)
O12A0.0574 (9)0.0193 (6)0.0236 (7)0.0065 (6)0.0152 (6)0.0088 (5)
O12B0.0526 (8)0.0236 (7)0.0247 (7)0.0023 (6)0.0136 (6)0.0078 (5)
O31A0.0372 (7)0.0306 (7)0.0344 (8)0.0046 (6)0.0177 (6)0.0003 (6)
O31B0.0460 (8)0.0303 (7)0.0251 (7)0.0022 (6)0.0021 (6)0.0010 (6)
O32A0.0864 (12)0.0571 (10)0.0185 (7)0.0109 (9)0.0189 (7)0.0099 (7)
O32B0.0645 (10)0.0541 (10)0.0262 (8)0.0070 (8)0.0260 (7)0.0035 (7)
O51A0.0639 (10)0.0333 (8)0.0357 (8)0.0119 (7)0.0008 (7)0.0221 (7)
O51B0.0491 (9)0.0371 (8)0.0434 (9)0.0119 (7)0.0087 (7)0.0187 (7)
O52A0.0676 (10)0.0223 (7)0.0389 (8)0.0090 (7)0.0113 (7)0.0047 (6)
O52B0.0724 (11)0.0252 (7)0.0356 (8)0.0060 (7)0.0147 (7)0.0014 (6)
N3A0.0367 (9)0.0340 (9)0.0208 (8)0.0016 (7)0.0129 (7)0.0034 (7)
N3B0.0321 (8)0.0322 (9)0.0179 (7)0.0062 (7)0.0059 (6)0.0048 (7)
N5A0.0414 (9)0.0209 (8)0.0271 (8)0.0037 (7)0.0023 (7)0.0104 (7)
N5B0.0337 (8)0.0254 (8)0.0264 (8)0.0017 (6)0.0012 (7)0.0090 (7)
C1A0.0215 (8)0.0205 (8)0.0159 (8)0.0001 (6)0.0035 (6)0.0054 (7)
C1B0.0234 (8)0.0258 (9)0.0193 (8)0.0033 (7)0.0076 (7)0.0067 (7)
C2A0.0260 (9)0.0204 (8)0.0188 (8)0.0029 (7)0.0053 (7)0.0051 (7)
C2B0.0267 (9)0.0227 (9)0.0203 (9)0.0021 (7)0.0073 (7)0.0048 (7)
C3A0.0269 (9)0.0278 (9)0.0160 (8)0.0013 (7)0.0077 (7)0.0033 (7)
C3B0.0242 (9)0.0284 (9)0.0160 (8)0.0041 (7)0.0064 (7)0.0042 (7)
C4A0.0298 (9)0.0313 (10)0.0178 (8)0.0032 (7)0.0047 (7)0.0114 (7)
C4B0.0254 (9)0.0307 (9)0.0204 (9)0.0003 (7)0.0069 (7)0.0102 (8)
C5A0.0278 (9)0.0187 (8)0.0214 (9)0.0011 (7)0.0017 (7)0.0067 (7)
C5B0.0237 (8)0.0226 (9)0.0225 (9)0.0005 (7)0.0031 (7)0.0071 (7)
C6A0.0242 (8)0.0216 (8)0.0173 (8)0.0006 (7)0.0051 (7)0.0034 (7)
C6B0.0247 (9)0.0265 (9)0.0167 (8)0.0024 (7)0.0055 (7)0.0034 (7)
C11A0.0265 (9)0.0220 (9)0.0160 (8)0.0018 (7)0.0054 (7)0.0057 (7)
C11B0.0266 (9)0.0254 (9)0.0198 (9)0.0039 (7)0.0072 (7)0.0061 (7)
O5W0.0327 (7)0.0281 (7)0.0284 (7)0.0004 (5)0.0101 (5)0.0053 (6)
O6W0.0316 (7)0.0293 (7)0.0319 (7)0.0014 (5)0.0073 (6)0.0130 (6)
O7W0.0530 (9)0.0423 (8)0.0308 (8)0.0173 (7)0.0087 (7)0.0097 (7)
O8W0.1022 (14)0.0273 (8)0.0264 (8)0.0089 (8)0.0032 (8)0.0064 (6)
Geometric parameters (Å, º) top
Mg1—O1W2.0929 (14)O6W—H62W0.8600
Mg1—O2W2.0732 (13)O7W—H72W0.8600
Mg1—O3W2.1024 (14)O7W—H71W0.8900
Mg1—O4W2.0804 (13)O8W—H81W0.9000
Mg1—O11A2.0304 (13)O8W—H82W0.8900
Mg1—O11B2.0237 (13)N3A—C3A1.471 (2)
O11A—C11A1.254 (2)N3B—C3B1.469 (2)
O11B—C11B1.253 (2)N5A—C5A1.476 (2)
O12A—C11A1.256 (2)N5B—C5B1.470 (2)
O12B—C11B1.258 (2)C1A—C2A1.387 (2)
O31A—N3A1.220 (2)C1A—C6A1.388 (2)
O31B—N3B1.219 (2)C1A—C11A1.510 (2)
O32A—N3A1.223 (2)C1B—C6B1.391 (3)
O32B—N3B1.228 (2)C1B—C11B1.514 (2)
O51A—N5A1.222 (2)C1B—C2B1.389 (2)
O51B—N5B1.224 (2)C2A—C3A1.384 (2)
O52A—N5A1.221 (2)C2B—C3B1.383 (2)
O52B—N5B1.227 (2)C3A—C4A1.382 (3)
O1W—H11W0.9100C3B—C4B1.382 (3)
O1W—H12W0.8800C4A—C5A1.383 (2)
O2W—H21W0.7600C4B—C5B1.380 (2)
O2W—H22W0.8700C5A—C6A1.380 (2)
O3W—H32W0.9000C5B—C6B1.384 (2)
O3W—H31W0.8000C2A—H2A0.9300
O4W—H41W0.8000C2B—H2B0.9300
O4W—H42W0.8300C4A—H4A0.9300
O5W—H51W0.8600C4B—H4B0.9300
O5W—H52W0.8600C6A—H6A0.9300
O6W—H61W0.8600C6B—H6B0.9300
Mg1···H52W3.2400O12B···H2B2.5200
Mg1···H62Wi3.2400O12B···H41W2.0000
O1W···O2W3.0289 (18)O12B···H71Wvi1.8700
O1W···O4W2.8669 (18)O31A···H4Bx2.5900
O1W···O5W2.9702 (19)O31A···H2A2.4900
O1W···O8W2.700 (2)O31B···H2B2.4800
O1W···O11A2.9371 (18)O31B···H2Bxi2.8400
O1W···O11B2.9163 (18)O32A···H81Wvii2.8800
O1W···O6Wii2.7934 (19)O32A···H4A2.5200
O2W···O12A2.8001 (18)O32A···H82Wvii2.5400
O2W···O1W3.0289 (18)O32B···H4B2.4900
O2W···O3W2.9285 (18)O32B···H72Wviii2.5000
O2W···O6W2.7375 (18)O51A···H82Wiv2.8300
O2W···O11A2.8859 (17)O51A···H4Axiv2.5100
O2W···O11B2.8740 (17)O51A···H2Biv2.8100
O2W···C11A3.150 (2)O51A···H4A2.4600
O2W···O6Wi3.1813 (19)O51B···H4B2.4600
O3W···O11A2.9108 (18)O51B···H4Bxii2.7600
O3W···O6Wi2.9522 (19)O52A···H82Wiv2.4500
O3W···O2W2.9285 (18)O52A···H6A2.4200
O3W···O4W2.9804 (18)O52B···H62W2.8500
O3W···O5Wiii2.7722 (18)O52B···H6B2.4700
O3W···O7W2.8213 (19)O52B···H31Wi2.8000
O3W···O52Bi3.093 (2)O52B···H72Wi2.7900
O3W···O11B2.9054 (18)N3A···O31Aix2.951 (2)
O4W···O12B2.7310 (18)N3A···O32Bx2.923 (2)
O4W···O5W3.1235 (19)N3B···O31Bxi3.194 (2)
O4W···C11B3.163 (2)N5A···O12Biv2.897 (2)
O4W···O1W2.8669 (18)N5A···O31Bvii2.765 (2)
O4W···O3W2.9804 (18)N5B···O31Aii3.134 (2)
O4W···O5Wiv2.7986 (18)C1A···O51Bi3.201 (2)
O4W···O11A2.9144 (17)C2A···O52Bii3.290 (2)
O4W···O11B2.9336 (17)C2A···O51Bi3.208 (2)
O5W···O1W2.9702 (19)C2B···O51Aiv3.130 (2)
O5W···O4W3.1235 (19)C3A···O32Bx3.095 (2)
O5W···O7Wiv2.9449 (19)C4A···O32Bx3.167 (2)
O5W···O4Wiv2.7986 (18)C4A···O51Axiv3.416 (2)
O5W···O3Wv2.7722 (18)C4A···O31Bvii3.183 (2)
O6W···O12Aii2.8404 (19)C4B···O32Axiii3.349 (3)
O6W···O2Wi3.1813 (19)C4B···O31Axiii3.348 (2)
O6W···O3Wi2.9522 (19)C5A···O12Biv3.189 (2)
O6W···O2W2.7375 (18)C5A···O31Bvii2.981 (2)
O6W···C11Aii3.336 (2)C6A···O7W3.389 (2)
O6W···O1Wii2.7934 (19)C11A···O6Wii3.336 (2)
O7W···O52Bi3.212 (2)C11A···O51Bi3.343 (2)
O7W···C6A3.389 (2)C6A···H41Wiv3.0900
O7W···O5Wiv2.9449 (19)C11A···H61Wii2.6400
O7W···O3W2.8213 (19)C11A···H21W2.6600
O7W···O12Bvi2.708 (2)C11B···H41W2.6400
O7W···O32Bvii3.236 (2)C11B···H71Wvi2.9700
O8W···O12Aii2.7737 (19)H2A···O31A2.4900
O8W···O52Aiv2.968 (2)H2A···O12A2.5200
O8W···O32Aviii3.094 (2)H2B···O51Aiv2.8100
O8W···O1W2.700 (2)H2B···O12B2.5200
O11A···O1W2.9371 (18)H2B···O31B2.4800
O11A···O3W2.9108 (18)H2B···O31Bxi2.8400
O11A···O4W2.9144 (17)H4A···O51Axiv2.5100
O11A···O2W2.8859 (17)H4A···O32A2.5200
O11B···O3W2.9054 (18)H4A···O51A2.4600
O11B···O2W2.8740 (17)H4B···O31Axiii2.5900
O11B···O4W2.9336 (17)H4B···O51Bxii2.7600
O11B···O1W2.9163 (18)H4B···O32B2.4900
O12A···O6Wii2.8404 (19)H4B···O51B2.4600
O12A···O2W2.8001 (18)H6A···O52A2.4200
O12A···O8Wii2.7737 (19)H6A···H51Wiv2.5900
O12B···N5Aiv2.897 (2)H6A···O11A2.4500
O12B···O51Aiv3.164 (2)H6A···O4Wiv2.8300
O12B···C5Aiv3.189 (2)H6B···O52B2.4700
O12B···O7Wvi2.708 (2)H6B···O11B2.4600
O12B···O52Aiv3.187 (2)H11W···O8W1.7900
O12B···O4W2.7310 (18)H11W···H82W2.3300
O31A···N3Aix2.951 (2)H11W···H81W2.4500
O31A···O32Bx3.218 (2)H12W···H52W2.3700
O31A···C4Bx3.348 (2)H12W···H62Wii2.3100
O31A···O31Aix2.8352 (19)H12W···O6Wii1.9300
O31A···N5Bii3.134 (2)H12W···H61Wii2.2100
O31A···O51Bii3.036 (2)H21W···O12A2.1100
O31B···O31Bxi2.6950 (19)H21W···C11A2.6600
O31B···C5Aviii2.981 (2)H22W···H61W2.4300
O31B···O51Aviii2.949 (2)H22W···H62W2.4400
O31B···N5Aviii2.765 (2)H22W···O6W1.8700
O31B···O52Aviii3.198 (2)H31W···O52Bi2.8000
O31B···N3Bxi3.194 (2)H31W···H72W2.4800
O31B···C4Aviii3.183 (2)H31W···O7W2.0200
O32A···C4Bx3.349 (3)H31W···H62Wi2.5900
O32A···O8Wvii3.094 (2)H32W···H52Wiii2.3300
O32B···O51Bxii2.972 (2)H32W···H51Wiii2.3900
O32B···N3Axiii2.923 (2)H32W···H62Wi2.3900
O32B···O7Wviii3.236 (2)H32W···O5Wiii1.8900
O32B···O31Axiii3.218 (2)H41W···O12B2.0000
O32B···C4Axiii3.167 (2)H41W···C11B2.6400
O32B···C3Axiii3.095 (2)H41W···C6Aiv3.0900
O51A···O12Biv3.164 (2)H42W···H52Wiv2.4200
O51A···C2Biv3.130 (2)H42W···O5Wiv1.9700
O51A···C4Axiv3.416 (2)H42W···H51Wiv2.3800
O51A···O31Bvii2.949 (2)H51W···H42Wiv2.3800
O51B···O31Aii3.036 (2)H51W···O7Wiv2.1100
O51B···O32Bxii2.972 (2)H51W···H71Wiv2.2900
O51B···C11Ai3.343 (2)H51W···H6Aiv2.5900
O51B···C2Ai3.208 (2)H51W···H32Wv2.3900
O51B···C1Ai3.201 (2)H52W···H12W2.3700
O52A···O8Wiv2.968 (2)H52W···Mg13.2400
O52A···O12Biv3.187 (2)H52W···O1W2.1700
O52A···O31Bvii3.198 (2)H52W···H32Wv2.3300
O52B···C2Aii3.290 (2)H52W···H42Wiv2.4200
O52B···O3Wi3.093 (2)H52W···O4W2.5300
O52B···O7Wi3.212 (2)H61W···O12Aii2.0000
O1W···H52W2.1700H61W···C11Aii2.6400
O2W···H62Wi2.6200H61W···H12Wii2.2100
O3W···H62Wi2.1400H61W···H22W2.4300
O4W···H6Aiv2.8300H62W···H31Wi2.5900
O4W···H52W2.5300H62W···H22W2.4400
O5W···H42Wiv1.9700H62W···O52B2.8500
O5W···H32Wv1.8900H62W···Mg1i3.2400
O6W···H12Wii1.9300H62W···O2Wi2.6200
O6W···H22W1.8700H62W···O3Wi2.1400
O7W···H31W2.0200H62W···H12Wii2.3100
O7W···H51Wiv2.1100H62W···H32Wi2.3900
O8W···H11W1.7900H71W···O12Bvi1.8700
O11A···H21W2.6800H71W···C11Bvi2.9700
O11A···H31W2.8600H71W···H51Wiv2.2900
O11A···H6A2.4500H72W···H31W2.4800
O11B···H41W2.7100H72W···O52Bi2.7900
O11B···H22W2.9000H72W···O32Bvii2.5000
O11B···H32W2.8500H81W···O32Aviii2.8800
O11B···H6B2.4600H81W···H11W2.4500
O11B···H11W2.8700H81W···O12Aii1.9900
O12A···H21W2.1100H82W···O32Aviii2.5400
O12A···H61Wii2.0000H82W···H11W2.3300
O12A···H2A2.5200H82W···O51Aiv2.8300
O12A···H81Wii1.9900H82W···O52Aiv2.4500
O1W—Mg1—O2W93.28 (6)O51B—N5B—O52B123.98 (16)
O1W—Mg1—O3W177.64 (6)C6A—C1A—C11A119.51 (14)
O1W—Mg1—O4W86.78 (6)C2A—C1A—C6A120.12 (15)
O1W—Mg1—O11A90.83 (6)C2A—C1A—C11A120.35 (15)
O1W—Mg1—O11B90.20 (6)C2B—C1B—C11B120.41 (16)
O2W—Mg1—O3W89.06 (6)C6B—C1B—C11B119.53 (14)
O2W—Mg1—O4W179.66 (6)C2B—C1B—C6B120.04 (15)
O2W—Mg1—O11A89.38 (5)C1A—C2A—C3A118.30 (15)
O2W—Mg1—O11B89.09 (5)C1B—C2B—C3B118.44 (16)
O3W—Mg1—O4W90.88 (6)N3A—C3A—C4A118.58 (15)
O3W—Mg1—O11A89.53 (6)N3A—C3A—C2A117.81 (15)
O3W—Mg1—O11B89.50 (6)C2A—C3A—C4A123.62 (15)
O4W—Mg1—O11A90.29 (5)N3B—C3B—C2B118.31 (15)
O4W—Mg1—O11B91.24 (5)N3B—C3B—C4B118.16 (15)
O11A—Mg1—O11B178.20 (6)C2B—C3B—C4B123.52 (15)
Mg1—O11A—C11A134.86 (11)C3A—C4A—C5A115.94 (16)
Mg1—O11B—C11B133.81 (12)C3B—C4B—C5B116.09 (16)
H11W—O1W—H12W103.00C4A—C5A—C6A122.98 (16)
Mg1—O1W—H11W121.00N5A—C5A—C4A118.66 (15)
Mg1—O1W—H12W122.00N5A—C5A—C6A118.35 (15)
Mg1—O2W—H22W121.00N5B—C5B—C6B118.97 (15)
H21W—O2W—H22W104.00C4B—C5B—C6B123.07 (17)
Mg1—O2W—H21W108.00N5B—C5B—C4B117.96 (15)
Mg1—O3W—H31W122.00C1A—C6A—C5A119.03 (15)
Mg1—O3W—H32W113.00C1B—C6B—C5B118.81 (15)
H31W—O3W—H32W108.00O11A—C11A—O12A125.65 (15)
Mg1—O4W—H41W109.00O11A—C11A—C1A116.26 (15)
Mg1—O4W—H42W116.00O12A—C11A—C1A118.09 (14)
H41W—O4W—H42W105.00O12B—C11B—C1B117.76 (15)
H51W—O5W—H52W110.00O11B—C11B—O12B125.84 (16)
H61W—O6W—H62W110.00O11B—C11B—C1B116.38 (15)
H71W—O7W—H72W105.00C3A—C2A—H2A121.00
H81W—O8W—H82W112.00C1A—C2A—H2A121.00
O32A—N3A—C3A117.58 (16)C3B—C2B—H2B121.00
O31A—N3A—O32A124.23 (16)C1B—C2B—H2B121.00
O31A—N3A—C3A118.19 (14)C3A—C4A—H4A122.00
O31B—N3B—C3B118.03 (14)C5A—C4A—H4A122.00
O32B—N3B—C3B118.34 (15)C3B—C4B—H4B122.00
O31B—N3B—O32B123.62 (15)C5B—C4B—H4B122.00
O51A—N5A—C5A117.93 (15)C5A—C6A—H6A120.00
O52A—N5A—C5A117.70 (15)C1A—C6A—H6A120.00
O51A—N5A—O52A124.36 (16)C1B—C6B—H6B121.00
O52B—N5B—C5B117.88 (15)C5B—C6B—H6B121.00
O51B—N5B—C5B118.14 (15)
O1W—Mg1—O11A—C11A76.77 (16)C11A—C1A—C6A—C5A177.32 (14)
O2W—Mg1—O11A—C11A16.50 (16)C6A—C1A—C11A—O11A3.6 (2)
O3W—Mg1—O11A—C11A105.57 (16)C2A—C1A—C11A—O12A1.7 (2)
O4W—Mg1—O11A—C11A163.55 (16)C2A—C1A—C6A—C5A1.1 (2)
O1W—Mg1—O11B—C11B84.11 (16)C11A—C1A—C2A—C3A177.50 (14)
O2W—Mg1—O11B—C11B177.38 (16)C6A—C1A—C2A—C3A0.9 (2)
O3W—Mg1—O11B—C11B93.55 (16)C2B—C1B—C6B—C5B1.6 (2)
O4W—Mg1—O11B—C11B2.68 (16)C6B—C1B—C2B—C3B1.3 (2)
Mg1—O11A—C11A—O12A9.1 (3)C11B—C1B—C2B—C3B179.69 (14)
Mg1—O11A—C11A—C1A171.22 (11)C6B—C1B—C11B—O11B2.7 (2)
Mg1—O11B—C11B—O12B12.6 (3)C2B—C1B—C11B—O12B2.6 (2)
Mg1—O11B—C11B—C1B165.81 (11)C11B—C1B—C6B—C5B179.97 (13)
O31A—N3A—C3A—C4A154.62 (15)C6B—C1B—C11B—O12B175.83 (15)
O32A—N3A—C3A—C4A25.5 (2)C2B—C1B—C11B—O11B178.90 (14)
O31A—N3A—C3A—C2A25.5 (2)C1A—C2A—C3A—N3A179.86 (14)
O32A—N3A—C3A—C2A154.31 (17)C1A—C2A—C3A—C4A0.0 (2)
O31B—N3B—C3B—C2B21.9 (2)C1B—C2B—C3B—N3B178.65 (13)
O32B—N3B—C3B—C2B159.03 (15)C1B—C2B—C3B—C4B0.2 (2)
O32B—N3B—C3B—C4B22.0 (2)C2A—C3A—C4A—C5A0.7 (2)
O31B—N3B—C3B—C4B156.99 (15)N3A—C3A—C4A—C5A179.43 (14)
O52A—N5A—C5A—C6A11.0 (2)N3B—C3B—C4B—C5B177.46 (13)
O51A—N5A—C5A—C6A169.81 (15)C2B—C3B—C4B—C5B1.4 (2)
O52A—N5A—C5A—C4A167.74 (15)C3A—C4A—C5A—C6A0.5 (2)
O51A—N5A—C5A—C4A11.5 (2)C3A—C4A—C5A—N5A179.18 (14)
O52B—N5B—C5B—C6B17.5 (2)C3B—C4B—C5B—N5B179.44 (13)
O51B—N5B—C5B—C6B162.42 (15)C3B—C4B—C5B—C6B1.1 (2)
O51B—N5B—C5B—C4B17.0 (2)N5A—C5A—C6A—C1A178.28 (14)
O52B—N5B—C5B—C4B163.06 (15)C4A—C5A—C6A—C1A0.4 (2)
C6A—C1A—C11A—O12A176.77 (15)N5B—C5B—C6B—C1B179.11 (14)
C2A—C1A—C11A—O11A178.01 (14)C4B—C5B—C6B—C1B0.3 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x+2, y, z+1; (vii) x, y, z+1; (viii) x, y, z1; (ix) x+1, y+1, z+2; (x) x1, y, z+1; (xi) x+2, y, z; (xii) x+2, y+1, z; (xiii) x+1, y, z1; (xiv) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O8W0.911.792.700 (2)179
O1W—H12W···O6Wii0.881.932.7934 (19)170
O2W—H21W···O12A0.762.112.8001 (18)152
O2W—H22W···O6W0.871.872.7375 (18)178
O3W—H31W···O7W0.802.022.8213 (19)170
O3W—H32W···O5Wiii0.901.892.7722 (18)170
O4W—H41W···O12B0.802.002.7310 (18)151
O4W—H42W···O5Wiv0.831.972.7986 (18)174
O5W—H51W···O7Wiv0.862.112.9449 (19)164
O5W—H52W···O1W0.862.172.9702 (19)155
O5W—H52W···O4W0.862.533.1235 (19)127
O6W—H61W···O12Aii0.862.002.8404 (19)163
O6W—H62W···O3Wi0.862.142.9522 (19)159
O7W—H71W···O12Bvi0.891.872.708 (2)158
O7W—H72W···O32Bvii0.862.503.236 (2)145
O8W—H81W···O12Aii0.901.992.7737 (19)145
O8W—H82W···O32Aviii0.892.543.094 (2)122
O8W—H82W···O52Aiv0.892.452.968 (2)117
C4A—H4A···O51Axiv0.932.513.416 (2)166
C4B—H4B···O31Axiii0.932.593.348 (2)139
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1; (vi) x+2, y, z+1; (vii) x, y, z+1; (viii) x, y, z1; (xiii) x+1, y, z1; (xiv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Mg(C7H3N2O6)2(H2O)4]·4H2O
Mr590.67
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.1748 (3), 11.7299 (6), 15.0103 (7)
α, β, γ (°)103.224 (4), 98.569 (4), 92.181 (4)
V3)1212.62 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.32 × 0.22 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
15059, 4764, 3969
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 0.94
No. of reflections4764
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mg1—O1W2.0929 (14)Mg1—O4W2.0804 (13)
Mg1—O2W2.0732 (13)Mg1—O11A2.0304 (13)
Mg1—O3W2.1024 (14)Mg1—O11B2.0237 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O8W0.911.792.700 (2)179
O1W—H12W···O6Wi0.881.932.7934 (19)170
O2W—H21W···O12A0.762.112.8001 (18)152
O2W—H22W···O6W0.871.872.7375 (18)178
O3W—H31W···O7W0.802.022.8213 (19)170
O3W—H32W···O5Wii0.901.892.7722 (18)170
O4W—H41W···O12B0.802.002.7310 (18)151
O4W—H42W···O5Wiii0.831.972.7986 (18)174
O5W—H51W···O7Wiii0.862.112.9449 (19)164
O5W—H52W···O1W0.862.172.9702 (19)155
O6W—H61W···O12Ai0.862.002.8404 (19)163
O6W—H62W···O3Wiv0.862.142.9522 (19)159
O7W—H71W···O12Bv0.891.872.708 (2)158
O7W—H72W···O32Bvi0.862.503.236 (2)145
O8W—H81W···O12Ai0.901.992.7737 (19)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+2, y+1, z+1; (v) x+2, y, z+1; (vi) x, y, z+1.
 

Acknowledgements

The author acknowledges financial support from the Australian Research Council, the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationArlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). Cryst. Growth Des. 11, 1318–1327.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorgant, G., Bouhmaida, N., Balde, L., Ghemani, N. E. & d'Angelo, J. (2006). Polyhedron, 25, 2229–2235.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, B. R., Sawant, J. V., Näther, C. & Bensch, W. (2007). J. Chem. Sci. (Bangalore, India), 119, 243–252.  Google Scholar
First citationSrinivasan, B. R., Shetgaonker, S. Y. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 130–136.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds