organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1′S,12′R,13′S,17′S)-15′,15′-Di­methyl-1,2-di­hydro-11′,14′,16′,18′-tetra­oxa-7′-aza­spiro­[indole-3,8′-penta­cyclo­[10.6.0.02,9.03,7.013,17]octa­deca­ne]-2,10′-dione

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Computer Science & Engineering, Madha Engineering College, Kundrathur, Chennai 600 069, India, and cDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 11 February 2013; accepted 25 February 2013; online 2 March 2013)

In the title compound, C22H24N2O6, the indole ring has a twist conformation and the tetra­hydro-2H-pyran-2-one ring a half-chair conformation. One of the pyrrolidine rings adopts an envelope conformation on the N atom, while the other has a twist conformation; the `butterfly' angle between their mean planes is 62.98 (11)°. The dioxolane ring adopts a twist conformation and the tetra­hydro­furan ring has an envelope conformation on the C atom in the fused tetra­hydro-2H-pyran-2-one ring adjacent to the O atom of the tetra­hydro­furan ring. The `butterfly' angle between the mean planes of these two five-membered rings is 69.14 (10)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For the biological activity of indole derivatives, see: Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Nedevelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]); Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]); Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]). For a related structure, see: Jagadeesan et al. (2012[Jagadeesan, G., Sethusankar, K., Prasanna, R. & Raghunathan, R. (2012). Acta Cryst. E68, o2505-o2506.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24N2O6

  • Mr = 412.43

  • Orthorhombic, P 21 21 21

  • a = 9.2737 (5) Å

  • b = 11.6543 (8) Å

  • c = 18.8489 (14) Å

  • V = 2037.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.947

  • 21465 measured reflections

  • 4717 independent reflections

  • 3800 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.090

  • S = 1.04

  • 4717 reflections

  • 324 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.06 2.8849 (19) 161
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole compounds can be used as bioactive drugs (Stevenson et al., 2000) and have also been proven to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999), and antimicrobial and antifungal activities (Amal Raj et al., 2003).

The molecular structure of the title compound is shown in Fig. 1. The indole ring is essentially planar with the maximum deviation from planarity being 0.123 (2) Å for atom C7. Atom O1 deviates from the mean plane of the indole ring by 0.2095 (13) Å. The tetrahydro-2H-pyran-2-one ring (O3/C13-C17) has a half-chair conformation.

The five-membered pyrrolidine ring (N2/C9-C12) adopts an envelope conformation with atom N2 as the flap; it is 0.5267 (12) Å out of the mean plane formed by the other ring atoms. The other pyrrolidine ring (N2/C6/C12-C14) has a twist conformation on bond N2-C12; the "butter-fly" angle between their mean planes is 62.98 (11)°.

The dioxolane ring (O5/O6/C18-C20) adopts a twist conformation on bond O6-C20. The tetrahydrofuran ring (O4/C16-C19) adopts an envelope conformation with atom C17 deviating from the mean plane of the remaining ring atoms by 0.6286 (17) Å; the "butter-fly" angle between the ring mean planes is 69.14 (10) °.

In the crystal, molecules are linked via N-H···O hydrogen bonds forming chains propagating along the a axis direction (Table 1 and Fig. 2).

The title compound exhibits structural similarities with a related structure (Jagadeesan et al., 2012).

Related literature top

For the biological activity of indole derivatives, see: Stevenson et al. (2000); Rajeswaran et al. (1999); Amal Raj et al. (2003). For a related structure, see: Jagadeesan et al. (2012).

Experimental top

A solution of 5,6-Dideoxy-l,2-O-isopropylidene-a-D-xylo-hept-5-enofuranurono-7,3-lactone (300 mg, 1.5 mmol), sarcosine (125 mg, 1.5 mmol) and isatin (210 mg, 1.5 mmol) were refluxed in dry toluene under a N2 atmosphere for 6–8 h at 383 K using a Dean-Stark apparatus. After the completion of the reaction as indicated by TLC, toluene was evaporated under reduced pressure. The crude product was washed with water and extracted with dichloromethane (4 × 20mL). The combined organic layers were dried (MgSO4) and filtered, concentrated in vacuum. The crude product was purified by column chromatography using hexane:EtOAc (7:3) mixture as eluent. On slow evaporation of the solvents colourless block-like crystals were obtained.

Refinement top

The methine and methylene H atoms were included in calculated positions freely refined. The remainder of the H atoms were included in calculated positions and allowed to ride on their parent atom: C—H = 0.93 - 0.96 Å, N-H = 0.86 Å, with Uiso = 1.5Ueq(C-methyl), and = 1.2Ueq(C,N) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title molecule, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound, showing the N-H···O hydrogen bonds (dashed lines; see Table 1 for details).
(1'S,12'R,13'S,17'S)-15',15'-Dimethyl-1,2-dihydro-11',14',16',18'-tetraoxa-7'-azaspiro[indole-3,8'-pentacyclo[10.6.0.02,9.03,7.013,17]octadecane]-2,10'-dione top
Crystal data top
C22H24N2O6F(000) = 872
Mr = 412.43Dx = 1.345 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8834 reflections
a = 9.2737 (5) Åθ = 2.1–31.2°
b = 11.6543 (8) ŵ = 0.10 mm1
c = 18.8489 (14) ÅT = 293 K
V = 2037.2 (2) Å3Block, colourless
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4717 independent reflections
Radiation source: fine-focus sealed tube3800 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scanθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker 2008)
h = 612
Tmin = 0.922, Tmax = 0.947k = 1514
21465 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.1058P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
4717 reflectionsΔρmax = 0.16 e Å3
324 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (7)
Crystal data top
C22H24N2O6V = 2037.2 (2) Å3
Mr = 412.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.2737 (5) ŵ = 0.10 mm1
b = 11.6543 (8) ÅT = 293 K
c = 18.8489 (14) Å0.30 × 0.30 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4717 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2008)
3800 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.947Rint = 0.036
21465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.16 e Å3
4717 reflectionsΔρmin = 0.16 e Å3
324 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H9A0.090 (2)0.2846 (19)0.0396 (11)0.064 (6)*
H11A0.384 (2)0.2235 (18)0.1817 (11)0.059 (6)*
H11B0.251 (2)0.278 (2)0.2138 (12)0.078 (7)*
H10B0.242 (3)0.136 (3)0.1028 (15)0.109 (10)*
H10A0.115 (4)0.178 (4)0.1375 (19)0.162 (15)*
H120.3470 (19)0.4460 (16)0.1690 (10)0.044 (5)*
H9B0.251 (2)0.2576 (16)0.0170 (10)0.051 (5)*
H170.6125 (17)0.3803 (14)0.1785 (9)0.031 (4)*
H160.5679 (19)0.5796 (16)0.1708 (10)0.041 (5)*
H140.4660 (17)0.4184 (14)0.0175 (9)0.034 (4)*
H180.929 (2)0.4543 (16)0.0878 (10)0.049 (5)*
H130.4947 (16)0.3027 (15)0.0749 (8)0.030 (4)*
H190.8300 (18)0.6200 (17)0.1434 (9)0.042 (5)*
O40.74044 (11)0.37954 (10)0.09447 (6)0.0428 (3)
O10.30443 (14)0.64064 (10)0.11353 (7)0.0494 (3)
C130.48045 (16)0.37792 (13)0.08903 (9)0.0321 (3)
O20.51578 (14)0.62812 (10)0.03068 (7)0.0553 (4)
N20.22433 (13)0.39789 (11)0.08173 (7)0.0343 (3)
O30.62164 (13)0.59996 (10)0.07089 (7)0.0458 (3)
O60.79932 (13)0.52782 (12)0.23306 (6)0.0519 (3)
O50.91693 (13)0.38056 (12)0.18080 (7)0.0553 (4)
N10.14101 (17)0.64572 (13)0.02193 (9)0.0517 (4)
H10.09420.70670.03340.062*
C140.44834 (16)0.45548 (13)0.02581 (9)0.0321 (3)
C170.61096 (16)0.41353 (14)0.13092 (9)0.0346 (3)
C50.20045 (16)0.48417 (13)0.03945 (9)0.0364 (4)
C120.33988 (16)0.37913 (14)0.13385 (9)0.0353 (4)
C70.24724 (18)0.59935 (14)0.06148 (9)0.0392 (4)
C110.3016 (2)0.26639 (17)0.17006 (12)0.0498 (5)
C160.63188 (18)0.54190 (14)0.13806 (9)0.0382 (4)
C80.11618 (19)0.58297 (15)0.03980 (10)0.0465 (4)
C40.20154 (18)0.41338 (15)0.09800 (9)0.0435 (4)
H40.26010.34860.09910.052*
C60.28163 (15)0.47975 (12)0.02961 (8)0.0329 (3)
C150.53006 (18)0.56665 (14)0.02019 (9)0.0386 (4)
C90.1869 (2)0.28246 (15)0.05469 (11)0.0471 (4)
C190.78866 (19)0.54907 (17)0.15952 (10)0.0439 (4)
C200.91327 (19)0.4474 (2)0.24389 (11)0.0555 (5)
C10.0264 (2)0.6093 (2)0.09595 (12)0.0644 (6)
H1A0.03220.67400.09510.077*
C30.1137 (2)0.44023 (19)0.15530 (10)0.0558 (5)
H30.11360.39330.19520.067*
C180.85583 (18)0.44176 (16)0.12504 (10)0.0437 (4)
C20.0269 (2)0.5360 (2)0.15326 (12)0.0688 (6)
H20.03300.55160.19160.083*
C100.2036 (3)0.2056 (2)0.11837 (16)0.0706 (7)
C211.0539 (2)0.5104 (3)0.25265 (17)0.0961 (10)
H21B1.13020.45610.26020.144*
H21C1.04760.56100.29270.144*
H21A1.07360.55420.21060.144*
C220.8736 (3)0.3709 (3)0.30471 (13)0.0978 (10)
H22A0.94980.31670.31280.147*
H22C0.78620.33060.29370.147*
H22B0.85950.41650.34660.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0336 (5)0.0432 (6)0.0518 (7)0.0007 (5)0.0049 (5)0.0152 (6)
O10.0596 (7)0.0338 (6)0.0546 (8)0.0031 (5)0.0002 (6)0.0115 (6)
C130.0352 (7)0.0216 (8)0.0394 (9)0.0007 (6)0.0028 (6)0.0012 (7)
O20.0696 (8)0.0466 (7)0.0496 (8)0.0215 (6)0.0061 (6)0.0149 (6)
N20.0331 (6)0.0280 (6)0.0419 (7)0.0016 (5)0.0016 (5)0.0005 (6)
O30.0509 (7)0.0329 (6)0.0535 (7)0.0120 (6)0.0089 (6)0.0030 (6)
O60.0454 (7)0.0664 (9)0.0441 (7)0.0126 (6)0.0043 (5)0.0161 (6)
O50.0511 (7)0.0602 (9)0.0545 (8)0.0143 (6)0.0071 (6)0.0121 (7)
N10.0562 (9)0.0333 (8)0.0657 (10)0.0160 (7)0.0051 (8)0.0021 (8)
C140.0336 (7)0.0280 (8)0.0346 (8)0.0032 (6)0.0036 (6)0.0044 (7)
C170.0335 (8)0.0327 (8)0.0375 (9)0.0038 (6)0.0040 (7)0.0002 (7)
C50.0356 (8)0.0292 (8)0.0444 (9)0.0045 (6)0.0007 (7)0.0028 (7)
C120.0367 (8)0.0330 (8)0.0362 (9)0.0007 (7)0.0041 (6)0.0002 (7)
C70.0423 (8)0.0278 (8)0.0474 (10)0.0007 (7)0.0057 (8)0.0012 (7)
C110.0486 (10)0.0453 (11)0.0554 (12)0.0017 (9)0.0066 (9)0.0142 (9)
C160.0405 (8)0.0339 (9)0.0402 (9)0.0007 (7)0.0011 (7)0.0050 (7)
C80.0477 (9)0.0358 (9)0.0559 (11)0.0019 (8)0.0069 (9)0.0064 (9)
C40.0430 (9)0.0398 (9)0.0478 (10)0.0094 (8)0.0006 (8)0.0002 (8)
C60.0336 (7)0.0245 (7)0.0404 (9)0.0003 (6)0.0016 (6)0.0007 (7)
C150.0412 (8)0.0328 (8)0.0418 (9)0.0052 (7)0.0030 (7)0.0011 (8)
C90.0533 (11)0.0297 (9)0.0584 (12)0.0073 (8)0.0010 (10)0.0008 (8)
C190.0434 (9)0.0417 (10)0.0466 (10)0.0042 (8)0.0017 (8)0.0079 (8)
C200.0406 (9)0.0743 (14)0.0518 (11)0.0117 (9)0.0063 (8)0.0156 (11)
C10.0631 (12)0.0561 (12)0.0740 (15)0.0123 (11)0.0187 (11)0.0104 (11)
C30.0543 (11)0.0626 (13)0.0504 (11)0.0167 (10)0.0088 (9)0.0014 (10)
C180.0340 (8)0.0526 (11)0.0445 (10)0.0053 (7)0.0061 (8)0.0099 (9)
C20.0627 (13)0.0754 (15)0.0684 (15)0.0042 (12)0.0246 (11)0.0161 (13)
C100.0868 (17)0.0419 (12)0.0830 (17)0.0201 (12)0.0164 (14)0.0179 (12)
C210.0457 (12)0.119 (2)0.123 (2)0.0087 (14)0.0179 (13)0.057 (2)
C220.108 (2)0.126 (3)0.0594 (15)0.040 (2)0.0009 (14)0.0199 (17)
Geometric parameters (Å, º) top
O4—C181.415 (2)C7—C61.551 (2)
O4—C171.4390 (18)C11—C101.509 (3)
O1—C71.215 (2)C11—H11A0.94 (2)
C13—C171.503 (2)C11—H11B0.96 (2)
C13—C141.525 (2)C16—C191.511 (2)
C13—C121.553 (2)C16—H160.962 (19)
C13—H130.925 (17)C8—C11.381 (3)
O2—C151.204 (2)C4—C31.388 (3)
N2—C61.469 (2)C4—H40.9300
N2—C121.470 (2)C9—C101.506 (3)
N2—C91.480 (2)C9—H9A0.95 (2)
O3—C151.336 (2)C9—H9B0.97 (2)
O3—C161.439 (2)C19—C181.541 (2)
O6—C191.411 (2)C19—H190.961 (19)
O6—C201.427 (2)C20—C221.498 (3)
O5—C181.391 (2)C20—C211.505 (3)
O5—C201.422 (2)C1—C21.377 (3)
N1—C71.348 (2)C1—H1A0.9300
N1—C81.393 (2)C3—C21.376 (3)
N1—H10.8600C3—H30.9300
C14—C151.505 (2)C18—H180.985 (19)
C14—C61.573 (2)C2—H20.9300
C14—H140.938 (17)C10—H10B0.93 (3)
C17—C161.515 (2)C10—H10A0.95 (4)
C17—H170.977 (17)C21—H21B0.9600
C5—C41.378 (2)C21—H21C0.9600
C5—C81.392 (2)C21—H21A0.9600
C5—C61.505 (2)C22—H22A0.9600
C12—C111.523 (2)C22—H22C0.9600
C12—H121.026 (19)C22—H22B0.9600
C18—O4—C17107.19 (11)N2—C6—C7104.49 (12)
C17—C13—C14113.82 (13)C5—C6—C7101.62 (13)
C17—C13—C12112.80 (14)N2—C6—C14105.62 (12)
C14—C13—C12104.82 (12)C5—C6—C14117.28 (13)
C17—C13—H13107.3 (10)C7—C6—C14112.42 (12)
C14—C13—H13111.4 (10)O2—C15—O3117.81 (14)
C12—C13—H13106.6 (10)O2—C15—C14120.85 (15)
C6—N2—C12106.25 (11)O3—C15—C14121.33 (15)
C6—N2—C9116.41 (13)N2—C9—C10104.02 (17)
C12—N2—C9105.42 (13)N2—C9—H9A107.6 (14)
C15—O3—C16122.32 (12)C10—C9—H9A110.7 (13)
C19—O6—C20107.92 (14)N2—C9—H9B112.2 (11)
C18—O5—C20109.96 (15)C10—C9—H9B110.0 (11)
C7—N1—C8111.83 (14)H9A—C9—H9B112.0 (17)
C7—N1—H1124.1O6—C19—C16108.69 (15)
C8—N1—H1124.1O6—C19—C18104.10 (15)
C15—C14—C13117.84 (13)C16—C19—C18103.36 (14)
C15—C14—C6110.08 (13)O6—C19—H19115.7 (10)
C13—C14—C6105.24 (12)C16—C19—H19110.3 (10)
C15—C14—H14104.3 (10)C18—C19—H19113.9 (10)
C13—C14—H14111.9 (10)O5—C20—O6104.94 (14)
C6—C14—H14107.1 (10)O5—C20—C22108.7 (2)
O4—C17—C13110.19 (13)O6—C20—C22108.59 (17)
O4—C17—C16101.97 (13)O5—C20—C21109.76 (17)
C13—C17—C16114.99 (14)O6—C20—C21109.69 (19)
O4—C17—H17108.4 (9)C22—C20—C21114.7 (2)
C13—C17—H17112.6 (9)C2—C1—C8117.46 (19)
C16—C17—H17108.0 (10)C2—C1—H1A121.3
C4—C5—C8119.72 (15)C8—C1—H1A121.3
C4—C5—C6131.97 (14)C2—C3—C4120.3 (2)
C8—C5—C6108.26 (14)C2—C3—H3119.9
N2—C12—C11104.95 (14)C4—C3—H3119.9
N2—C12—C13104.46 (12)O5—C18—O4110.66 (15)
C11—C12—C13115.57 (14)O5—C18—C19105.19 (14)
N2—C12—H12111.5 (10)O4—C18—C19106.37 (13)
C11—C12—H12112.4 (10)O5—C18—H18109.7 (11)
C13—C12—H12107.7 (10)O4—C18—H18107.7 (11)
O1—C7—N1127.35 (15)C19—C18—H18117.2 (11)
O1—C7—C6125.38 (15)C3—C2—C1121.80 (19)
N1—C7—C6107.24 (14)C3—C2—H2119.1
C10—C11—C12104.84 (17)C1—C2—H2119.1
C10—C11—H11A113.1 (13)C9—C10—C11107.29 (16)
C12—C11—H11A111.9 (13)C9—C10—H10B107.9 (18)
C10—C11—H11B108.9 (14)C11—C10—H10B112.7 (19)
C12—C11—H11B112.5 (15)C9—C10—H10A114 (2)
H11A—C11—H11B105.7 (18)C11—C10—H10A116 (2)
O3—C16—C19105.85 (14)H10B—C10—H10A99 (3)
O3—C16—C17112.20 (14)C20—C21—H21B109.5
C19—C16—C17101.63 (14)C20—C21—H21C109.5
O3—C16—H16108.0 (11)H21B—C21—H21C109.5
C19—C16—H16113.4 (10)C20—C21—H21A109.5
C17—C16—H16115.4 (11)H21B—C21—H21A109.5
C1—C8—C5121.73 (18)H21C—C21—H21A109.5
C1—C8—N1128.53 (18)C20—C22—H22A109.5
C5—C8—N1109.73 (15)C20—C22—H22C109.5
C5—C4—C3118.93 (17)H22A—C22—H22C109.5
C5—C4—H4120.5C20—C22—H22B109.5
C3—C4—H4120.5H22A—C22—H22B109.5
N2—C6—C5114.83 (12)H22C—C22—H22B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.062.8849 (19)161
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC22H24N2O6
Mr412.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.2737 (5), 11.6543 (8), 18.8489 (14)
V3)2037.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2008)
Tmin, Tmax0.922, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
21465, 4717, 3800
Rint0.036
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.04
No. of reflections4717
No. of parameters324
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.062.8849 (19)161
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

SA and VS thank the UGC, India, for financial support. The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationAmal Raj, A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJagadeesan, G., Sethusankar, K., Prasanna, R. & Raghunathan, R. (2012). Acta Cryst. E68, o2505–o2506.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Nedevelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds