organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Chloro­phen­yl)-N-cyclo­hexyl-2-oxoacetamide

aLaboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: wyz@zju.edu.cn

(Received 29 January 2013; accepted 1 March 2013; online 9 March 2013)

In the title compound, C14H16ClNO2, the cyclo­hexyl ring has a chair conformation. The dihedral angle between the benzene ring and the mean plane of the four planar C atoms of the cyclo­hexyl ring is 45.2 (3)°. The two carbonyl groups are trans to one another, with an O=C—C=O torsion angle of −137.1 (3)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds forming chains propagating along [001]. A region of disordered electron density, situated near the unit-cell corners, was treated using the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]. It gave a solvent-accessible void of ca 400 Å3 for only 21 electrons. It is probably due to traces of the solvent of crystallization and was not taken into account during structure refinement.

Related literature

For the crystal structures of substituted phenyl­glyoxamides, see: Boryczka et al. (1998[Boryczka, S., Suwinska, K., Le Guillanton, G., Do, Q. T. & Elothmani, D. (1998). J. Chem. Crystallogr. 28, 555-560.]); Dai & Wu (2011[Dai, J. & Wu, J.-L. (2011). Acta Cryst. E67, o3152.]); Jia & Wu (2012[Jia, Z.-J. & Wu, J.-L. (2012). Acta Cryst. E68, o1948.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16ClNO2

  • Mr = 265.73

  • Hexagonal, P 61

  • a = 17.075 (3) Å

  • c = 9.4536 (13) Å

  • V = 2387.0 (7) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.48 × 0.26 × 0.20 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO CCD and CrysAlis PRO RED. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.896, Tmax = 0.955

  • 15794 measured reflections

  • 3101 independent reflections

  • 2344 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.149

  • S = 1.01

  • 3101 reflections

  • 163 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1422 Friedel pairs

  • Flack parameter: −0.05 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.07 2.864 (3) 153
Symmetry code: (i) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO CCD and CrysAlis PRO RED. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The crystal structure of several substituted phenylglyoxamides have been reported (Boryczka, et al., 1998; Dai & Wu, 2011; Jia & Wu, 2012). The differences in their molecular packing depends on the hydrogen bonds present. In our effort to explore the effect of the substituent groups of phenylglyoxamide on the crystal form, we have synthesized the title compound by acetylation of cyclohexylamine with 2-chlorophenylglyoxyl chloride obtained from 2-chlorophenylglyoxic acid with oxalyl dichloride. We report herein on its crystal structure.

In the title molecule (Fig. 1), the cyclohexane ring has a chair conformation. The dihedral angle between the phenyl ring and the mean plane of the four planar C atoms of the cyclohexane ring (C10/C11/C13/C14) is 45.2 (3) °. The two carbonyl groups of the molecule are trans oriented to each other with a torsion angle O1C7-C8 O2 of -137.1 (3) °.

In the crystal, molecules are linked by N—H···O hydrogen bonds forming chains extending in the c axis direction (Table 1 and Fig. 2).

Related literature top

For the crystal structures of substituted phenylglyoxamides, see: Boryczka et al. (1998); Dai & Wu (2011); Jia & Wu (2012).

Experimental top

To a solution of 2-chlorophenylglyoxylic acid (184 mg, 1.0 mmol) in dichloromethane (3 mL), was added oxalyl chloride (0.22 mL, 2.5 mmol) over 5 min. DMF (dimethylformamide) ( 1 drop) was then added and the solution was warmed to room temperature and stirred for 1.5 h. The solvent was removed under reduced pressure to afford 2-chlorophenylglyoxyl chloride which was used for the next step without further purification. To a solution of cyclohexylamine (0.23 mL, 2.0 mmol) and triethylamine (0.83 mL, 6.0 mmol) in dichloromethane (5 mL), was added dropwise the solution of the above glyoxyl chloride in dichloromethane (1 mL) at 273 K under N2, and the mixture was stirred for 4 h. The reaction was quenched with saturated NH4Cl solution (2 mL), then the organic layer was separated and the aqueous layer was extracted with dichloromethane (5 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and filtered, the filtrate was concentrated under reduced pressure. The resulting residue was purified by column chromatography (silica gel, 20% ethyl acetate in hexane) to afford the title compound as colourless needles (227 mg, 85% yield from glyoxylic acid), m.p. 375-376 K. Single crystals suitable for X-ray diffraction were grown from a mixture of dichloromethane and hexane (1:1 v/v).

Refinement top

A region of disordered electron density, situated near the unit cell corners, was treated using the SQUEEZE routine in PLATON (Spek, 2009). It gave a solvent accessible void of ca. 400 Å3 for only 21 electrons. It is probably due to traces of the solvent of crystallization and was not taken into account during structure refinement.

The H atoms were placed in calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.93, 0.98 and 0.97 Å for CH(aromatic), CH and CH2 atoms, respectively, with Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at 40% probability level.
[Figure 2] Fig. 2. A view of the formation of the one-dimensional chain of the title compound via N—H···O hydrogen bonds [dashed lines; symmetry code: (i) -x+1, -y+1, z-1/2; see Table 1 for details].
2-(2-Chlorophenyl)-N-cyclohexyl-2-oxoacetamide top
Crystal data top
C14H16ClNO2Dx = 1.109 Mg m3
Mr = 265.73Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P61Cell parameters from 2933 reflections
Hall symbol: P 61θ = 3.2–29.4°
a = 17.075 (3) ŵ = 0.24 mm1
c = 9.4536 (13) ÅT = 293 K
V = 2387.0 (7) Å3Needle, colourless
Z = 60.48 × 0.26 × 0.20 mm
F(000) = 840
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3101 independent reflections
Radiation source: fine-focus sealed tube2344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10.3592 pixels mm-1θmax = 26.1°, θmin = 3.2°
ω scansh = 1621
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2119
Tmin = 0.896, Tmax = 0.955l = 1111
15794 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0919P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3101 reflectionsΔρmax = 0.19 e Å3
163 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1422 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
C14H16ClNO2Z = 6
Mr = 265.73Mo Kα radiation
Hexagonal, P61µ = 0.24 mm1
a = 17.075 (3) ÅT = 293 K
c = 9.4536 (13) Å0.48 × 0.26 × 0.20 mm
V = 2387.0 (7) Å3
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3101 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2344 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.955Rint = 0.047
15794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.149Δρmax = 0.19 e Å3
S = 1.01Δρmin = 0.17 e Å3
3101 reflectionsAbsolute structure: Flack (1983), 1422 Friedel pairs
163 parametersAbsolute structure parameter: 0.05 (3)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.69837 (7)0.67833 (8)0.10734 (15)0.1067 (4)
O10.43847 (15)0.60191 (15)0.0815 (2)0.0736 (8)
O20.52877 (16)0.55421 (14)0.3612 (2)0.0672 (8)
N10.48258 (16)0.46907 (14)0.1620 (2)0.0538 (8)
C10.6611 (2)0.7465 (2)0.1859 (4)0.0703 (11)
C20.7225 (3)0.8325 (3)0.2271 (6)0.1002 (16)
C30.6930 (4)0.8869 (3)0.2830 (6)0.1072 (18)
C40.6038 (3)0.8566 (2)0.2982 (5)0.0948 (16)
C50.5408 (2)0.7700 (2)0.2549 (4)0.0705 (11)
C60.5693 (2)0.71274 (18)0.2003 (3)0.0539 (9)
C70.5009 (2)0.61862 (19)0.1599 (3)0.0508 (9)
C80.50637 (18)0.54310 (18)0.2353 (3)0.0481 (8)
C90.4826 (2)0.38896 (18)0.2192 (3)0.0541 (9)
C100.5628 (2)0.3843 (2)0.1677 (4)0.0786 (14)
C110.5633 (3)0.3014 (3)0.2262 (5)0.0919 (17)
C120.4763 (3)0.2157 (2)0.1922 (4)0.0913 (16)
C130.3966 (3)0.2207 (3)0.2424 (7)0.112 (2)
C140.3952 (2)0.3033 (2)0.1816 (6)0.0897 (14)
H10.466100.467400.075500.0650*
H20.784100.853800.217200.1210*
H30.734800.945500.310800.1280*
H40.584500.894000.337800.1140*
H50.479300.750200.262300.0840*
H90.486400.394300.322500.0650*
H10A0.617600.438500.196600.0940*
H10B0.561800.382000.065100.0940*
H11A0.613800.298000.185900.1100*
H11B0.571500.307200.327900.1100*
H12A0.471900.205900.090700.1100*
H12B0.476800.164800.236700.1100*
H13A0.397700.224000.344900.1350*
H13B0.341800.166200.214600.1350*
H14A0.388600.297800.079600.1080*
H14B0.344100.306400.219800.1080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0872 (6)0.1113 (7)0.1394 (9)0.0629 (6)0.0331 (6)0.0112 (7)
O10.0885 (15)0.0802 (14)0.0662 (14)0.0527 (12)0.0205 (12)0.0011 (11)
O20.1098 (16)0.0723 (12)0.0345 (11)0.0567 (12)0.0018 (10)0.0010 (9)
N10.0815 (16)0.0613 (13)0.0317 (11)0.0455 (13)0.0049 (10)0.0001 (10)
C10.078 (2)0.0719 (19)0.0720 (19)0.0458 (17)0.0126 (16)0.0028 (16)
C20.071 (2)0.080 (2)0.134 (4)0.026 (2)0.012 (2)0.000 (2)
C30.118 (3)0.059 (2)0.131 (4)0.034 (2)0.011 (3)0.005 (2)
C40.125 (3)0.065 (2)0.107 (3)0.057 (2)0.017 (3)0.002 (2)
C50.085 (2)0.0680 (19)0.075 (2)0.0507 (17)0.0183 (18)0.0131 (17)
C60.0733 (18)0.0610 (16)0.0410 (15)0.0437 (15)0.0088 (12)0.0106 (12)
C70.0668 (16)0.0663 (16)0.0346 (13)0.0448 (14)0.0051 (12)0.0015 (11)
C80.0634 (15)0.0629 (15)0.0294 (14)0.0402 (13)0.0065 (11)0.0036 (11)
C90.0799 (18)0.0569 (15)0.0362 (13)0.0422 (14)0.0037 (12)0.0053 (11)
C100.073 (2)0.073 (2)0.101 (3)0.0449 (17)0.0086 (18)0.0180 (19)
C110.100 (3)0.095 (3)0.109 (3)0.070 (2)0.008 (2)0.019 (2)
C120.145 (4)0.070 (2)0.078 (2)0.068 (2)0.015 (2)0.0055 (19)
C130.096 (3)0.064 (2)0.161 (5)0.028 (2)0.001 (3)0.040 (3)
C140.072 (2)0.068 (2)0.128 (3)0.0342 (18)0.003 (2)0.026 (2)
Geometric parameters (Å, º) top
Cl1—C11.747 (4)C12—C131.484 (8)
O1—C71.210 (4)C13—C141.534 (6)
O2—C81.235 (3)C2—H20.9300
N1—C81.315 (3)C3—H30.9300
N1—C91.471 (4)C4—H40.9300
N1—H10.8600C5—H50.9300
C1—C61.380 (5)C9—H90.9800
C1—C21.367 (6)C10—H10A0.9700
C2—C31.365 (8)C10—H10B0.9700
C3—C41.349 (9)C11—H11A0.9700
C4—C51.386 (5)C11—H11B0.9700
C5—C61.391 (5)C12—H12A0.9700
C6—C71.489 (4)C12—H12B0.9700
C7—C81.517 (4)C13—H13A0.9700
C9—C141.520 (5)C13—H13B0.9700
C9—C101.493 (5)C14—H14A0.9700
C10—C111.524 (6)C14—H14B0.9700
C11—C121.509 (6)
C8—N1—C9123.8 (2)C5—C4—H4120.00
C9—N1—H1118.00C4—C5—H5120.00
C8—N1—H1118.00C6—C5—H5120.00
Cl1—C1—C6118.7 (2)N1—C9—H9108.00
Cl1—C1—C2119.9 (3)C10—C9—H9108.00
C2—C1—C6121.4 (4)C14—C9—H9108.00
C1—C2—C3119.7 (5)C9—C10—H10A109.00
C2—C3—C4120.7 (4)C9—C10—H10B109.00
C3—C4—C5120.2 (4)C11—C10—H10A109.00
C4—C5—C6120.1 (4)C11—C10—H10B109.00
C1—C6—C7122.7 (3)H10A—C10—H10B108.00
C1—C6—C5117.8 (3)C10—C11—H11A109.00
C5—C6—C7119.5 (3)C10—C11—H11B109.00
C6—C7—C8116.7 (3)C12—C11—H11A109.00
O1—C7—C8120.6 (3)C12—C11—H11B109.00
O1—C7—C6122.4 (3)H11A—C11—H11B108.00
O2—C8—N1125.3 (3)C11—C12—H12A109.00
O2—C8—C7117.9 (2)C11—C12—H12B109.00
N1—C8—C7116.7 (2)C13—C12—H12A109.00
N1—C9—C10110.9 (2)C13—C12—H12B109.00
C10—C9—C14111.0 (3)H12A—C12—H12B108.00
N1—C9—C14110.6 (3)C12—C13—H13A109.00
C9—C10—C11111.3 (3)C12—C13—H13B109.00
C10—C11—C12111.3 (4)C14—C13—H13A109.00
C11—C12—C13111.3 (4)C14—C13—H13B109.00
C12—C13—C14111.7 (4)H13A—C13—H13B108.00
C9—C14—C13109.8 (4)C9—C14—H14A110.00
C1—C2—H2120.00C9—C14—H14B110.00
C3—C2—H2120.00C13—C14—H14A110.00
C2—C3—H3120.00C13—C14—H14B110.00
C4—C3—H3120.00H14A—C14—H14B108.00
C3—C4—H4120.00
C8—N1—C9—C14133.5 (4)C1—C6—C7—C859.6 (4)
C9—N1—C8—O22.4 (5)C5—C6—C7—O152.5 (4)
C9—N1—C8—C7179.1 (3)C5—C6—C7—C8120.4 (3)
C8—N1—C9—C10103.0 (3)O1—C7—C8—N139.9 (5)
C6—C1—C2—C30.4 (7)C6—C7—C8—O236.0 (4)
Cl1—C1—C6—C5176.0 (3)C6—C7—C8—N1147.0 (3)
Cl1—C1—C6—C73.9 (4)O1—C7—C8—O2137.1 (3)
Cl1—C1—C2—C3177.3 (4)N1—C9—C10—C11179.9 (3)
C2—C1—C6—C51.7 (6)C14—C9—C10—C1156.5 (4)
C2—C1—C6—C7178.4 (4)N1—C9—C14—C13179.9 (4)
C1—C2—C3—C40.1 (8)C10—C9—C14—C1356.6 (5)
C2—C3—C4—C51.1 (8)C9—C10—C11—C1255.2 (4)
C3—C4—C5—C62.4 (6)C10—C11—C12—C1354.8 (5)
C4—C5—C6—C7177.4 (3)C11—C12—C13—C1455.9 (6)
C4—C5—C6—C12.6 (5)C12—C13—C14—C956.5 (6)
C1—C6—C7—O1127.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.072.864 (3)153
Symmetry code: (i) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC14H16ClNO2
Mr265.73
Crystal system, space groupHexagonal, P61
Temperature (K)293
a, c (Å)17.075 (3), 9.4536 (13)
V3)2387.0 (7)
Z6
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.48 × 0.26 × 0.20
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.896, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
15794, 3101, 2344
Rint0.047
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.149, 1.01
No. of reflections3101
No. of parameters163
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17
Absolute structureFlack (1983), 1422 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.072.864 (3)153
Symmetry code: (i) x+1, y+1, z1/2.
 

Acknowledgements

The authors gratefully acknowledge Mr Jiyong Liu and Jianming Gu of Zhejiang University for their assistance with the crystal structure analysis and useful dicussions.

References

First citationAgilent (2011). CrysAlis PRO CCD and CrysAlis PRO RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBoryczka, S., Suwinska, K., Le Guillanton, G., Do, Q. T. & Elothmani, D. (1998). J. Chem. Crystallogr. 28, 555–560.  Web of Science CSD CrossRef CAS Google Scholar
First citationDai, J. & Wu, J.-L. (2011). Acta Cryst. E67, o3152.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJia, Z.-J. & Wu, J.-L. (2012). Acta Cryst. E68, o1948.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds