organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o474-o475

2-[2-(4-Meth­­oxy­phen­yl)-4,5-di­phenyl-1H-imidazol-1-yl]ethanol

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dPharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, Egypt, eMamedaliev Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan, and fDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan
*Correspondence e-mail: shaabankamel@yahoo.com, akkurt@erciyes.edu.tr

(Received 7 February 2013; accepted 13 February 2013; online 2 March 2013)

In the title compound, C24H22N2O2, the central imidazole ring makes dihedral angles of 49.45 (8), 88.94 (9) and 19.43 (8)° with the benzene ring and the two phenyl rings, respectively. The dihedral angle between the phenyl rings is 77.86 (9)°, and they form dihedral angles of 49.06 (9) and 67.31 (8)° with the benzene ring. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming chains along the b axis. These chains are connected by C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (100). In addition, C—H⋯π inter­actions are also observed. The terminal C and O atoms of the ethanol group are disordered over two sets of sites with an occupancy ratio of 0.801 (5):0.199 (5).

Related literature

For imidazole derivatives as anti­cancer agents, see, for example: Krezel (1998[Krezel, I. (1998). Il Farmaco, 53, 342-345.]); Andreani et al. (2000[Andreani, A., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Recanatini, M. & Garaliene, V. (2000). Bioorg. Med. Chem. 8, 2359-2366.]). For related structures, see: Akkurt et al. (2012[Akkurt, M., Marzouk, A. A., Abbasov, V. M., Abdelhamid, A. A. & Gurbanov, A. V. (2012). Acta Cryst. E68, o3113-o3114.]); Mohamed et al. (2012[Mohamed, S. K., Akkurt, M., Fronczek, F. R., Marzouk, A. A. E. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o2979-o2980.]). For further biological applications of imidazoles, see: Maier et al. (1989a[Maier, T., Schmierer, R., Bauer, K., Bieringer, H., Buerstell, H. & Sachse, B. (1989a). US Patent 4 820 335.],b[Maier, T., Schmierer, R., Bauer, K., Bieringer, H., Buerstell, H. & Sachse, B. (1989b). Chem. Abstr. 111, 19494.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22N2O2

  • Mr = 370.44

  • Monoclinic, P 21 /c

  • a = 14.3570 (4) Å

  • b = 13.2820 (4) Å

  • c = 10.7380 (3) Å

  • β = 108.212 (1)°

  • V = 1945.05 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.976

  • 18622 measured reflections

  • 3822 independent reflections

  • 3046 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.04

  • 3822 reflections

  • 269 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯N2i 0.82 2.01 2.829 (3) 175
C9—H9⋯O1Aii 0.93 2.58 3.452 (3) 156
C24—H24⋯O1Aiii 0.93 2.53 3.448 (4) 170
C23—H23⋯Cg1iii 0.93 2.90 3.736 (2) 151
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic compounds such as imidazoles have been a traditional focal point for the development of new bio-active molecules such as anticancer agents (Krezel, 1998; Andreani et al. 2000). Many of the substituted imidazoles are known as inhibitors of fungicides and herbicides, plant growth regulators and therapeutic agents (Maier et al. 1989a,b). As part of our on-going study to develop new routes for synthesis of tetra-substituted imidazole based amino alcohol compounds, we herein report the synthesis and crystal structure of the title compound.

In the title compound, Fig. 1, the central 1H-imidazole ring (N1/N2/C1—C3) makes dihedral angles of 49.45 (8), 88.94 (9) and 19.43 (8)°, with the benzene ring (C4–C9) and two phenyl rings (C13–C18 and C19–C24), respectively. The dihedral angle between the (C13–C18 and C19–C24) phenyl rings is 77.86 (9)°. The (C4–C9) benzene ring forms dihedral angles of 49.06 (9) and 67.31 (8)° with two the phenyl rings (C13–C18 and C19–C24), respectively. The N1–C11–C12A–O1A torsion angle is 46.6 (2)°. The values of the bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Akkurt et al., 2012; Mohamed et al., 2012).

In the crystal, O—H···N hydrogen bonds (Table 1 and Fig 2) connect the molecules to form chains along the b axis direction. These chains are linked by C—H···O hydrogen bonds forming a two-dimensional network parallel to the bc plane. There are also C—H···π interactions present (Table 1).

Related literature top

For imidazole derivatives as anticancer agents, see, for example: Krezel (1998); Andreani et al. (2000). For related structures, see: Akkurt et al. (2012); Mohamed et al. (2012). For further biological applications of imidazoles, see: Maier et al. (1989a,b). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 2.1 g (10 mmol) 1,2-diphenylethane-1,2-dione, 1.36 g (10 mmol) 4-methoxybenzaldehyde, 0.67 g (11 mmol) 2-aminoethanol and 0.77 g (10 mmol) ammonium acetate was added to 0.5 g (3 mmol) of a fresh prepared diethyl ammonium hydrogen sulfate as an ionic liquid. The reaction mixture was heated on oil bath at 373 K and monitored by TLC till completion after 30 min then poured on water. The obtained solid was filtered off, washed with cold ethanol and dried under vacuum. The crude product was crystallized from ethanol to afford colourless prisms (m.p. 460 – 462 K), by slow evaporation at room temperature, in excellent yield (95%).

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å, C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98 Å (methine) H atoms, respectively, and refined as riding with Uiso(H) = 1.5 Ueq(O) for hydroxyl H atoms, and = 1.2 Ueq(C) for other H atoms. Atoms C12 and O1 of the ethanol group are disordered over two sites (A and B), with occupancies of 0.801 (5):0.199 (5). Atoms O1A and O1B were refined with the EADP command.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the O—H···N and C—H···O hydrogen bonds (dashed lines; see Table 1 for details). H atoms not involved in hydrogen bonding have been omitted for clarity.
2-[2-(4-Methoxyphenyl)-4,5-diphenyl-1H-imidazol-1-yl]ethanol top
Crystal data top
C24H22N2O2F(000) = 784
Mr = 370.44Dx = 1.265 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6445 reflections
a = 14.3570 (4) Åθ = 2.5–28.1°
b = 13.2820 (4) ŵ = 0.08 mm1
c = 10.7380 (3) ÅT = 296 K
β = 108.212 (1)°Prism, colourless
V = 1945.05 (10) Å30.30 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3822 independent reflections
Radiation source: fine-focus sealed tube3046 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.976, Tmax = 0.976k = 1616
18622 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.4175P]
where P = (Fo2 + 2Fc2)/3
3822 reflections(Δ/σ)max < 0.001
269 parametersΔρmax = 0.16 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H22N2O2V = 1945.05 (10) Å3
Mr = 370.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3570 (4) ŵ = 0.08 mm1
b = 13.2820 (4) ÅT = 296 K
c = 10.7380 (3) Å0.30 × 0.30 × 0.30 mm
β = 108.212 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3822 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3046 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.976Rint = 0.022
18622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
3822 reflectionsΔρmin = 0.18 e Å3
269 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.4684 (2)0.37249 (19)0.2105 (2)0.0601 (7)0.801 (5)
O20.85914 (8)0.08118 (11)0.17179 (13)0.0735 (5)
N10.39627 (8)0.18785 (8)0.09335 (11)0.0404 (3)
N20.43176 (8)0.05860 (9)0.22977 (11)0.0417 (4)
C10.31198 (10)0.16540 (10)0.12402 (13)0.0392 (4)
C20.33467 (10)0.08474 (10)0.20781 (13)0.0386 (4)
C30.46645 (10)0.12152 (10)0.16028 (14)0.0400 (4)
C40.56824 (10)0.11574 (11)0.15705 (14)0.0426 (4)
C50.64400 (12)0.10619 (14)0.27435 (16)0.0554 (6)
C60.73926 (12)0.09378 (15)0.27566 (17)0.0621 (6)
C70.76170 (11)0.09152 (12)0.16002 (17)0.0523 (5)
C80.68762 (12)0.09900 (12)0.04244 (16)0.0518 (5)
C90.59175 (11)0.11052 (12)0.04197 (15)0.0496 (5)
C100.88821 (14)0.09847 (18)0.0591 (2)0.0797 (8)
C110.40902 (12)0.27268 (11)0.01273 (15)0.0507 (5)
C12A0.40758 (15)0.37524 (14)0.0781 (2)0.0462 (7)0.801 (5)
C130.21836 (10)0.22019 (11)0.06779 (14)0.0428 (5)
C140.19561 (13)0.30302 (13)0.13025 (18)0.0605 (6)
C150.10593 (15)0.34991 (17)0.0819 (2)0.0764 (8)
C160.03897 (14)0.31534 (19)0.0294 (2)0.0799 (8)
C170.06034 (14)0.23439 (19)0.0938 (2)0.0808 (8)
C180.15028 (12)0.18658 (14)0.04567 (17)0.0616 (6)
C190.27150 (10)0.02319 (10)0.26213 (13)0.0413 (4)
C200.18141 (12)0.05525 (13)0.26891 (17)0.0543 (6)
C210.12225 (13)0.00802 (14)0.31328 (18)0.0628 (6)
C220.15231 (14)0.10348 (14)0.35442 (18)0.0632 (7)
C230.24208 (15)0.13547 (14)0.3522 (2)0.0707 (7)
C240.30092 (13)0.07337 (12)0.30620 (18)0.0593 (6)
O1B0.4482 (10)0.3797 (10)0.1690 (11)0.0601 (7)0.199 (5)
C12B0.4757 (6)0.3448 (6)0.0623 (8)0.053 (3)0.199 (5)
H60.788900.086900.355100.0750*
H80.702000.096300.036200.0620*
H90.541900.114800.037800.0600*
H10A0.862700.046000.003700.1200*
H10B0.958500.098900.083500.1200*
H1OA0.495000.427300.230800.0900*0.801 (5)
H50.630000.108200.353200.0670*
H11B0.470900.265100.004800.0610*0.801 (5)
H12A0.430700.427000.031200.0550*0.801 (5)
H12B0.341000.391700.074500.0550*0.801 (5)
H140.241400.327500.206000.0730*
H150.091200.405200.125400.0920*
H160.021600.346900.061700.0960*
H170.014400.211200.170300.0970*
H180.164700.131600.090100.0740*
H200.160400.120400.243200.0650*
H210.061400.014500.315200.0750*
H220.112100.146100.383600.0760*
H230.263700.199700.381900.0850*
H240.361600.096700.304700.0710*
H10C0.863100.162300.021200.1200*
H11A0.357100.271000.070600.0610*0.801 (5)
H1OB0.477600.432000.196900.0900*0.199 (5)
H11C0.425800.244500.060800.0610*0.199 (5)
H11D0.345400.304500.023100.0610*0.199 (5)
H12C0.471700.398000.001100.0640*0.199 (5)
H12D0.541700.317600.090600.0640*0.199 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0760 (15)0.0472 (8)0.0422 (14)0.0150 (9)0.0031 (11)0.0009 (10)
O20.0444 (6)0.1058 (11)0.0707 (8)0.0008 (6)0.0188 (6)0.0010 (7)
N10.0451 (6)0.0354 (6)0.0391 (6)0.0005 (5)0.0107 (5)0.0024 (5)
N20.0440 (7)0.0361 (6)0.0427 (7)0.0011 (5)0.0102 (5)0.0016 (5)
C10.0428 (7)0.0357 (7)0.0378 (7)0.0013 (6)0.0108 (6)0.0019 (6)
C20.0425 (7)0.0345 (7)0.0369 (7)0.0003 (6)0.0099 (6)0.0029 (6)
C30.0437 (8)0.0353 (7)0.0384 (7)0.0007 (6)0.0091 (6)0.0010 (6)
C40.0434 (8)0.0378 (7)0.0445 (8)0.0017 (6)0.0106 (6)0.0002 (6)
C50.0494 (9)0.0732 (11)0.0426 (9)0.0019 (8)0.0128 (7)0.0073 (8)
C60.0453 (9)0.0859 (13)0.0487 (10)0.0025 (8)0.0054 (7)0.0085 (9)
C70.0424 (8)0.0537 (9)0.0595 (10)0.0027 (7)0.0141 (7)0.0029 (7)
C80.0532 (9)0.0559 (9)0.0478 (9)0.0034 (7)0.0179 (7)0.0124 (7)
C90.0471 (8)0.0538 (9)0.0434 (8)0.0008 (7)0.0077 (7)0.0101 (7)
C100.0578 (11)0.1018 (16)0.0886 (15)0.0032 (10)0.0361 (11)0.0036 (12)
C110.0593 (9)0.0455 (9)0.0474 (9)0.0017 (7)0.0170 (7)0.0112 (7)
C12A0.0448 (12)0.0388 (10)0.0489 (13)0.0008 (8)0.0059 (10)0.0084 (8)
C130.0429 (8)0.0424 (8)0.0421 (8)0.0005 (6)0.0118 (6)0.0086 (6)
C140.0619 (10)0.0560 (10)0.0594 (10)0.0146 (8)0.0130 (8)0.0008 (8)
C150.0730 (13)0.0769 (13)0.0854 (15)0.0310 (11)0.0337 (12)0.0189 (11)
C160.0457 (10)0.1047 (17)0.0919 (16)0.0193 (11)0.0254 (11)0.0434 (14)
C170.0498 (11)0.1072 (17)0.0695 (13)0.0099 (11)0.0044 (9)0.0164 (12)
C180.0567 (10)0.0660 (11)0.0535 (10)0.0065 (8)0.0049 (8)0.0003 (8)
C190.0475 (8)0.0397 (8)0.0350 (7)0.0050 (6)0.0105 (6)0.0034 (6)
C200.0587 (10)0.0475 (9)0.0615 (10)0.0017 (7)0.0259 (8)0.0015 (8)
C210.0595 (10)0.0703 (12)0.0669 (11)0.0057 (9)0.0317 (9)0.0016 (9)
C220.0722 (12)0.0628 (11)0.0594 (11)0.0201 (9)0.0277 (9)0.0015 (9)
C230.0804 (13)0.0481 (10)0.0867 (14)0.0044 (9)0.0308 (11)0.0179 (9)
C240.0584 (10)0.0467 (9)0.0751 (12)0.0015 (8)0.0244 (9)0.0127 (8)
O1B0.0760 (15)0.0472 (8)0.0422 (14)0.0150 (9)0.0031 (11)0.0009 (10)
C12B0.051 (5)0.053 (5)0.058 (5)0.005 (4)0.021 (4)0.007 (4)
Geometric parameters (Å, º) top
O1A—C12A1.417 (3)C19—C241.386 (2)
O1B—C12B1.402 (15)C20—C211.381 (3)
O2—C101.417 (2)C21—C221.367 (3)
O2—C71.372 (2)C22—C231.364 (3)
O1A—H1OA0.8200C23—C241.378 (3)
O1B—H1OB0.8200C5—H50.9300
N1—C111.4668 (19)C6—H60.9300
N1—C11.3824 (19)C8—H80.9300
N1—C31.3621 (18)C9—H90.9300
N2—C21.3834 (19)C10—H10A0.9600
N2—C31.3174 (18)C10—H10C0.9600
C1—C21.3712 (19)C10—H10B0.9600
C1—C131.481 (2)C11—H11A0.9700
C2—C191.470 (2)C11—H11C0.9700
C3—C41.475 (2)C11—H11D0.9700
C4—C91.381 (2)C11—H11B0.9700
C4—C51.389 (2)C12A—H12A0.9700
C5—C61.373 (3)C12A—H12B0.9700
C6—C71.377 (2)C12B—H12C0.9700
C7—C81.377 (2)C12B—H12D0.9700
C8—C91.383 (2)C14—H140.9300
C11—C12B1.341 (9)C15—H150.9300
C11—C12A1.536 (2)C16—H160.9300
C13—C141.380 (2)C17—H170.9300
C13—C181.377 (2)C18—H180.9300
C14—C151.377 (3)C20—H200.9300
C15—C161.358 (3)C21—H210.9300
C16—C171.364 (3)C22—H220.9300
C17—C181.386 (3)C23—H230.9300
C19—C201.385 (2)C24—H240.9300
C7—O2—C10117.99 (15)C9—C8—H8120.00
C12A—O1A—H1OA109.00C7—C8—H8120.00
C12B—O1B—H1OB110.00C4—C9—H9119.00
C1—N1—C11125.90 (12)C8—C9—H9119.00
C3—N1—C11126.88 (13)O2—C10—H10B109.00
C1—N1—C3107.04 (11)O2—C10—H10C109.00
C2—N2—C3106.46 (12)O2—C10—H10A109.00
N1—C1—C2106.18 (12)H10A—C10—H10C109.00
C2—C1—C13130.59 (14)H10B—C10—H10C109.00
N1—C1—C13123.19 (12)H10A—C10—H10B110.00
N2—C2—C1109.15 (13)N1—C11—H11A109.00
C1—C2—C19130.18 (14)N1—C11—H11C107.00
N2—C2—C19120.43 (12)N1—C11—H11D107.00
N1—C3—N2111.16 (13)N1—C11—H11B109.00
N1—C3—C4126.61 (13)C12A—C11—H11B109.00
N2—C3—C4122.22 (13)H11A—C11—H11B108.00
C3—C4—C9123.02 (13)C12B—C11—H11C106.00
C5—C4—C9117.76 (15)C12B—C11—H11D108.00
C3—C4—C5118.97 (14)H11C—C11—H11D107.00
C4—C5—C6121.02 (15)C12A—C11—H11A109.00
C5—C6—C7120.42 (16)O1A—C12A—H12B110.00
O2—C7—C8124.40 (16)C11—C12A—H12A110.00
O2—C7—C6116.00 (15)O1A—C12A—H12A110.00
C6—C7—C8119.60 (16)H12A—C12A—H12B108.00
C7—C8—C9119.60 (15)C11—C12A—H12B110.00
C4—C9—C8121.57 (15)C11—C12B—H12D111.00
N1—C11—C12B121.3 (4)O1B—C12B—H12C111.00
N1—C11—C12A112.93 (13)H12C—C12B—H12D109.00
O1A—C12A—C11110.10 (17)O1B—C12B—H12D111.00
O1B—C12B—C11102.2 (8)C11—C12B—H12C111.00
C1—C13—C14121.08 (14)C13—C14—H14120.00
C14—C13—C18118.58 (15)C15—C14—H14120.00
C1—C13—C18120.29 (14)C16—C15—H15120.00
C13—C14—C15120.84 (17)C14—C15—H15120.00
C14—C15—C16120.0 (2)C15—C16—H16120.00
C15—C16—C17120.2 (2)C17—C16—H16120.00
C16—C17—C18120.20 (19)C16—C17—H17120.00
C13—C18—C17120.17 (17)C18—C17—H17120.00
C2—C19—C20123.49 (13)C17—C18—H18120.00
C2—C19—C24119.33 (14)C13—C18—H18120.00
C20—C19—C24117.15 (15)C19—C20—H20119.00
C19—C20—C21121.07 (16)C21—C20—H20119.00
C20—C21—C22120.64 (18)C20—C21—H21120.00
C21—C22—C23119.18 (18)C22—C21—H21120.00
C22—C23—C24120.54 (18)C23—C22—H22120.00
C19—C24—C23121.37 (17)C21—C22—H22120.00
C6—C5—H5119.00C22—C23—H23120.00
C4—C5—H5119.00C24—C23—H23120.00
C5—C6—H6120.00C23—C24—H24119.00
C7—C6—H6120.00C19—C24—H24119.00
C10—O2—C7—C6167.65 (17)N2—C3—C4—C547.3 (2)
C10—O2—C7—C812.7 (3)N2—C3—C4—C9126.90 (16)
C3—N1—C1—C20.76 (14)C3—C4—C5—C6175.61 (16)
C3—N1—C1—C13178.72 (13)C9—C4—C5—C61.1 (3)
C11—N1—C1—C2176.05 (12)C3—C4—C9—C8176.00 (14)
C11—N1—C1—C136.0 (2)C5—C4—C9—C81.8 (2)
C1—N1—C3—N20.55 (15)C4—C5—C6—C70.6 (3)
C1—N1—C3—C4179.26 (13)C5—C6—C7—O2178.52 (17)
C11—N1—C3—N2175.78 (12)C5—C6—C7—C81.8 (3)
C11—N1—C3—C45.5 (2)O2—C7—C8—C9179.18 (15)
C1—N1—C11—C12A67.64 (19)C6—C7—C8—C91.2 (2)
C3—N1—C11—C12A106.74 (18)C7—C8—C9—C40.6 (2)
C3—N2—C2—C10.39 (15)N1—C11—C12A—O1A46.6 (2)
C3—N2—C2—C19174.53 (12)C1—C13—C14—C15175.92 (17)
C2—N2—C3—N10.10 (16)C18—C13—C14—C151.4 (3)
C2—N2—C3—C4178.89 (13)C1—C13—C18—C17176.12 (17)
N1—C1—C2—N20.71 (15)C14—C13—C18—C171.2 (3)
N1—C1—C2—C19173.56 (13)C13—C14—C15—C160.7 (3)
C13—C1—C2—N2178.46 (13)C14—C15—C16—C170.2 (3)
C13—C1—C2—C194.2 (2)C15—C16—C17—C180.4 (3)
N1—C1—C13—C1491.53 (18)C16—C17—C18—C130.4 (3)
N1—C1—C13—C1891.21 (18)C2—C19—C20—C21175.87 (15)
C2—C1—C13—C1491.1 (2)C24—C19—C20—C212.3 (2)
C2—C1—C13—C1886.2 (2)C2—C19—C24—C23176.95 (16)
N2—C2—C19—C20165.59 (14)C20—C19—C24—C231.3 (2)
N2—C2—C19—C2416.3 (2)C19—C20—C21—C221.4 (3)
C1—C2—C19—C2020.7 (2)C20—C21—C22—C230.5 (3)
C1—C2—C19—C24157.46 (15)C21—C22—C23—C241.5 (3)
N1—C3—C4—C5134.15 (16)C22—C23—C24—C190.6 (3)
N1—C3—C4—C951.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N2i0.822.012.829 (3)175
C9—H9···O1Aii0.932.583.452 (3)156
C24—H24···O1Aiii0.932.533.448 (4)170
C23—H23···Cg1iii0.932.903.736 (2)151
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H22N2O2
Mr370.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.3570 (4), 13.2820 (4), 10.7380 (3)
β (°) 108.212 (1)
V3)1945.05 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
18622, 3822, 3046
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.04
No. of reflections3822
No. of parameters269
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N2i0.822.012.829 (3)175
C9—H9···O1Aii0.932.583.452 (3)156
C24—H24···O1Aiii0.932.533.448 (4)170
C23—H23···Cg1iii0.932.903.736 (2)151
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are thankful to the National Academy of Sciences of Azerbaijan in collaboration with the Ministry of Higher Education of Egypt for funding this project. Manchester Metropolitan University, Erciyes University and Baku State University are gratefully acknowledged for supporting the study.

References

First citationAkkurt, M., Marzouk, A. A., Abbasov, V. M., Abdelhamid, A. A. & Gurbanov, A. V. (2012). Acta Cryst. E68, o3113–o3114.  CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAndreani, A., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Recanatini, M. & Garaliene, V. (2000). Bioorg. Med. Chem. 8, 2359–2366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrezel, I. (1998). Il Farmaco, 53, 342–345.  Web of Science CAS PubMed Google Scholar
First citationMaier, T., Schmierer, R., Bauer, K., Bieringer, H., Buerstell, H. & Sachse, B. (1989a). US Patent 4 820 335.  Google Scholar
First citationMaier, T., Schmierer, R., Bauer, K., Bieringer, H., Buerstell, H. & Sachse, B. (1989b). Chem. Abstr. 111, 19494.  Google Scholar
First citationMohamed, S. K., Akkurt, M., Fronczek, F. R., Marzouk, A. A. E. & Abdelhamid, A. A. (2012). Acta Cryst. E68, o2979–o2980.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages o474-o475
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds