organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o594-o595

(E)-3-(4-Meth­­oxy­phen­yl)-3-[3-(4-meth­­oxy­phen­yl)-1H-pyrazol-1-yl]prop-2-enal

aDepartment of Lighthouses & Lightships, Ministry of Shipping, Nagapattinam Lighthouse & DGPS Station, Nagapattinam 611 001, India, bDepartment of Physics, University College of Engineering, Nagercoil, Anna University, Tirunelveli Region, Nagercoil 629 004, India, cDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India, dInstitute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Pardubice 53210, Czech Republic, and eDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: athi81s@yahoo.co.in

(Received 15 March 2013; accepted 20 March 2013; online 28 March 2013)

In the title mol­ecule, C20H18N2O3, the pyrazole ring forms a dihedral angle of 2.2 (1)° with its meth­oxy­phenyl substituent and a dihedral angle of 67.2 (1)° with the benzene substituent on the propenal unit. In the crystal, mol­ecules are connected by weak C—H⋯O hydrogen bonds, forming R22(26) and R22(28) cyclic dimers that lie about crystallographic inversion centres. These dimers are further linked through C—H⋯O and C—H⋯N hydrogen bonds, forming C(8), C(9), C(10) and C(16) chain motifs. These primary motifs are further linked to form secondary C22(15) chains and R22(18) rings.

Related literature

For the pharmacological and medicinal properties of pyrazole compounds, see: Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]); Bruno et al. (1990[Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147-66.]); Chen & Li (1998[Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.]); Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105-2108.]); Londershausen (1996[Londershausen, M. (1996). Pestic. Sci. 48, 269-274.]); Mishra et al. (1998[Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199-200.]); Smith et al. (2001[Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-119.]). For related structures, see: Susindran et al. (2010a[Susindran, V., Athimoolam, S., Bahadur, S. A., Manikannan, R. & Muthusubramanian, S. (2010a). Acta Cryst. E66, o2594-o2595.],b[Susindran, V., Athimoolam, S., Bahadur, S. A., Sridhar, B., Manikannan, R. & Muthusubramanian, S. (2010b). Acta Cryst. E66, o577.], 2012[Susindran, V., Athimoolam, S., Bahadur, S. A., Manikannan, R. & Muthusubramanian, S. (2012). Acta Cryst. E68, o2845.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O3

  • Mr = 334.36

  • Triclinic, [P \overline 1]

  • a = 8.8081 (6) Å

  • b = 9.8474 (5) Å

  • c = 10.3292 (8) Å

  • α = 94.997 (12)°

  • β = 93.811 (14)°

  • γ = 106.719 (13)°

  • V = 850.85 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 8253 measured reflections

  • 2993 independent reflections

  • 2677 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.04

  • 2993 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.93 2.73 3.366 (2) 126
C18—H18C⋯N2i 0.96 2.74 3.627 (2) 155
C14—H14⋯O2ii 0.93 2.49 3.301 (2) 145
C33—H33⋯O1iii 0.93 2.82 3.642 (2) 148
C37—H37B⋯O2iv 0.96 2.75 3.688 (2) 166
C37—H37C⋯O1v 0.96 2.76 3.650 (2) 155
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+2, -z+1; (v) x, y+1, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazoles are classified as both aromatic ring compounds and heterocyclic compounds and are characterized by a 5-membered ring structure composed of three carbon atoms and two nitrogen atoms in adjacent positions in the unsubstituted parent compound. Being so composed and having pharmacological effects on humans, they are classified as alkaloids although they are rare in nature. Pyrazole and its derivatives have been successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al.,1998), anti-inflammatory (Smith et al., 2001), antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998) and pesticidal (Londershausen, 1996) activities. Based on the above specifics and also as part of our continuing work on pyrazole related compounds (Susindran et al., 2010a,b, 2012), we report here the structure of the title pyrazole derivative.

The molecular structure of the title compound is shown in Fig. 1. The phenyl rings of the methoxyphenyl groups and the plane of the pyrazole ring form dihedral angles of 2.2 (1)° (with the C31—C36 ring) and 67.2 (1)° (with the C12—C17 ring). The crystal packing is stabilized through weak intermolecular C—H···O and C—H···N interactions (Table 1). Molecules are connected around inversion centres of the unit cell making R22(26) and R22(28) ring motifs (Etter et al., 1990) through C33—H33···O1 and C37—H37B···O2 interactions, respectively. These pairs of dimeric rings are further connected in a head-to-tail fashion by C37—H37B···O2 and C33—H33···O1 contacts, Table 1, to generate sheets of dimers approximately parallel to (112). These contacts also generate C22(15) chains in the ab-plane, Fig 2.

Additional chains are generated in the crystal as follows. A C(8) chain forms along the a-axis through a C14—H14···O2 interaction (Fig. 3) while C5—H5···O3 and C18—H18C···N2 contacts generate C(9) and C(10) chains along b. A combination of these contacts also generate an R22(18) ring motif (Fig. 4). Finally a C(16) chain of molecules linked in a head to tail fashion forms along the bc diagonal through a C37—H37C···O1 contact, Fig 5.

Related literature top

For the pharmacological and medicinal properties of pyrazole compounds, see: Baraldi et al. (1998); Bruno et al. (1990); Chen & Li (1998); Cottineau et al. (2002); Londershausen (1996); Mishra et al. (1998); Smith et al. (2001). For related structures, see: Susindran et al. (2010a,b, 2012). For hydrogen-bond motifs, see: Etter et al. (1990).

Experimental top

Phosphorous oxychloride (0.024 mole) was added dropwise over 5 to 10 minutes to a mixture of 1-(4-methoxyphenyl)-1-ethanone N-[(E)-1-(4-methoxyphenyl)ethylidene]hydrazone (0.003 mole) and 3 ml of dimethyl formamide cooled in ice to 0°C. The reaction mixture was then irradiated with microwaves for 30 sec. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried over anhydrous sodium sulfate. The products were separated by column chromatography using petroleum ether and ethyl acetate mixture (98/2 v/v) as eluent. The title compound was crystallized from dichloromethane.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.96 Å and Uiso(H) = 1.2 - 1.5 Ueq (parent atom).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the primary R22(26) and R22(28) rings and the secondary C22(15) chains.
[Figure 3] Fig. 3. A view of the C(8) chain extending along the a-axis.
[Figure 4] Fig. 4. A view of the primary C(9) and C(10) chains leading to a secondary R22(18) ring motif.
[Figure 5] Fig. 5. A view of a C(16) chain motif connecting the molecules in a head-to-tail fashion along the diagonal of the bc-plane.
(E)-3-(4-Methoxyphenyl)-3-[3-(4-methoxyphenyl)-1H-pyrazol-1-yl]prop-2-enal top
Crystal data top
C20H18N2O3Z = 2
Mr = 334.36F(000) = 352
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8081 (6) ÅCell parameters from 3011 reflections
b = 9.8474 (5) Åθ = 2.2–24.3°
c = 10.3292 (8) ŵ = 0.09 mm1
α = 94.997 (12)°T = 293 K
β = 93.811 (14)°Block, colourless
γ = 106.719 (13)°0.22 × 0.19 × 0.15 mm
V = 850.85 (10) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2677 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω scansh = 1010
8253 measured reflectionsk = 1111
2993 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.057P)2 + 0.1393P]
where P = (Fo2 + 2Fc2)/3
2993 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H18N2O3γ = 106.719 (13)°
Mr = 334.36V = 850.85 (10) Å3
Triclinic, P1Z = 2
a = 8.8081 (6) ÅMo Kα radiation
b = 9.8474 (5) ŵ = 0.09 mm1
c = 10.3292 (8) ÅT = 293 K
α = 94.997 (12)°0.22 × 0.19 × 0.15 mm
β = 93.811 (14)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2677 reflections with I > 2σ(I)
8253 measured reflectionsRint = 0.020
2993 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
2993 reflectionsΔρmin = 0.25 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.69002 (13)0.52763 (11)0.64078 (11)0.0457 (3)
N20.67831 (13)0.65931 (12)0.61936 (11)0.0462 (3)
C30.76448 (15)0.69626 (14)0.52034 (12)0.0422 (3)
C40.83041 (17)0.58717 (15)0.47685 (14)0.0509 (3)
H40.89470.58740.40890.061*
C50.78079 (17)0.48282 (15)0.55426 (14)0.0505 (3)
H50.80410.39630.54960.061*
C110.60073 (15)0.45024 (14)0.73278 (13)0.0444 (3)
C120.66018 (15)0.33536 (14)0.77906 (12)0.0436 (3)
C130.81934 (16)0.36217 (15)0.82620 (14)0.0508 (3)
H130.88940.45320.82690.061*
C140.87420 (17)0.25667 (16)0.87148 (14)0.0527 (4)
H140.98070.27680.90280.063*
C150.77221 (17)0.12014 (15)0.87087 (13)0.0473 (3)
C160.61388 (17)0.09080 (14)0.82448 (13)0.0478 (3)
H160.54440.00050.82390.057*
C170.55946 (16)0.19790 (14)0.77898 (13)0.0454 (3)
H170.45300.17740.74760.055*
O10.84005 (13)0.02394 (12)0.91793 (11)0.0643 (3)
C180.7407 (2)0.11630 (18)0.92744 (19)0.0734 (5)
H18A0.65620.11130.98010.110*
H18B0.80250.17040.96690.110*
H18C0.69630.16190.84170.110*
C310.77884 (15)0.83377 (14)0.47012 (12)0.0413 (3)
C320.86613 (15)0.87520 (15)0.36586 (13)0.0460 (3)
H320.92030.81560.32870.055*
C330.87491 (16)1.00260 (15)0.31559 (13)0.0483 (3)
H330.93381.02770.24530.058*
C340.79545 (16)1.09256 (14)0.37054 (13)0.0459 (3)
C350.71081 (17)1.05416 (15)0.47681 (14)0.0507 (3)
H350.65961.11530.51570.061*
C360.70186 (17)0.92713 (15)0.52510 (13)0.0481 (3)
H360.64340.90270.59580.058*
O30.79160 (14)1.21895 (11)0.32819 (11)0.0639 (3)
C370.8698 (3)1.26075 (19)0.21679 (18)0.0768 (5)
H37A0.98161.27300.23430.115*
H37B0.85421.34920.19580.115*
H37C0.82671.18850.14450.115*
C1A0.47167 (16)0.48460 (15)0.77072 (14)0.0496 (3)
H1A0.43990.55340.72920.059*
C2A0.38042 (18)0.42069 (15)0.87178 (15)0.0547 (4)
H2A0.41990.36110.92060.066*
O20.25512 (13)0.43970 (13)0.89739 (13)0.0758 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0500 (6)0.0417 (6)0.0481 (6)0.0163 (5)0.0060 (5)0.0086 (5)
N20.0514 (7)0.0421 (6)0.0482 (6)0.0168 (5)0.0077 (5)0.0083 (5)
C30.0397 (7)0.0464 (7)0.0407 (7)0.0139 (6)0.0013 (5)0.0043 (5)
C40.0551 (8)0.0560 (8)0.0481 (8)0.0247 (7)0.0105 (6)0.0081 (6)
C50.0555 (8)0.0478 (8)0.0539 (8)0.0242 (7)0.0057 (6)0.0050 (6)
C110.0437 (7)0.0409 (7)0.0446 (7)0.0078 (6)0.0012 (6)0.0040 (5)
C120.0432 (7)0.0429 (7)0.0438 (7)0.0113 (6)0.0027 (5)0.0063 (5)
C130.0435 (7)0.0482 (8)0.0562 (8)0.0048 (6)0.0026 (6)0.0134 (6)
C140.0402 (7)0.0648 (9)0.0546 (8)0.0156 (7)0.0035 (6)0.0161 (7)
C150.0532 (8)0.0531 (8)0.0421 (7)0.0227 (7)0.0104 (6)0.0121 (6)
C160.0518 (8)0.0414 (7)0.0487 (8)0.0102 (6)0.0072 (6)0.0073 (6)
C170.0405 (7)0.0446 (7)0.0486 (7)0.0097 (6)0.0006 (6)0.0044 (6)
O10.0669 (7)0.0648 (7)0.0729 (7)0.0323 (6)0.0096 (5)0.0252 (5)
C180.0972 (13)0.0589 (10)0.0768 (12)0.0368 (9)0.0141 (10)0.0253 (8)
C310.0380 (7)0.0453 (7)0.0402 (7)0.0125 (6)0.0012 (5)0.0039 (5)
C320.0419 (7)0.0494 (8)0.0482 (7)0.0156 (6)0.0083 (6)0.0026 (6)
C330.0455 (7)0.0510 (8)0.0455 (7)0.0075 (6)0.0116 (6)0.0073 (6)
C340.0462 (7)0.0405 (7)0.0473 (7)0.0071 (6)0.0030 (6)0.0053 (6)
C350.0560 (8)0.0470 (8)0.0531 (8)0.0196 (6)0.0136 (6)0.0055 (6)
C360.0525 (8)0.0518 (8)0.0437 (7)0.0176 (6)0.0144 (6)0.0106 (6)
O30.0835 (8)0.0468 (6)0.0661 (7)0.0200 (5)0.0224 (6)0.0182 (5)
C370.1060 (14)0.0580 (10)0.0669 (11)0.0169 (9)0.0234 (10)0.0238 (8)
C1A0.0458 (8)0.0456 (8)0.0565 (8)0.0119 (6)0.0019 (6)0.0090 (6)
C2A0.0505 (8)0.0477 (8)0.0621 (9)0.0086 (6)0.0062 (7)0.0046 (7)
O20.0561 (7)0.0799 (8)0.0946 (9)0.0200 (6)0.0264 (6)0.0125 (7)
Geometric parameters (Å, º) top
N1—C51.3646 (18)C18—H18A0.9600
N1—N21.3656 (15)C18—H18B0.9600
N1—C111.4082 (17)C18—H18C0.9600
N2—C31.3281 (17)C31—C321.3869 (18)
C3—C41.4151 (19)C31—C361.3951 (19)
C3—C311.4668 (18)C32—C331.3830 (19)
C4—C51.348 (2)C32—H320.9300
C4—H40.9300C33—C341.3852 (19)
C5—H50.9300C33—H330.9300
C11—C1A1.3482 (19)C34—O31.3633 (16)
C11—C121.4779 (18)C34—C351.3865 (19)
C12—C171.3885 (18)C35—C361.3701 (19)
C12—C131.3950 (19)C35—H350.9300
C13—C141.3693 (19)C36—H360.9300
C13—H130.9300O3—C371.4116 (19)
C14—C151.385 (2)C37—H37A0.9600
C14—H140.9300C37—H37B0.9600
C15—O11.3631 (16)C37—H37C0.9600
C15—C161.383 (2)C1A—C2A1.438 (2)
C16—C171.3821 (18)C1A—H1A0.9300
C16—H160.9300C2A—O21.2133 (18)
C17—H170.9300C2A—H2A0.9300
O1—C181.422 (2)
C5—N1—N2111.08 (11)O1—C18—H18B109.5
C5—N1—C11128.12 (11)H18A—C18—H18B109.5
N2—N1—C11120.42 (11)O1—C18—H18C109.5
C3—N2—N1105.15 (10)H18A—C18—H18C109.5
N2—C3—C4110.69 (12)H18B—C18—H18C109.5
N2—C3—C31120.28 (12)C32—C31—C36117.49 (12)
C4—C3—C31129.03 (12)C32—C31—C3121.90 (12)
C5—C4—C3105.76 (12)C36—C31—C3120.60 (12)
C5—C4—H4127.1C33—C32—C31121.85 (13)
C3—C4—H4127.1C33—C32—H32119.1
C4—C5—N1107.31 (12)C31—C32—H32119.1
C4—C5—H5126.3C32—C33—C34119.60 (12)
N1—C5—H5126.3C32—C33—H33120.2
C1A—C11—N1119.20 (12)C34—C33—H33120.2
C1A—C11—C12125.76 (12)O3—C34—C33125.26 (12)
N1—C11—C12115.04 (11)O3—C34—C35115.54 (12)
C17—C12—C13117.75 (12)C33—C34—C35119.20 (13)
C17—C12—C11121.30 (12)C36—C35—C34120.67 (13)
C13—C12—C11120.94 (12)C36—C35—H35119.7
C14—C13—C12121.12 (13)C34—C35—H35119.7
C14—C13—H13119.4C35—C36—C31121.16 (13)
C12—C13—H13119.4C35—C36—H36119.4
C13—C14—C15120.43 (13)C31—C36—H36119.4
C13—C14—H14119.8C34—O3—C37118.14 (12)
C15—C14—H14119.8O3—C37—H37A109.5
O1—C15—C16125.18 (13)O3—C37—H37B109.5
O1—C15—C14115.27 (13)H37A—C37—H37B109.5
C16—C15—C14119.55 (13)O3—C37—H37C109.5
C17—C16—C15119.65 (13)H37A—C37—H37C109.5
C17—C16—H16120.2H37B—C37—H37C109.5
C15—C16—H16120.2C11—C1A—C2A123.61 (13)
C16—C17—C12121.50 (12)C11—C1A—H1A118.2
C16—C17—H17119.3C2A—C1A—H1A118.2
C12—C17—H17119.3O2—C2A—C1A124.07 (15)
C15—O1—C18118.42 (13)O2—C2A—H2A118.0
O1—C18—H18A109.5C1A—C2A—H2A118.0
C5—N1—N2—C30.92 (14)C15—C16—C17—C120.2 (2)
C11—N1—N2—C3174.43 (11)C13—C12—C17—C160.3 (2)
N1—N2—C3—C40.69 (15)C11—C12—C17—C16178.75 (12)
N1—N2—C3—C31179.94 (11)C16—C15—O1—C183.6 (2)
N2—C3—C4—C50.22 (16)C14—C15—O1—C18176.38 (14)
C31—C3—C4—C5179.40 (13)N2—C3—C31—C32179.19 (12)
C3—C4—C5—N10.35 (16)C4—C3—C31—C320.1 (2)
N2—N1—C5—C40.80 (16)N2—C3—C31—C360.28 (19)
C11—N1—C5—C4173.69 (12)C4—C3—C31—C36178.82 (13)
C5—N1—C11—C1A152.78 (14)C36—C31—C32—C331.3 (2)
N2—N1—C11—C1A19.52 (18)C3—C31—C32—C33177.64 (12)
C5—N1—C11—C1227.04 (19)C31—C32—C33—C340.3 (2)
N2—N1—C11—C12160.66 (11)C32—C33—C34—O3178.35 (12)
C1A—C11—C12—C1750.16 (19)C32—C33—C34—C351.2 (2)
N1—C11—C12—C17129.64 (13)O3—C34—C35—C36177.84 (13)
C1A—C11—C12—C13128.87 (16)C33—C34—C35—C361.8 (2)
N1—C11—C12—C1351.32 (17)C34—C35—C36—C310.8 (2)
C17—C12—C13—C140.3 (2)C32—C31—C36—C350.7 (2)
C11—C12—C13—C14178.74 (13)C3—C31—C36—C35178.22 (12)
C12—C13—C14—C150.3 (2)C33—C34—O3—C372.3 (2)
C13—C14—C15—O1179.86 (13)C35—C34—O3—C37177.29 (14)
C13—C14—C15—C160.2 (2)N1—C11—C1A—C2A174.57 (12)
O1—C15—C16—C17179.88 (12)C12—C11—C1A—C2A5.6 (2)
C14—C15—C16—C170.2 (2)C11—C1A—C2A—O2172.01 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.733.366 (2)126
C18—H18C···N2i0.962.743.627 (2)155
C14—H14···O2ii0.932.493.301 (2)145
C33—H33···O1iii0.932.823.642 (2)148
C37—H37B···O2iv0.962.753.688 (2)166
C37—H37C···O1v0.962.763.650 (2)155
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y+2, z+1; (v) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC20H18N2O3
Mr334.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8081 (6), 9.8474 (5), 10.3292 (8)
α, β, γ (°)94.997 (12), 93.811 (14), 106.719 (13)
V3)850.85 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8253, 2993, 2677
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.04
No. of reflections2993
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.733.366 (2)126
C18—H18C···N2i0.962.743.627 (2)155
C14—H14···O2ii0.932.493.301 (2)145
C33—H33···O1iii0.932.823.642 (2)148
C37—H37B···O2iv0.962.753.688 (2)166
C37—H37C···O1v0.962.763.650 (2)155
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y+2, z+1; (v) x, y+1, z1.
 

Acknowledgements

VS and SAB sincerely thank the Vice Chancellor and Management of Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement.

References

First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147–66.  CAS PubMed Web of Science Google Scholar
First citationChen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572–576.  CAS Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108.  CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLondershausen, M. (1996). Pestic. Sci. 48, 269–274.  CrossRef CAS Google Scholar
First citationMishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199–200.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSusindran, V., Athimoolam, S., Bahadur, S. A., Manikannan, R. & Muthusubramanian, S. (2010a). Acta Cryst. E66, o2594–o2595.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSusindran, V., Athimoolam, S., Bahadur, S. A., Sridhar, B., Manikannan, R. & Muthusubramanian, S. (2010b). Acta Cryst. E66, o577.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSusindran, V., Athimoolam, S., Bahadur, S. A., Manikannan, R. & Muthusubramanian, S. (2012). Acta Cryst. E68, o2845.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o594-o595
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds